计算机图形学主要知识点

  • 格式:doc
  • 大小:53.50 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章

计算机图形学是:研究怎么利用计算机来显示、生成和处理图形的原理、方法和技术的一门学科。

计算机图形学的研究对象是图形。构成图形的要素有两类:一类是几何要素(刻画图形状的点、线、面、体),另一类是非几何要素(反映物体表面属性或材质的明暗、灰度、色彩).。

计算机中表示图和形常有两种方法:点阵法和参数法。

软件的标准:SGI等公司开发的OpenGL,微软开发的Direct X,Adobe的Postscript 等。

计算机辅助设计与制造(CAD/CAM)

计算机图形系统可以定义为计算机硬件、图形输入输出设备、计算机系统软件和图形软件的集合。

交互式计算机图形系统应具有计算、存储、对话、输入和输出等五方面的功能。

真实感图形的生成一般须经历场景造型、取景变换、视域裁剪、消除隐藏面及可见面光亮度计算等步骤。

虚拟现实系统又称虚拟现实环境,是指由计算机生成的一个实时三维空间。用户可以在其中“自由地”运动,随意观察周围的景物,并可通过一些特殊的设备与虚拟物体进行交互操作。

科学计算可视化是指运用计算机图形学和图像处理技术,将科学计算过程中及计算结果的数据转换为图形及图像在屏幕上显示出来并进行交互处理的理论、方法和技术。

第二章

鼠标器是用来产生相对位置。鼠标器按键数分为两种:MS型鼠标(双按键鼠标)和PC型鼠标(三按键鼠标)。

触摸屏也叫触摸板,分为:光学的红外线式触摸屏、电子的电阻式触摸屏和电容式触摸屏、声音的声波式触摸屏。

数据手套是由一系列检测手和手指运动的传感器的构成。来自手套的输入可以用来

给虚拟场景中的对象定位或操纵该场景。

显示设备的另一个重要组成部分的是显示控制器。它是控制显示器件和图形处理、转换、信号传输的硬件部分,主要完成CRT的同步控制、刷新存储器的寻址、光标控制以及图形处理等功能。

阴极射线管CRT由电子枪、偏转系统及荧光屏3个基本部分组成。电子枪的主要功能是产生一个沿管轴(Z轴)方向前进的高速的细电子束(轰击荧光屏)。

光栅的枕形失真是由于同样的偏转角增量所造成的偏转距离增量的最大。

荧光粉的余辉特性是指这样一种性质:电子束轰击荧光粉时,荧光粉的分子受激而发光,当电子束的轰击停止后,荧光粉的光亮并非立即消失,而是按指数规律衰减,这种特性叫余辉特性。余辉时间定义为,从电子束停止轰击到发光亮度下降到初始值的1%所经历的时间。

CRT图形显示器分为:随机扫描的图形显示器,直视存储管图形显示器,光栅扫描的图形显示器。

目前常用的PC图形显示子系统主要由3个部件组成:帧缓冲存储器、显示控制器和一个ROM BIOS芯片。

分辨率分为屏幕分辨率、显示分辨率和图形存储分辨率。3种分辨率的概念既有区别又有联系,对图形的显示都会产生一定的影响。在三者之间,屏幕分辨率决定了所能显示的最高分辨率;但显示分辨率和存储分辨率对所能显示的图形分辨率也有控制作用。如果存储分辨率小于屏幕分辨率,尽管显示分辨率可以提供最高的屏幕分辨率,屏幕上也不能显示出应有的显示模式。存储分辨率还必须大于显示分辨率,否则不能够显示出应有的显示模式。

第三章

图形输入设备的逻辑分类:定位设备、笔划设备、数值设备、选择设备、拾取设备、字符串设备。

引力域、橡皮筋技术、草拟技术

第四章

按所构造的图形对象可分为规则对象和不规则对象。

规则对象是指能用欧式几何进行描述的形体。其造型又称为几何造型。

一个完整的几何模型应包括物体的各部分几何形状及其在空间的位置(即几何信息)和各部分之间的连接关系(即拓扑信息)。

不规则对象的造型系统中,大多采用过程式模拟,即用一个简单的模型以及少量的易于调节的参数来表示一大类对象,不断改变参数,递归调用这一模型就能一步一步地产生数据量很大的对象,这一技术也被称为数据放大技术。

