初中函数与几何难题
- 格式:doc
- 大小:229.00 KB
- 文档页数:6
1.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为.2.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.23.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形AB OD′的周长是()A.B.6 C.D.4.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB 边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.95.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.6.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.7.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a=.8.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?9.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;ANFE CDM BD 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D(2)若∠BAC =600,求证:AH =AO .(初二)第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)PCGFBQ ADE· OQPBDEC NM· A·GA O DBECQPNM·AD HEM C BO第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)PADCBAPC BOD BF AECPFE PCBAE DA CBFAFDECBD3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDCBAAC BPDAC BPDAPCBFPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。
专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为2(2023·四川自贡·统考中考真题)如图,直线y=-13x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=-43x+2上的一动点,动点E m,0,F m+3,0,连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.3(2023·江苏无锡·统考中考真题)二次函数y=a(x-1)(x-5)a>1 2的图像与x轴交于点A、B,与y轴交于点C,过点M3,1的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B 的坐标;(2)若OD :OC =2:1,直线y =-x +b 分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan ∠MND 的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使△NPQ 是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,∠A =60°,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当∠QPB =45°时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP =x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y =-3x 2+23x 的图象与x 轴分别交于点O ,A ,顶点为B .连接OB ,AB ,将线段AB 绕点A 按顺时针方向旋转60°得到线段AC ,连接BC .点D ,E 分别在线段OB ,BC 上,连接AD ,DE ,EA ,DE 与AB 交于点F ,∠DEA =60°.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①∠EDA 的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α0°<α<45° ,AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN ,将△OFN 与△OCF 的面积分别记为S 1与S 2,设S =S 1-S 2,AN =n ,求S 关于n 的函数表达式.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.13(2023·湖北宜昌·统考中考真题)如图,已知A (0,2),B (2,0).点E 位于第二象限且在直线y =-2x 上,∠EOD =90°,OD =OE ,连接AB ,DE ,AE ,DB .(1)直接判断△AOB 的形状:△AOB 是三角形;(2)求证:△AOE ≌△BOD ;(3)直线EA 交x 轴于点C (t ,0),t >2.将经过B ,C 两点的抛物线y 1=ax 2+bx -4向左平移2个单位,得到抛物线y 2.①若直线EA 与抛物线y 1有唯一交点,求t 的值;②若抛物线y 2的顶点P 在直线EA 上,求t 的值;③将抛物线y 2再向下平移,2(t -1)2个单位,得到抛物线y 3.若点D 在抛物线y 3上,求点D 的坐标.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.15(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A (3,0),B (0,1),D (23,1),矩形EFGH 的顶点E 0,12 ,F -3,12 ,H 0,32.(1)填空:如图①,点C 的坐标为,点G 的坐标为;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E F G H ,点E ,F ,G ,H 的对应点分别为E ,F ,G ,H .设EE =t ,矩形E F G H 与菱形ABCD 重叠部分的面积为S .①如图②,当边E F 与AB 相交于点M 、边G H 与BC 相交于点N ,且矩形E F G H 与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).16(2023·浙江温州·统考中考真题)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =32,AC =1.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式.(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当NQ =154x -3时,求MN 的长.17(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.18(2023·江苏连云港·统考中考真题)【问题情境 建构函数】(1)如图1,在矩形ABCD 中,AB =4,M 是CD 的中点,AE ⊥BM ,垂足为E .设BC =x ,AE =y ,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是-42<y <42;③存在一条直线与该函数图像有四个交点;④在图像上存在四点A 、B 、C 、D ,使得四边形ABCD 是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).19(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan ∠BAM 、tan ∠NAE 的值;(3)求直线AE 的解析式.20(2023·山东泰安·统考中考真题)如图1,二次函数y =ax 2+bx +4的图象经过点A (-4,0),B (-1,0).(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当△BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使∠DAB +∠ACB =90°;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.21(2023·湖北恩施·统考中考真题)在平面直角坐标系xoy 中,O 为坐标原点,已知抛物线y =-12x 2+bx +c 与y 轴交于点A ,抛物线的对称轴与x 轴交于点B .(1)如图,若A 0,3 ,抛物线的对称轴为x =3.求抛物线的解析式,并直接写出y ≥3时x 的取值范围;(2)在(1)的条件下,若P 为y 轴上的点,C 为x 轴上方抛物线上的点,当△PBC 为等边三角形时,求点P ,C 的坐标;(3)若抛物线y =-12x 2+bx +c 经过点D m ,2 ,E n ,2 ,F 1,-1 ,且m <n ,求正整数m ,n 的值.22(2023·辽宁营口·统考中考真题)如图,抛物线y =ax 2+bx -1a ≠0 与x 轴交于点A 1,0 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点D 3,0 ,过点B 作直线l ⊥x 轴,过点D 作DE ⊥CD ,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.23(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y 轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E1a ,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.24(2023·江苏无锡·统考中考真题)已知二次函数y=22x2+bx+c的图像与y轴交于点A,且经过点B(4,2)和点C(-1,2).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=22x2+bx+c图像上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.25(2023·辽宁·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.11。
