空间图形的基本关系与公理 PPT
- 格式:ppt
- 大小:188.00 KB
- 文档页数:18
空间图形的基本关系与公理研究对象:点、线、面的关系 三种语言:文字语言、符合语言、图形语言(看图说话)点线关系:点在线上、点在线外 点面关系:点在面上、点在面外 线线关系:平行、相交、异面线面关系:线面平行、线面相交、线在面内 面面关系:面面平行、面面相交公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:不共线的三点,可以确定一个平面。
推论1:直线和直线外的一点可以确定一个平面 推论2:两条平行直线可以确定一个平面。
推论3:两条相交直线可以确定一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。
公理4:平行于同一条直线的两条直线平行(平行的传递性)。
等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所组成的锐角(或直角)相等。
异面直线a 、b 所成角:过空间任意一点P 分别引两条异面直线a 、b 的平行线1l 、2l ()12//,//a l b l ,这两条相交直线所成的锐角(或直角)就是异面直线a 、b 所成角。
如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作a b ⊥。
论证点、线共面的通法之一,即证部分元素确定一个平面,再证余下元素也在平面内。
论证点、线共面的通法之二,即根据确定平面的条件,先证各部分元素分别确定平面,再证这些平面有相同的确定平面的条件,即重合。
点共线、线共点:依据是公理3,如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。
证明多点共线:通常是过其中两点作一直线,然后证明其他的点在这条直线上,或者根据已知条件设法证明这些点在两个相交平面内,然后根据公理2就得到这些点在两个平面的交线上。
证明多线共点:可把其中一条作为分别过其余两条的两个平面的交线,然后再证另两条直线的交点在此直线上。