不规则对象造型方法主要有:基于分数维理论的随机模型、基于文法的模型、粒子系统模型和非刚性物体模型等等。

一般在二维图形系统中将基本图形元素称为图素或图元,而在三维图形系统中称为体素。

图素是指可以用一定的几何参数和属性参数描述的最基本的图形输出元素,包括点、线、圆、圆弧、椭圆、二次曲线等。体素是三维空间中可以用有限个尺寸参数定位和定形的最基本的单元体。段是指具有逻辑意义的有限个图素(或体素)及其附加属性的集合。

几何信息一般指形体在欧式空间中的位置和大小;而拓扑信息则是形体各分量(点、

线、面)的数目及其相互间的连接关系。

拓扑等价即一个图形作弹性运动可使之与另一个图形重合。

坐标系分为:建模坐标系(又称造型坐标系,用来定义基本图素或图段,对于定义的每一个形体和图素都有各自的子坐标原点和长度单位。又可看做是局部坐标系)、用户坐标系(也称为世界坐标系,用于定义用户整图或最高层图形结构)、观察坐标系(主要用途,一是用于指定裁剪空间,确定形体的哪一部分要显示输出;二是通过定义观察(投影)平面,把三维形体的用户坐标变换成规格化的设备坐标。)、规格化设备坐标系(用来定义视图区)、设备坐标系(是图形输入输出设备的坐标系)。

所谓二维流形指的是对于实体表面上的任意一点,都可以找到一个围绕着它的任意小的领域,该领域与平面上的一个圆盘式拓扑等价的。

实体的定义:对于一个占据有限空间的正则形体,如果其表面是二维流形,则该正则形体为实体。

实体模型的表示大致分为边界表示、构造实体几何表示、空间分割表示。

分形几何表示的物体具有无限的自相似性的基本特征。

形状语法通常将一组产生式规则应用到初始物体,从而增加与原形状协调的细节层次。

给定一组产生式规则,形状设计者可以在从给定初始物体到最终物体结构的每一次变换中应用不同的规则。

第五章

图形的扫描转换定义为在光栅显示器等数字设备上确定一个最佳逼近与图形的像素集的过程。逼近过程的本质可以认为是连续量向离散量的转换。

数值微分算法

中点Bresenham算法

改进的Bresenham算法

中点Bresenham画圆

椭圆的中点Bresenham算法

从多边形顶点表示到点阵表示的转换,这种转换就成为扫描转换多边形或多边形的填充,即从多边形的顶点出发,求出位于其内部的各个像素,并将其颜色值写入帧缓存中的相应单元。

X—扫描线算法填充多边形的基本思想是按扫描线顺序,计算扫描线与多边形的相交区间,再用要求的颜色显示这些区间的像素,即完成填充工作。

边缘填充算法的基本思想是按任意顺序处理多边形的每一条边。在处理每一条边时,首先求出该边与扫描线得交点,然后将每一条扫描线上交点右方的所有像素取补。多边形的所有处理完毕之后,填充即完成。

栅栏填充算法的基本思想同样是按照任意顺序处理多边形的每一条边,但是在处理每条边与扫描线的交点时,将交点与栅栏之间的像素取补。

区域填充是指从区域的一个点(种子)开始,由内向外将填充色扩展到整个区域内的过程。

对区域进行内—外测试通常用奇—偶规则和非零环绕数规则。

奇—偶规则的测试方法是:从任意位置,假定为P点,做一条射线,若与该射线相交的多边形边的数目为奇数,则P点是多边形内部点,否则是多边形的外部点。

另一个进行内-外测试的方法是非零环绕数规则。首先按逆时针方向对多边形的顶点进行排序,使多边形的边变为矢量,然后将环绕数初始化为零,再从任意位置,假定