中考数学专题复习:几何与函数问题专项练习附答案【知识纵横】客观世界中事物总是相互关联、相互制约的。
几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。
函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。
【典型例题】【例1】己知AB=2,AD=4f ZDAB=90\AD//BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段庞的中点.(1)设BE=x,△ABM的面积为y,求y关于工的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段为直径的圆外切,求线段况的长;(3)联结交线段AM于点N,如果以A N,D为顶点的三角形与任;相似,【思路点拨】(1)取AB中点H,联结MH;(2)先求出DE;(3)分二种情况讨论。
【例2】(山东青岛)己知:如图(1),在RtAACB中,ZC=90S AC=4cm, BC=3cm,点F由B出发沿HA方向向点A匀速运动,速度为lcm/s;点。
由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为f(s)(0<Z<2),解答下列问题:(1)当,为何值时,PQ//BC?(2)设△AQP的面积为y(cm2),求y与,之间的函数关系式;(3)是否存在某一时刻使线段PQ恰好把Rt/\ACB的周长和面积同时平分?若存在,求出此时/的值;若不存在,说明理由;(4)如图(2),连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻,,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由・刀图(1)图(2)P'【思路点拨】(1)设BP为t,则AQ=2t,证△4QQ s AABC;(2)过点P作PH A-AC 于H.(3)构建方程模型,求t;(4)过点P作PMA.A C于PNTBC于N,若四边形POP'C 是菱形,那么构建方程模型后,能找到对应f的值。
专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,∴∠NAJ+∠ANJ=90°,∵AN=MN,∠ANM=90°,∴∠MNK+∠ANJ=90°,∴∠MNK=∠NAJ,∴△MNK≌△NAJ,设N x,-2x-6,∴MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB=8,∴-2x-12-x=8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.2(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D 3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.3(2023·江苏无锡·统考中考真题)二次函数y =a (x -1)(x -5)a >12的图像与x 轴交于点A 、B ,与y 轴交于点C ,过点M 3,1 的直线将△ABC 分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.【答案】910或2+25或2+12【分析】先求得A 1,0 ,B 5,0 ,C 0,5a ,直线BM 解析式为y =-12x +52,直线AM 的解析式为y =12x -12,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线,则①如图1,直线AM 过BC 中点,②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,直线MB 与y 轴平行,必不成立;2)当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,根据相似三角形的性质,即可求解;⑤如图5,直线ME ∥AC ,⑥如图6,直线ME ∥BC ,同理可得AE AB =12,进而根据tan ∠MEN =tan ∠CBO ,即可求解.【详解】解:由y =a (x -1)(x -5),令x =0,解得:y =5a ,令y =0,解得:x 1=1,x 2=5,∴A 1,0 ,B 5,0 ,C 0,5a ,设直线BM 解析式为y =kx +b ,∴5k +b =03k +b =1解得:k =-12b =52 ∴直线BM 解析式为y =-12x +52,当x =0时,y =52,则直线BM 与y 轴交于0,52,∵a >12,∴5a >52,∴点M 必在△ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y =mx +n∴k +b =03k +b =1解得:m =12n =-12 则直线AM 的解析式为y =12x -12①如图1,直线AM 过BC 中点,,BC 中点坐标为52, 52a ,代入直线求得a =310<12,不成立; ②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,∴△CEN ∽△COA∴CE CO =CN CA =12,∴5a -15a =12,解得a =2+25;⑤如图5,直线ME∥AC,MN∥CO,则△EMN∽△ACO∴BE AB =12,又AB=4,∴BE=22,∵BN=5-3=2<22,∴不成立;⑥如图6,直线ME∥BC,同理可得AEAB=12,∴AE=22,NE=22-2,tan∠MEN=tan∠CBO,∴1 22-2=5a5,解得a=2+12;综上所述,a=910或2+25或2+12.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B的坐标;(2)若OD:OC=2:1,直线y=-x+b分别交x轴、y轴、AD于点E,F,M,且M是AD的中点,直线EF交DC延长线于点N,求tan∠MND的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使△NPQ是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.【答案】(1)B-4,0(2)tan∠MND=13(3)存在,等腰三角形的个数是8个,Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4 -4,3【分析】(1)解方程得到OB,OC的长,从而得到点B的坐标;(2)由OD:OC=2:1,OC=2,得OD=4.由AD=BC=6,M是AD中点,得到点M的坐标,代入直线y =-x+b中,求得b的值,从而得到直线的解析式,进而求得点E,点F的坐标,由坐标特点可得∠FEO= 45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.从而△DOC∽△NKC,DO:OC=NK:CK=2: 1,进而得到NK=2CK,易证∠KEN=∠KNE=45°,可得EK=NK=2CK,因此EC=CK,由EC=OC -OE=2-1=1可得CK=1,NK=2,EK=2,从而通过解直角三角形在Rt△ENK中,得到EN=EK cos∠KEN =22,在Rt△ECH中,CH=EH=EC⋅cos∠CEH=22,因此求得NH=EN-EH=322,最终可得结果tan∠MND=CHNH=13;(3)分PN=PQ,PN=NQ,PQ=NQ三大类求解,共有8种情况.【详解】(1)解方程x2-6x+8=0,得x1=4,x2=2.∵OB>OC,∴OB=4,OC=2.∴B-4,0;(2)∵OD:OC=2:1,OC=2∴OD=4.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6.∵M是AD中点,∴MD=3.∴M-3,4.将M-3,4代入y=-x+b,得3+b=4.∴b=1.∴E1,0,F0,1.∴∠FEO=45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.∵△DOC∽△NKC,DO:OC=NK:CK=2:1.∴NK=2CK∵∠KEN=∠FEO=45°∴∠KNE=90°-∠KEN=45°∴∠KEN=∠KNE∴EK=NK=2CK∴EC=CK∵EC=OC-OE=2-1=1∴CK=1,NK=2,EK=2∴在Rt△ENK中,EN=EKcos∠KEN =2cos45°=22在Rt△ECH中,CH=EH=EC⋅cos∠CEH=1⋅cos45°=22∴NH =EN -EH =22-22=322∴tan ∠MND =CH NH =22322=13(3)解:由(2)知:直线EF 解析式为y =-x +1,N 3,-2 ,设P 0,p ,Q q ,-q +1 ,①当PN =QN =5时,3-0 2+-2-p 2=52,3-q 2+-2+q -1 2=52,解得p =-6或p =2,q =6+522或q =6-522,∴Q 16-522,52-42 ,Q 26+522,-52+42 ,P 10,-6 ,P 20,2 ,如图,△P 1Q 1N 、△P 1Q 2N 、△P 2Q 1N 、△P 2Q 2N 都是以5为腰的等腰三角形,;②当PQ =QN =5时,由①知:Q 16-522,52-42 ,Q 26+522,-52+42 ,∵6+522>5,∴PQ 2不可能等于5,如图,△P 3Q 1N ,△P 4Q 1N 都是以5为腰的等腰三角形,;③当PN=PQ=5时,由①知:P10,-6,P20,2,当P10,-6时,0-q2+-6+q-12=5,解得q1=3(舍去),q2=4,∴Q34,-3,如图,当P20,2时,0-q2+2+q-12=5,解得q1=3(舍去),q2=-4,∴Q4-4,3,如图,综上,等腰三角形的个数是8个,符合题意的Q坐标为Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4-4,3【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)BD 是⊙O 的切线,证明见解析(2)1+52(3)y =x 0<x ≤1【分析】(1)依据题意,由勾股定理,首先求出∠ACB =90°,从而∠CAB +∠ABC =90°,然后根据∠DBC =∠CAB ,可以得解;(2)由题意,据S 1⋅S =S 2 2得CD CD +AC =AC 2,再由tan ∠D =BC CD =tan ∠ABC =AC BC ,进而进行变形利用方程的思想可以得解;(3)依据题意,连接OM ,分别在Rt △OFM 、Rt △AFE 、Rt △BFN 中,找出边之间的关系,进而由FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,可以得解.【详解】(1)解:BD 是⊙O 的切线.证明:如图,在△ABC 中,AB 2=BC 2+AC 2,∴∠ACB =90°.又点A ,B ,C 在⊙O 上,∴AB 是⊙O 的直径.∵∠ACB =90°,∴∠CAB +∠ABC =90°.又∠DBC =∠CAB ,∴∠DBC +∠ABC =90°.∴∠ABD =90°.∴BD 是⊙O 的切线.(2)由题意得,S 1=12BC ⋅CD ,S 2=12BC ⋅AC ,S =12AD ⋅BC .∵S 1⋅S =S 2 2,∴12BC ⋅CD ⋅12AD ⋅BC =12BC ⋅AC 2.∴CD •AD =AC 2.∴CD CD +AC =AC 2.又∵∠D +∠DBC =90°,∠ABC +∠A =90°,∠DBC =∠A ,∴∠D =∠ABC .∴tan ∠D =BC CD =tan ∠ABC =AC BC.∴CD =BC 2AC.又CD CD +AC =AC 2,∴BC 4AC2+BC 2=AC 2.∴BC 4+AC 2⋅BC 2=AC 4.∴1+AC BC 2=AC BC4.由题意,设tan D 2=m ,∴AC BC2=m .∴1+m =m 2.∴m =1±52.∵m >0,∴m =1+52.∴tan D 2=1+52.(3)设∠A =α,∵∠A +∠ABC =∠ABC +∠DBC =∠ABC +∠N =90°,∴∠A =∠DBC =∠N =α.如图,连接OM .∴在Rt △OFM 中,OF =OM 2-FM 2=1-x 2.∴BF =BO +OF =1+1-x 2,AF =OA -OF =1-1-x 2.∴在Rt △AFE 中,EF =AF ⋅tan α=1-1-x 2 ⋅tan α,AE =AF cos α=1-1-x 2cos α.在Rt △ABC 中,BC =AB ⋅sin α=2sin α.(∵r =1,∴AB =2)AC =AB ⋅cos α=2cos α.在Rt △BFN 中,BN =BF sin α=1+1-x 2sin α,FN =BF tan α=1+1-x 2tan α.∴y =FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=x 2⋅12+21-x 2+12-21-x 2=x 2⋅2-21-x 2+2+21-x 24-41-x 2 =x 2⋅1x 2=x 2⋅1x=x .即y =x .∵FM ⊥AB ,∴FM 最大值为F 与O 重合时,即为1.∴0<x ≤1.综上,y =x 0<x ≤1 .【点睛】本题主要考查了圆的相关性质,切线的判定定理,求角的正切值,解题时要熟练掌握并灵活运用.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.【答案】(1)k 的值为-1,m 的值为3,n 的值为2(2)①函数y 2的图像的对称轴为x =-13;②函数y 2的图像过两个定点0,1 ,-23,1 ,理由见解析(3)能构成正方形,此时S >2【分析】(1)根据题意得到a 2=c 2,a 1=c 2,b 1=-b 2≠0即可解答;(2)①求出y 1的对称轴,得到s =-3r ,表示出y 2的解析式即可求解;②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0求解即可;(3)由题意可知y 1=ax 2+bx +c ,y 2=cx 2-bx +a 得到A 、B 的坐标,表示出CD ,EF ,根据CD =EF 且b 2-4ac >0,得到a =c ,分a =-c 和a =c 两种情况求解即可.【详解】(1)解:由题意可知:a 2=c 2,a 1=c 2,b 1=-b 2≠0,∴m =3,n =2,k =-1.答:k 的值为-1,m 的值为3,n 的值为2.(2)解:①∵点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,∴对称轴为x =r +s 2=-2r 2,∴s =-3r ,∴y 2=sx 2-2rx +1,∴对称轴为x =--2r 2s =r s =-13.答:函数y 2的图像的对称轴为x =-13.②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0,解得x 1=0,x 2=-23,∴过定点0,1,-2 3 ,1.答:函数y2的图像过定点0,1,-2 3 ,1.(3)解:由题意可知y1=ax2+bx+c,y2=cx2-bx+a,∴A-b2a ,4ac-b24a,B b2c,4ac-b24c,∴CD=b2-4aca ,EF=b2-4acc,∵CD=EF且b2-4ac>0,∴a =c ;①若a=-c,则y1=ax2+bx-a,y2=-ax2-bx+a,要使以A,B,C,D为顶点的四边形能构成正方形,则△CAD,△CBD为等腰直角三角形,∴CD=2y A ,∴b2+4a2|a|=2⋅-4a2-b24a,∴2b2+4a2=b2+4a2,∴b2+4a2=4,∴S正=12CD2=12⋅b2-4aca2=12⋅b2+4a2a2=2a2,∵b2=4-4a2>0,∴0<a2<1,∴S正>2;②若a=c,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD是边长为4的菱形,∠A=60°,点Q为CD的中点,P为线段AB上的动点,现将四边形PBCQ沿PQ翻折得到四边形PB C Q.(1)当∠QPB=45°时,求四边形BB C C的面积;(2)当点P在线段AB上移动时,设BP=x,四边形BB C C的面积为S,求S关于x的函数表达式.【答案】(1)43+8(2)S=323xx2+12+43【分析】(1)连接BD、BQ,根据菱形的性质以及已知条件可得△BDC为等边三角形,根据∠QPB=45°,可得△PBQ为等腰直角三角形,则PB=23,PQ=26,根据翻折的性质,可得∠BPB =90°,PB=PB ,则BB =26,PE=6;同理CQ=2,CC =22,QF=2;进而根据S四边形BB C C=2S梯形PBCQ-S△PBB+S △CQC,即可求解;(2)等积法求得BE =23x x 2+12,则QE =12x 2+12,根据三角形的面积公式可得S △QEB =123x x 2+12,证明△BEQ ∼△QFC ,根据相似三角形的性质,得出S △QFC =43x x 2+12,根据S =2S △QEB +S △BQC +S △QFC 即可求解.【详解】(1)如图,连接BD 、BQ ,∵四边形ABCD 为菱形,∴CB =CD =4,∠A =∠C =60°,∴△BDC 为等边三角形.∵Q 为CD 中点,∴CQ =2,BQ ⊥CD ,∴BQ =23,QB ⊥PB .∵∠QPB =45°,∴△PBQ 为等腰直角三角形,∴PB =23,PQ =26,∵翻折,∴∠BPB =90°,PB =PB ,∴BB =26,PE =6;.同理CQ =2,∴CC =22,QF =2,∴S 四边形BB C C =2S 梯形PBCQ -S △PBB +S △CQC =2×12×2+23 ×23-12×23 2+12×22=43+8;(2)如图2,连接BQ 、B Q ,延长PQ 交CC 于点F .∵PB =x ,BQ =23,∠PBQ =90°,∴PQ =x 2+12.∵S △PBQ =12PQ ×BE =12PB ×BQ ∴BE =BQ ×PB PQ =23x x 2+12,∴QE =12x 2+12,∴S △QEB =12×23x x 2+12×12x 2+12=123x x 2+12.∵∠BEQ =∠BQC =∠QFC =90°,则∠EQB =90°-∠CQF =∠FCQ ,∴△BEQ ∼△QFC ,∴S △QFC S △BEQ =CQ QB 2=223 2=13,∴S △QFC =43x x 2+12.∵S △BQC =12×2×23=23,∴S =2S △QEB +S △BQC +S △QFC =2123x x 2+12+23+43x x 2+12=323x x 2+12+43.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y=-3x2+23x的图象与x 轴分别交于点O,A,顶点为B.连接OB,AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D,E分别在线段OB,BC上,连接AD,DE,EA,DE与AB交于点F,∠DEA=60°.(1)求点A,B的坐标;(2)随着点E在线段BC上运动.①∠EDA的大小是否发生变化?请说明理由;②线段BF的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE的中点在该二次函数的因象的对称轴上时,△BDE的面积为.【答案】(1)A2,0,B1,3;(2)①∠EDA的大小不变,理由见解析;②线段BF的长度存在最大值为12;(3)239【分析】(1)y=0得-3x2+23x=0,解方程即可求得A的坐标,把y=-3x2+23x化为顶点式即可求得点B的坐标;(2)①在AB上取点M,使得BM=BE,连接EM,证明△AED是等边三角形即可得出结论;②由BM= AB-AF=2-AF,得当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,进而解直角三角形即可求解;(3)设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,证四边形OACB是菱形,得BC∥OA,进而证明△MBE≌△MHD得DH=BE,再证△BME∽△NAM,得ANBM=MNBE=AMME即1BM=MNBE=3,结合三角形的面积公式即可求解.【详解】(1)解:∵y=-3x2+23x=-3x-12+3,∴顶点为B1,3,令y=0,-3x2+23x=0,解得x=0或x=2,∴A2,0;(2)解:①∠EDA的大小不变,理由如下:在AB上取点M,使得BM=BE,连接EM,∵y=-3x-12+3,∴抛物线对称轴为x=1,即ON=1,∵将线段AB绕点A按顺时针方向旋转60°得到线段AC,∴∠BAC=60°,AB=AC,∴△BAC是等边三角形,∴AB=AC=BC,∠C=60°,∵A2,0,B1,3,O0,0,ON=1,∴OA=2,OB=12+32=2,AB=2-12+32=2,∴OA=OB=AB,∴△OAB是等边三角形,OA=OB=AC=BC=2,∴∠OAB=∠OBA=∠AOB=60°,∵∠MBE=60°,BM=BE,∴△BME是等边三角形,∴∠BME=60°=∠ABE,ME=BE=BM,∴∠AME=180°-∠BME=120°,BD∥EM,∵∠DBE=∠ABO+∠ABC=120°,∴∠DBE=∠AME,∵BD∥EM,∴∠FEM+∠BED=180°-120°=60°=∠AEF=∠MEA+∠FEM,∴∠BED=∠MEA,∴△BED≌△MEA,∴DE=EA,又∠AED=60°,∴△AED是等边三角形,∴∠ADE=60°,即∠ADE的大小不变;②,∵BF=AB-AF=2-AF,∴当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,∵△DAE是等边三角形,∴∠DAF=12∠DAE=30,∴∠OAD=60°-∠DAF=30°,∴AD⊥OB,∴AD=OA×cos∠OAD=2×cos30°=3,∴AF=AD×cos∠DAF=2×cos30°=32,∴BF=AB-AF=2-32=12,即线段BF的长度存在最大值为12;(3)解:设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,∵OA=OB=AC=BC=2,∴四边形OACB是菱形,∴BC∥OA,∵DH⊥BN,AN⊥BN,∴DH∥BC∥OA,∴∠MBE=∠MHD,∠MEB=∠MDH,∵DE的中点为点M,∴MD=ME,∴△MBE≌△MHD,∴DH =BE ,∵∠ANM =90°,∴∠MBE =180°-90°=90°=∠ANM ,∠NMA +∠NAM =90°,∵DE 的中点为点M ,△DAE 是等边三角形,∴AM ⊥DE ,∴∠AME =90°,∴∠BME +∠NMA =180°,∴∠BME =∠NAM ,∴△BME ∽△NAM ,∴AN BM =MN BE =AM ME 即1BM =MN BE=3,∴BM =33, ∴MN =BN -BM =233,∴DH =BE =MN 3=23,∴S △BDE =S △BDM +S △BEM =12×33×23+12×33×23=239,故答案为239.【点睛】本题主要考查了二次函数的图像及性质,菱形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,等边三角形的判定及性质以及解直角三角形,题目综合性较强,熟练掌握各知识点是解题的关键.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.【答案】(1)C (3,1),D (0,2),E (6,0)(2)①证明见解析,②点P 的坐标为(1,3)或(7,37-6)【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设F (m ,0),然后利用勾股定理求解,m =2,过点C 作CG ⊥x 轴,垂足为G .再由等腰三角形及各角之间的关系即可证明;②根据题意得出tan ∠PFK =13,设点P 的坐标为t ,-t 2+3t +1 ,根据题意得13<t <3.分两种情况分析:(i )当点P 在直线KF 的左侧抛物线上时,tan ∠P 1FK =13,13<t <2.(ii )当点P 在直线KF 的右侧抛物线上时,tan ∠P 2FK =13,2<t <3.求解即可.【详解】(1)解:∵直线y =-13x +2交y 轴于点D ,交x 轴于点E ,当x =0时,y =2,∴D 0,2 ,当y =0时,x =6,∴E 6,0 .∵直线y =-13x +2交抛物线于B ,C 两点,∴-x 2+3x +1=-13x +2,∴3x 2-10x +3=0,解得x 1=13,x 2=3.∵点B 在点C 的左侧,∴点C 的横坐标为3,当x =3时,y =1.∴C (3,1);(2)如图,①抛物线y =-x 2+3x +1交y 轴于点A ,当x =0时,y =1,.∴A (0,1),∴OA =1,在Rt △AOF 中,∠AOF =90°,由勾股定理得AF 2=OA 2+OF 2,设F (m ,0),∴OF =m ,∴AF 2=1+m 2,∵E (6,0),.∴OE =6,∴EF =OE -OF =6-m ,∵AF 2+EF 2=21,∴1+m 2+(6-m )2=21,∴m 1=2,m 2=4,∵OF <EF ,∴m =2,∴OF =2,∴F (2,0).∵D (0,2),∴OD =2,∴OD =OF .∴△DOF 是等腰直角三角形,∴∠OFD=45°.过点C作CG⊥x轴,垂足为G.∵C(3,1),∴CG=1,OG=3,∵GF=OG-OF=1,∴CG=GF,∴△CGF是等腰直角三角形,∴∠GFC=45°,∴∠DFC=90°,∴△DFC是直角三角形.②∵FK平分∠DFC,∠DFC=90°,∴∠DFK=∠CFK=45°∴∠OFK=∠OFD+∠DFK=90°,∴FK∥y轴.∵3tan∠PFK=1,∴tan∠PFK=13.设点P的坐标为t,-t2+3t+1,根据题意得13<t<3.(i)当点P在直线KF的左侧抛物线上时,tan∠P1FK=13,13<t<2.过点P1作P1H⊥x轴,垂足为H.∴P1H∥KF,∠HP1F=∠P1FK,∴tan∠HP1F=13.∵HF=OF-OH,∴HF=2-t,在Rt△P1HF中,∵tan∠HP1F=HFP1H =13,∴P1H=3HF,∵P1H=-t2+3t+1,∴-t2+3t+1=3(2-t),∴t2-6t+5=0,∴t1=1,t2=5(舍去).当t=1时,-t2+3t+1=3,∴P1(1,3)(ii)当点P在直线KF的右侧抛物线上时,tan∠P2FK=13,2<t<3.过点P2作P2M⊥x轴,垂足为M.∴P2M∥KF,∴∠MP2F=∠P2FK,∴tan∠MP2F=13,∵MF=OM-OF,∴MF=t-2在Rt △P 2MF 中,∵tan ∠MP 2F =MF P 2M=13,∴P 2M =3MF ,∵P 2M =-t 2+3t +1,∴-t 2+3t +1=3(t -2),∴t 2=7,∴t 3=7,t 4=-7(舍去).当t =7时,-t 2+3t +1=37-6,∴P 2(7,37-6)∴点P 的坐标为(1,3)或(7,37-6).【点睛】题目主要考查一次函数与二次函数综合问题,特殊三角形问题及解三角形,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.【答案】(1)4-x ;x(2)y =4x 2-12x +160<x ≤2 -4x +162<x ≤4(3)x =43或x =83【分析】(1)根据正方形中心对称的性质得出OM =OP ,OQ =ON ,可得四边形PQMN 是平行四边形,证明△ANP ≌△CQM 即可;(2)分0<x ≤2,2<x ≤4两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,AP =x ×1=x cm ,则PB =AB -AP =4-x cm ,∵四边形ABCD 是正方形,∴AD ∥BC ,∠DAB =∠DCB =90°,∵点O 是正方形对角线AC 的中点,∴OM =OP ,OQ =ON ,则四边形PQMN 是平行四边形,∴MQ =PN ,MQ ∥NP ,∴∠PNQ =∠MQN ,又AD ∥BC ,∴∠ANQ =∠CQN ,∴∠ANP =∠MQC ,在△ANP ,△CQM 中,∠ANP =∠MQC∠NAP =∠QCM NP =MQ,∴△ANP ≌△CQM ,∴MC =AP =x cm故答案为:4-x ;x .(2)解:当0<x ≤2时,点Q 在BC 上,由(1)可得△ANP ≌△CQM ,同理可得△PBQ ≌△MDN ,∵PB =4-x ,QB =2x ,MC =x ,QC =4-2x ,则y =AB 2-2S △MCQ -2S △BPQ=16-4-x ×2x -x 4-2x=4x 2-12x +16;当2<x ≤4时,如图所示,则AP =x ,AN =CQ =2x -CB =2x -4,PN =AP -AN =x -2x -4 =-x +4,∴y =-x +4 ×4=-4x +16;综上所述,y =4x 2-12x +160<x ≤2-4x +162<x ≤4 ;(3)依题意,①如图,当四边形PQMN 是矩形时,此时∠PQM =90°,∴∠PQB +∠CQM =90°,∵∠BPQ +∠PQB =90°,∴∠BPQ =∠CQM ,又∠B =∠BCD ,∴△BPQ ~△CQM ,∴BP CQ =BQCM ,即4-x 4-2x =2x x,解得:x =43,当四边形PQMN 是菱形时,则PQ =MQ ,∴4-x 2+2x 2=x 2+4-2x 2,解得:x =0(舍去);②如图所示,当PB =CQ 时,四边形PQMN 是轴对称图形,4-x =2x -4,解得x =83,当四边形PQMN 是菱形时,则PN =PQ=4,即-x +4=4,解得:x =0(舍去),综上所述,当四边形PQMN 是轴对称图形时,x =43或x =83.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上,如图2,将正方形OABC绕点O 逆时针旋转,旋转角为α0°<α<45°,AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN,将△OFN与△OCF的面积分别记为S1与S2,设S=S1-S2,AN=n,求S关于n的函数表达式.【答案】(1)22.5°(2)FC=154(3)S=1n22【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出∠AOG=∠AOE,再由题意得出∠EOG=45°,即可求解;(2)过点A作AP⊥x轴,根据勾股定理及点的坐标得出OA=5,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O、C、F、N四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN=ON,∠FNO=90°,过点N作GQ⊥BC于点G,交OA于点Q,利用全等三角形及矩形的判定和性质得出CG=OQ,CO=QG,结合图形分别表示出S1,S2,得出S=S1-S2=NQ2,再由等腰直角三角形的性质即可求解.【详解】(1)解:∵正方形OABC,∴OA=OC,∠A=∠C=90°,∵OE=OF,∴Rt△OCF≌Rt△OAE(HL),∴∠COF=∠AOE,∵∠COF=∠AOG,∴∠AOG=∠AOE,∵AB交直线y=x于点E,∴∠EOG=45°,∴∠AOG=∠AOE=22.5°,即∠COF=22.5°;(2)过点A作AP⊥x轴,如图所示:∵A (4,3),∴AP =3,OP =4,∴OA =5,∵正方形OABC ,∴OC =OA =5,∠C =90°,∴∠C =∠APO =90°,∵∠AOP =∠COF ,∴△OCF ∽△OPA ,∴OC OP =FC AP即54=FC 3,∴FC =154;(3)∵正方形OABC ,∴∠BCA =∠OCA =45°,∵直线y =x ,∴∠FON =45°,∴∠BCA =∠FON =45°,∴O 、C 、F 、N 四点共圆,∴∠OCN =∠FON =45°,∴∠OFN =∠FON =45°,∴ΔFON 为等腰直角三角形,∴FN =ON ,∠FNO =90°,过点N 作GQ ⊥BC 于点G ,交OA 于点Q ,∵BC ∥OA ,∴GQ ⊥OA ,∵∠FNO =90°,∴∠1+∠2=90°,∵∠1+∠3=90°,∴∠2=∠3,∴△FGN ≌△NQO (AAS )∴GN =OQ ,FG =QN ,∵GQ ⊥BC ,∠FCO =∠COQ =90°,∴四边形COQG 为矩形,∴CG =OQ ,CO =QG ,∴S 1=S ΔOFN =12ON 2=12OQ 2+NQ 2 =12GN 2+NQ 2 =12GN 2+12NQ 2,S 2=S ΔCOF =12CF ⋅CO =12GC -FG GN +NQ =12GN 2-NQ 2 =12GN 2-12NQ 2,∴S =S 1-S 2=NQ 2,∵∠OAC =45°,∴△AQN 为等腰直角三角形,∴NQ =22AN =22n ,∴S =NQ 2=22n 2=12n2【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.【答案】(1)32,2,-1,0 ,12(2)2,3(3)m =217,13≤k <17【分析】(1)利用待定系数法求二次函数解析式即可求得b =32、c =2,从而可得OB =4,OC =2,由y =0,可得-12x 2+32x +2=0,求得A -1,0 ,在Rt △COB 中,根据正切的定义求值即可;(2)过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,由tan ∠OCA =tan ∠ABC =12,即∠OCA =∠ABC ,再由∠PCB =2∠ABC ,可得∠EPC =ABC ,证明△PEC ∼△BOC ,可得EP OB=EC OC,设点P 坐标为t ,-12t 2+32t +2 ,可得t4=-12t 2+32t 2,再进行求解即可;(3)①作DH ⊥DQ ,且使DH =BQ ,连接FH .根据SAS 证明△BQE ≌△HDF ,可得BE +QF =FH +QF ≥QH ,即Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,设G (n ,0),则Q n ,-12n 2+32n +2 ,根据QG =BG 求出点Q 的坐标,燃然后利用勾股定理求解即可;②作PT ∥y 轴,交BC 于点T ,求出BC 解析式,设T a ,-12a +2 ,P a ,-12a 2+32a +2 ,利用三角形面积公式表示出S ,利用二次函数的性质求出S 的取值范围,结合①中结论即可求解.【详解】(1)解:∵抛物线y =-12x 2+bx +c 经过点B (4,0),C (0,2),∴-8+4b +c =0c =2 ,解得:b =32c =2 ,∴抛物线解析式为:y =-12x 2+32x +2,∵抛物线y =-12x 2+bx +c 与x 轴交于A 、B (4,0)两点,∴y =0时,-12x 2+32x +2=0,解得:x 1=-1,x 2=4,∴A -1,0 ,∴OB =4,OC =2,在Rt △COB 中,tan ∠ABC =OC OB=24=12,故答案为:32,2,-1,0 ,12;(2)解:过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,∵AO =1,OC =2,OB =4,∴tan ∠OCA =AOCO=12,由(1)可得,tan ∠ABC =12,即tan ∠OCA =tan ∠ABC ,∴∠OCA =∠ABC ,∵∠PCB =2∠OCA ,∴∠PCB =2∠ABC ,∵CD ∥x 轴,EP ∥x 轴,∴∠ACB =∠DCB ,∠EPC =∠PCD ,∴∠EPC =ABC ,又∵∠PEC =∠BOC =90°,∴△PEC ∽△BOC ,∴EP OB =EC OC,设点P 坐标为t ,-12t 2+32t +2 ,则EP =t ,EC =-12t 2+32t +2-2=-12t 2+32t ,∴t4=-12t 2+32t 2,解得:t =0(舍),t =2,∴点P 坐标为2,3 .(3)解:①如图2,作DH ⊥DQ ,且使DH =BQ ,连接FH .∵∠BQD +∠BDQ =90°,∠HDF +∠BDQ =90°,∴∠QD =∠HDF ,∵QE =DF ,DH =BQ ,∴△BQE ≌△HDF (SAS ),∴BE =FH ,∴BE +QF =FH +QF ≥QH ,∴Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,∵OB =OD ,∠BOD =90°,∴∠OBD =45°,∵∠QBD =90°,∴∠QBG =45°,∴QG=BG.设G(n,0),则Q n,-12n2+32n+2,∴-12n2+32n+2=4-n,解得n=1或n=4(舍去),∴Q(2,3),∴QG=BG=4-1=3,∴BQ=DH=32,QD=52,∴m=QH=322+522=217;②如图3,作PT∥y轴,交BC于点T,待定系数法可求BC解析式为y=-12x+2,设T a,-12a+2,P a,-12a2+32a+2,则S=12-12a2+32a+2+12a-2×4=-a-22+4,∴0<S≤4,∴0<14m2-k≤4,∴0<17-k≤4,∴13≤k<17.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与x轴的交点、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程、锐角三角函数、最值问题、二次函数最值、用分割法求三角形面积,熟练掌握相关知识是解题的关键.13(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.【答案】(1)等腰直角三角形(2)详见解析(3)①t=3;②t=6;③D125,6 5【分析】(1)由A(0,2),B(2,0)得到OA=OB=2,又由∠AOB=90°,即可得到结论;(2)由∠EOD=90°,∠AOB=90°得到∠AOE=∠BOD,又有AO=OB,OD=OE,利用SAS即可证明△AOE≌△BOD;(3)①求出直线AC的解析式和抛物线y1的解析式,联立得x2-t+3x+3t=0,由Δ=(t+3)2-4×3t= (t-3)2=0即可得到t的值;②抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到抛物线y2=-2tx-t-222+(t-2)22t,则抛物线y2的顶点Pt-22,(t-2)22t,将顶点P t-22,(t-2)22t代入y AC=-2t x+2得到t2-6t=0,解得t1=0,t2=6,根据t>2即可得到t的值;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,先证明△ODN≌△EOM(AAS),则ON=EM,DN=OM,设EM=2OM=2m,由OA∥EM得到OC:CM=OA:EM,则tt+m =22m,求得m=tt-1,得到D2tt-1,tt-1,由抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3=-2tx2+2t(t-2)x-2(t-1)2,把D2tt-1,tt-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,得到3t2-19t+6=0,解得t1=13,t2=6,由t>2,得t=6,即可得到点D的坐标.【详解】(1)证明:∵A(0,2),B(2,0),∴OA=OB=2,∵∠AOB=90°,∴△AOB是等腰直角三角形,故答案为:等腰直角三角形(2)如图,∵∠EOD=90°,∠AOB=90°,∴∠AOB-∠AOD=∠DOE-∠AOD,∴∠AOE=∠BOD,∵AO=OB,OD=OE,∴△AOE≌△BOD(SAS);(3)①设直线AC的解析式为y=kx+b,∵A(0,2),C(t,0),∴b=2kt+b=0 ,∴y AC=-2tx+2,将C(t,0),B(2,0)代入抛物线y1=ax2+bx-4得,0=at2+bt-40=4a+2b-4,解得a=-2t,b=2t(t+2),∴y1=-2t x2+2t(t+2)x-4,∵直线y AC=-2t x+2与抛物线y1=-2tx2+2t(t+2)x-4有唯一交点∴联立解析式组成方程组解得x2-t+3x+3t=0∴Δ=(t+3)2-4×3t=(t-3)2=0∴t=3②∵抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到y2,∴抛物线y2=-2tx-t-222+(t-2)22t,∴抛物线y2的顶点P t-22,(t-2)22t,将顶点Pt-22,(t-2)22t代入y AC=-2t x+2,∴t2-6t=0,解得t1=0,t2=6,∵t>2,∴t=6;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,∴∠EMO=∠OND=90°,∵∠DOE=90°,∴∠EOM+∠MEO=∠EOM+∠NOD=90°,∴∠MEO=∠NOD,∵OD=OE,∴△ODN≌△EOM(AAS),∴ON=EM,DN=OM,∵OE的解析式为y=-2x,∴设EM=2OM=2m,∴DN=OM=m,∵EM⊥x轴,∴OA∥EM,∴△CAO~△CEM,∴OC:CM=OA:EM,∴t t+m =2 2m,∴m=tt-1,∴EM=ON=2OM=2m=2tt-1,DN=OM=m=tt-1,∴D2tt-1,t t-1,∵抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3,∴抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴D2tt-1,t t-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴3t2-19t+6=0,解得t 1=13,t 2=6,由t >2,得t =6,∴2t t -1=126-1=125,t t -1=66-1=65,∴D 125,65.【点睛】此题是二次函数和几何综合题,考查了二次函数的平移、二次函数与一次函数的交点问题、待定系数法求函数解析式、解一元二次方程、全等三角形的判定和性质及相似三角形的判定与性质等知识点,综合性较强,熟练掌握二次函数的平移和数形结合是解题的关键.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)S =-32x 2+23x(2)当x =2时,S 的最大值为23【分析】(1)过点A 作AG ⊥OC 于点G ,连接AC ,证明△AOC 是等边三角形,可得DE =x ,进而证明△CDF ∽△COB ,得出DF =34-x ,根据三角形面积公式即可求解;(2)根据二次函数的性质即可求解.【详解】(1)解:如图所示,过点A 作AG ⊥OC 于点G ,连接AC ,∵顶点A 的坐标为2,23 ,∴OA =22+232=4,OG =2,AG =23∴cos ∠AOG =OG AO=12,∴∠AOG =60°∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BD ,AO =OC ,∴△AOC 是等边三角形,∴∠ACO =60°,∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°∴△EOD 是等边三角形,。
专题反比例函数中的几何图形存在性问题1、如图所示,在平面直角坐标系中,一次函数(叱0)与反比例函数尸鸟(启0)的图象交于 第二、四象限乩5两点,过点月作曲_Lx 轴于〃止=4, sinN/但冷,且点5的坐标为(m -2).5(1)求一次函数与反比例函数的解析式;(2)5是y 轴上一点,且△月比是等腰三角形,请直接写出所有符合条件的七点坐标.【解答】(1) •••一次函数y=4田6与反比例函数丫=典图象交于月与5且出ZLx 轴, x :.ZADO= 90° ,在 RtZLW 中,出?=4, sinZAOD=—. 即47=5,5 A0 5 根据勾股定理得:加=叱11=3, :.A ( -3, 4),代入反比例解析式得:力=-12,即y=-22,把5坐标代入得:A =6,即6 (6, -2),2、在平而直角坐标系才分中,一次函数,=田8的图象经过点月(-2, 0),与反比例函数丫=区(心>0)代入一次函数解析式得: 一孔坨=4,解得: 6k+b=-2 2- 93,即 y- - -(2)当。
氏=0Ez=Ag5,即艮(0, - 5),瓦(0, 5):.当Q4=月瓦=5时,得至IJ 组=2祖=8,即属(0, 8);当忠=的时,由3(-3, 4), 0 (0, 0),得到直线月。
解析式为尸-义, 中点坐标为(-1.5, 2), 垂直平分线方程为y2得 (A H-1),令X =0,得到尸争,即因(0,零),综上,当点上(0, 8)或(0, 5)或(0, -5)或(0,冬)时,△月比是等腰三角形.的图象交于5 (a, 4).(1)求一次函数和反比例函数的表达式:(2)设必是直线四上一点,过M 作必〃x 轴,交反比例函数y=k (x>0)的图象于点A ;若儿0, M x【解答】解:(1):一次函数的图象经过点月(-2, 0),,0=-2+6,得6=2, •••一次函数的解析式为产=肝2,:一次函数的解析式为产=/2与反比例函数,=区(Q0)的图象交于6 (a, 4),,4 = a+2, …得a=2, x ,4=& 得k=8,即反比例函数解析式为:尸区(Q0);2 x (2) •二点月(-2, 0), :.OA=2,设点必(m-2,加,点内(呈,血, m当心〃月。
数学函数几何综合压轴题1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点.(1)求点A 的坐标;(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若421hS S ,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.图1 图23.(2004湖北荆门)如图,在直角坐标系中,以点P (1,-1)为圆心,2为半径作圆,交x 轴于A 、B 两点,抛物线)0(2>++=a c bx ax y 过点A 、B ,且顶点C 在⊙P 上. (1)求⊙P 上劣弧⌒AB 的长;(2)求抛物线的解析式;(3)在抛物线上是否存在一点D ,使线段OC与PD在,请说明理由.4.(2004湖北襄樊)如图,在平面直角坐标系内,Rt △ABC 的直角顶点C (0在y 轴的正半轴上,A 、B 是x 轴上是两点,且OA ∶OB =3∶1,以OA 、OB 为直径的圆分别交AC 于点E ,交BC 于点F .直线EF 交OC 于点Q . (1)求过A 、B 、C 三点的抛物线的解析式;(2)请猜想:直线EF 与两圆有怎样的位置关系?并证明你的猜想.(3)在△AOC 中,设点M 是AC 边上的一个动点,过M 作MN ∥AB 交OC 于点N .试问:在x 轴上是否存在点P ,使得△PMN 是一个以MN 为一直角边的等腰直角三角形?若存在,求出P 点坐标;若不存在,请说明理由.5.(2004湖北宜昌)如图,已知点A(0,1)、C(4,3)、E(415,823),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+b x +1以P 为顶点. (1)说明点A 、C 、E 在一条条直线上;(2)能否判断抛物线y =ax 2+b x +1的开口方向?请说明理由;(3)设抛物线y =ax 2+b x +1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围. (本题图形仅供分析参考用)6.(2004湖南长沙)已知两点O(0,0)、B(0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,⊙A 被y 轴分成段两圆弧,其弧长之比为3∶1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动.(1)求⊙A 的半径;(2)若抛物线经过O 、C 两点,求抛物线的解析式;(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC =CE ,求点E 的坐标;(4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式.7.(2006江苏连云港)如图,直线4+=kx y 与函数)0,0(>>=m x xmy 的图像交于A 、B 两点,且与x 、y 轴分别交于C 、D 两点.(1)若COD ∆的面积是AOB ∆的面积的2倍,求k 与m 之间的函数关系式;(2)在(1)的条件下,是否存在k 和m ,使得以AB 为直径的圆经过点)0,2(P .若存在,求出k 和m 的值;若不存在,请说明理由.8.(2004江苏镇江)已知抛物线2(5)5(0)y mx m x m =--->与x 轴交于两点1(,0)A x 、2(,0)B x 12()x x <,与y 轴交于点C ,且AB =6.(1)求抛物线和直线BC 的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC . (3)若P e 过A 、B 、C 三点,求P e 的半径.(4)抛物线上是否存在点M ,过点M 作MN x ⊥轴于点N ,使MBN ∆被直线BC 分成面积比为13:的两部分?若存在,请求出点M 的坐标;若不存在,请说明理由。
函数与几何综合问题一、解答题1.(2021·浙江中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.①若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.2.(2021·浙江中考真题)如图,在平面直角坐标系中,M 经过原点O ,分别交x 轴、y 轴于()2,0A ,()0,8B ,连结AB .直线CM 分别交M 于点D ,E (点D 在左侧),交x 轴于点()17,0C ,连结AE .(1)求M 的半径和直线CM 的函数表达式.(2)求点D ,E 的坐标.(3)点P 在线段AC 上,连结PE .当AEP ∠与OBD 的一个内角相等时,求所有满足条件的OP 的长.3.(2021·黑龙江中考真题)如图,一次函数y kx b =+的图象与y 轴的正半轴交于点A ,与反比例函数4y x=的图像交于,P D 两点.以AD 为边作正方形ABCD ,点B 落在x 轴的负半轴上,已知BOD 的面积与AOB 的面积之比为1:4.(1)求一次函数y kx b =+的表达式: (2)求点P 的坐标及CPD △外接圆半径的长.4.(2021·江苏中考真题)已知四边形ABCD 是边长为1的正方形,点E 是射线BC 上的动点,以AE 为直角边在直线BC 的上方作等腰直角三角形AEF ,90AEF ∠=︒,设BE m =.(1)如图1,若点E 在线段BC 上运动,EF 交CD 于点P ,AF 交CD 于点Q ,连结CF , ①当13m =时,求线段CF 的长;①在PQE ¢V 中,设边QE 上的高为h ,请用含m 的代数式表示h ,并求h 的最大值;(2)设过BC 的中点且垂直于BC 的直线被等腰直角三角形AEF 截得的线段长为y ,请直接写出y 与m 的关系式.5.(2021·江苏中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M -、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)①如图,在点()2,0B 、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”); ①若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.6.(2021·广东中考真题)如图,在平面直角坐标系xOy 中,直线1:42l y x =+分别与x 轴,y 轴相交于A 、B 两点,点(),P x y 为直线l 在第二象限的点(1)求A、B两点的坐标;(2)设PAO的面积为S,求S关于x的函数解析式:并写出x的取值范围;(3)作PAO的外接圆C,延长PC交C于点Q,当POQ△的面积最小时,求C的半径.7.(2021·广西梧州市·中考真题)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B (0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.(1)求原抛物线对应的函数表达式;(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F 的坐标;(3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.8.(2021·四川中考真题)如图,在平面直角坐标系xOy中,一次函数33y x42=+的图象与反比例函数()0ky x x=>的图象相交于点(),3A a ,与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当ABD △是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.9.(2021·湖南中考真题)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0ky k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l 于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值. 10.(2021·江苏中考真题)如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0ky x x=>的图像经过点B ,求k 的值.11.(2021·山东中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且2OA =,4OC =,连接OB .反比例函数1k y x=(0x >)的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点E 、F .一次函数2y k x b =+的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式;(2)点P 是x 轴上一动点,当PE PF +的值最小时,点P 的坐标为______.12.(2021·广西中考真题)如图①,在ABC 中,AD BC ⊥于点D ,14BC =,8AD =,6BD =点E 是AD 上一动点(不与点A ,D 重合),在ADC 内作矩形EFGH ,点F 在DC 上,点G ,H 在AC 上,设DE x =,连接BE .(1)当矩形EFGH 是正方形时,直接写出EF 的长;(2)设ABE △的面积为1S ,矩形EFGH 的面积为2S ,令12S y S =,求y 关于x 的函数解析式(不要求写出自变量x 的取值范围);(3)如图①,点(,)P a b 是(2)中得到的函数图象上的任意一点,过点P 的直线l 分别与x 轴正半轴,y 轴正半轴交于M ,N 两点,求OMN 面积的最小值,并说明理由.13.(2021·江苏中考真题)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用. (理解)(1)如图1,,AC BC CD AB ⊥⊥,垂足分别为C 、D ,E 是AB 的中点,连接CE .已知AD a =,()0BD b a b =<<.①分别求线段CE 、CD 的长(用含a 、b 的代数式表示);①比较大小:CE __________CD (填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系.(应用)(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数()10y x x=>的图像上,横坐标分别为m 、n .设11,p m n q m n =+=+,记14l pq =. ①当1,2m n ==时,l =__________;当3,3m n ==时,l =________;①通过归纳猜想,可得l 的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立. 14.(2021·四川中考真题)已知反比例函数my x=的图象经过点(2,3)A .(1)求该反比例函数的表达式; (2)如图,在反比例函数my x=的图象上点A 的右侧取点C ,作CH ①x 轴于H ,过点A 作y 轴的垂线AG 交直线CH 于点D .①过点A ,点C 分别作x 轴,y 轴的垂线,交于B ,垂足分别为为F 、E ,连结OB ,BD ,求证:O ,B ,D 三点共线;①若2AC OA =,求证:2AOD DOH ∠=∠.15.(2021·内蒙古中考真题)如图,矩形ABCD 的两边,AB BC 的长分别为3,8,C ,D 在y 轴上,E 是AD 的中点,反比例函数()0ky k x=≠的图象经过点E ,与BC 交于点F ,且1CF BE -=. (1)求反比例函数的解析式; (2)在y 轴上找一点P ,使得23CEPABCD SS =矩形,求此时点P 的坐标.16.(2021·湖南中考真题)如图,抛物线22y ax bx =++经过()1,0A -,()4,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的函数表达式;(2)如图2,直线l :3y kx =+经过点A ,点P 为直线l 上的一个动点,且位于x 轴的上方,点Q 为抛物线上的一个动点,当//PQ y 轴时,作QM PQ ⊥,交抛物线于点M (点M 在点Q 的右侧),以PQ ,QM 为邻边构造矩形PQMN ,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D ,在(2)的条件下,当矩形PQMN 的周长取最小值时,抛物线上是否存在点F ,使得CBF =∠DQM ∠若存在,请求出点F 的坐标;若不存在,请说明理由.17.(2021·湖北中考真题)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边).(1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上. ①如图(1),若点C 的坐标是()0,3,点E 的横坐标是32,直接写出点A ,D 的坐标; ①如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标;(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点,若直线l 与抛物线只有一个公共点,求证FG FH +的值是定值. 18.(2021·湖南中考真题)已知二次函数()20y ax bx c a =++>.(1)若12a =,2b c ==-,求方程20ax bx c ++=的根的判别式的值; (2)如图所示,该二次函数的图像与x 轴交于点()1,0A x 、()2,0B x ,且120x x <<,与y 轴的负半轴交于点C ,点D 在线段OC 上,连接AC 、BD ,满足 ACO ABD ∠=∠,1bc x a-+=. ①求证:AOC DOB ≅;①连接BC ,过点D 作DE BC ⊥于点E ,点()120,F x x -在y 轴的负半轴上,连接AF ,且ACO CAF CBD ∠=∠+∠,求1cx 的值.19.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线24y x x =-+经过坐标原点,与x 轴正半轴交于点A ,点(,)M m n 是抛物线上一动点. (1)如图1,当0m >,0n >,且3n m =时, ①求点M 的坐标: ①若点15,4B y ⎛⎫⎪⎝⎭在该抛物线上,连接OM ,BM ,C 是线段BM 上一动点(点C 与点M ,B 不重合),过点C 作//CD MO ,交x 轴于点D ,线段OD 与MC 是否相等?请说明理由; (2)如图2,该抛物线的对称轴交x 轴于点K ,点7,3E x ⎛⎫⎪⎝⎭在对称轴上,当2m >,0n >,且直线EM 交x 轴的负半轴于点F 时,过点A 作x 轴的垂线,交直线EM 于点N ,G 为y 轴上一点,点G 的坐标为180,5⎛⎫⎪⎝⎭,连接GF .若2EF NF MF +=,求证:射线FE 平分AFG ∠.20.(湖南省永州市2021年中考真题数学试卷)已知关于x 的二次函数21y x bx c =++(实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为1x =,求此二次函数的表达式; (2)若20b c -=,当3b x b -≤≤时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数222y x x m =++,若在(1)的条件下,当01x ≤≤时,总有21y y ≥,求实数m 的最小值.21.(2021·四川中考真题)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于C 点,AC =,3OB OC OA ==.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P ,使四边形PBAC 的面积最大.求出点P 的坐标(3)在(2)的结论下,点M 为x 轴上一动点,抛物线上是否存在一点Q .使点P 、B 、M 、Q 为顶点的四边形是平行四边形,若存在.请直接写出Q 点的坐标;若不存在,请说明理由.22.(四川省资阳市2021年中考数学试卷)抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,且()()1,0,0,3B C -.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当:1:2PE BE =时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D ¢处,且2DD CD '=,点M 是平移后所得抛物线上位于D ¢左侧的一点,//MN y 轴交直线OD '于点N ,连结CN .当5D N CN '+的值最小时,求MN 的长.23.(2021·黑龙江中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等. ①证明上述结论并求出点F 的坐标;①过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F 旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.24.(2021·湖北中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示); (3)当44n -≤≤时,探究1k 与2k 的大小关系; (4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14yx x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.25.(2021·山西中考真题)如图,抛物线21262y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .(1)求A ,B ,C 三点的坐标并直接写出直线AC ,BC 的函数表达式;(2)点P 是直线AC 下方抛物线上的一个动点,过点P 作BC 的平行线l ,交线段AC 于点D . ①试探究:在直线l 上是否存在点E ,使得以点D ,C ,B ,E 为顶点的四边形为菱形,若存在,求出点E 的坐标;若不存在,请说明理由;①设抛物线的对称轴与直线l 交于点M ,与直线AC 交于点N .当DMN AOC S S =△△时,请直接写出DM 的长.26.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”. (1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时. ①求c 的取值范围; ①求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.27.(2021·湖南中考真题)如图,在平面直角坐标系xOy 中,平行四边形ABCD 的AB 边与y 轴交于E 点,F 是AD 的中点,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-.(1)求过B 、E 、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线EF 上;(3)设过F 与AB 平行的直线交y 轴于Q ,M 是线段EQ 之间的动点,射线BM 与抛物线交于另一点P ,当PBQ △的面积最大时,求P 的坐标.28.(2021·湖南中考真题)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程. (4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.29.(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线212y x bx c =++与坐标轴交于()()0,2,4,0A B -两点,直线:28BC y x =-+交y 轴于点C .点D 为直线AB 下方抛物线上一动点,过点D 作x 轴的垂线,垂足为,G DG 分别交直线,BC AB 于点,E F .(1)求抛物线212y x bx c =++的表达式; (2)当12GF =,连接BD ,求BDF 的面积;(3)①H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标;①在①的条件下,第一象限有一动点P ,满足2PH PC =+,求PHB △周长的最小值.30.(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.①设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.31.(2021·江苏中考真题)如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF . (1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示); (2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.32.(2021·贵州中考真题)如图,抛物线()2=2+0y ax x c a -≠与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,-3),抛物线的顶点为D . (1)求抛物线的解析式;(2)点P 在抛物线的对称轴上,点Q 在x 轴上,若以点P 、Q 、B 、C 为顶点,BC 为边的四边形为平行四边形,请直接写出点P 、Q 的坐标;(3)已知点M 是x 轴上的动点,过点M 作x 的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与①BCD 相似,若存在,请求出点M 的坐标;若不存在,请说明理由.33.(山东省淄博市2021年中考数学试题)如图,在平面直角坐标系中,抛物线211(0)222m m y m x x -++⋅=->与x 轴交于()()1,0,,0A B m -两点,与y 轴交于点C ,连接BC .(1)若2OC OA =,求抛物线对应的函数表达式;(2)在(1)的条件下,点P 位于直线BC 上方的抛物线上,当PBC 面积最大时,求点P 的坐标; (3)设直线12y x b =+与抛物线交于,B G 两点,问是否存在点E (在抛物线上).点F (在抛物线的对称轴上),使得以,,,B G E F 为顶点的四边形成为矩形?若存在,求出点,E F 的坐标;若不存在,说明理由. 34.(2021·四川中考真题)如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.35.(2021·湖北中考真题)如图1,已知45RPQ ∠=︒,ABC 中90ACB ∠=︒,动点P 从点A 出发,以的速度在线段AC 上向点C 运动,,PQ PR 分别与射线AB 交于E ,F 两点,且PE AB ⊥,当点P 与点C 重合时停止运动,如图2,设点P 的运动时间为s x ,RPQ ∠与ABC 的重叠部分面积为2cm y ,y 与x 的函数关系由15(0)C x <≤和2()5C x n <≤两段不同的图象组成.(1)填空:①当5s x =时,EF =______cm ; ①sin A =______;(2)求y 与x 的函数关系式,并写出x 的取值范围; (3)当236cm y ≥时,请直接写出....x 的取值范围.36.(2021·湖南中考真题)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式; (3)判断ABO 的形状,试说明理由;(4)若点P 为O 上的动点,且O 的半径为,一动点E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.37.(2021·黑龙江中考真题)如图,在平面直角坐标系中,AOB ∆的边OA 在x 轴上,OA AB =,且线段OA 的长是方程2450x x --=的根,过点B 作BE x ⊥轴,垂足为E ,4tan 3BAE ∠=,动点M 以每秒1个单位长度的速度,从点A 出发,沿线段AB 向点B 运动,到达点B 停止.过点M 作x 轴的垂线,垂足为D ,以MD 为边作正方形MDCF ,点C 在线段OA 上,设正方形MDCF 与AOB ∆重叠部分的面积为S ,点M 的运动时间为()0t t >秒.(1)求点B 的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)当点F 落在线段OB 上时,坐标平面内是否存在一点P ,使以M A O P 、、、为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.38.(2021·江苏中考真题)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,二次函数2y ax 2x c =++的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数2y ax 2x c =++的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.。
初中函数难题及答案一、选择题(本大题共5小题,共15.0分。
在每小题列出的选项中,选出符合题目的一项) 1. 函数y =√x −3中自变量x 的取值范围是( )A. x >3B. x ≠3C. x ≥3D. x ≥02. 如图,垂直于x 轴的直线AB 分别与抛物线C1:y =x 2(x ≥0)和抛物线C 2:y =x 24(x ≥0)交于A ,B 两点,过点A 作CD//x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF//x 轴分别与y 轴和抛物线C 1交于点E ,F ,则S △OFBS △EAD的值为( )A. √26B. √24C. 14D. 163. 二次函数y =ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx +m =0有实数根,则m 的取值范围是( )A. m ≤3B. m ≥3C. m ≥−3D. m ≤−34. 如图,点A ,B ,C 在一次函数y =−2x +m 的图像上,它们的横坐标依次为−1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A. 1B. 3C. 3(m −1)D. 32(m −2)5.如图,在平面直角坐标系xOy中,点A的坐标是(5,0),点B是函数y=6x(x>0)图象上的一个动点,过点B作BC⊥y轴交函数y=−2x(x<0)的图象于点C,点D在x轴上(D在A的左侧),且AD=BC,连接AB,CD.有如下四个结论:①四边形ABCD可能是菱形;②四边形ABCD可能是正方形;③四边形ABCD的周长是定值;④四边形ABCD的面积是定值.所有正确结论的序号是( )A. ①②B. ③④C. ①③D. ①④二、填空题(本大题共3小题,共9.0分)6.已知当−1<x<0时,二次函数y=x2−3mx+2的值恒大于1,则m的取值范围为______.7.关于x的一元二次方程x2−x−n=0无实数根,则抛物线y=x2−x−n的顶点在第______象限.8.如图,正方形ABCD的边长为a,P为正方形边上一动点,运动路线是A−D−C−B−A,设P点经过的路程为x,以点A,P,D为顶点的三角形的面积是y,图象反映了y与x的关系,当S△ADP=14S正方形ABCD时,x=______.三、计算题(本大题共2小题,共12.0分)9.已知:如图,ABCD是一块边长为2米的正方形铁板,在边AB上选取一点M,分别以AM和MB为边截取两块相邻的正方形板料.当AM的长为何值时,截取两块相邻的正方形板料的总面积最小?10.如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA与水平方向PC的夹角为30°,AC⊥PC于点C,P、A两点相距8√3米.请你建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A.四、解答题(本大题共13小题,共104.0分。
函数与图形经典好题一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为( )A 、16B 、-16C 、±16D 、±132、若11m n -=3,2322m mn nm mn n+---的值是( ) A 、1.5 B 、35 C 、-2 D 、-753、判断下列真命题有( )①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=( ) A 、5 B 、6013 C 、245 D 、55125、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 mn( )A 、-23B 、-32C 、-34D 、34二、填空题 6、当x= 时,||3x x -与3x x-互为倒数。
9、已知x 2-3x+1=0,求(x-1x )2=7、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 10、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=AB ,F 是AC•上一动点,EF+BF 的最小值为 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是11235...315211321④③13、如图,已知四边形ABCD 中,AC 和BD 相交于点O , 且∠AOD =90°,若BC =2AD ,AB =12,CD =9,四边形ABCD 的周长是14、有这样一组数:1,1,2,3,5…,现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④.第⑩个矩形周长是15、如图,在直线y=-33x+1与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,第二象限内有一点P (a,12 ),且△ABP 的面积与△ABC 的面积相等,则a=三、解答题16、如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
初中数学函数基础知识难题汇编含答案一、选择题1.如图, AB 为半圆的直径,点 P 为 AB 上一动点.动点 P 从点 A 出发,沿 AB 匀速运动到 点 B ,运动时间为 t .分别以 AP 与 PB 为直径作半圆,则图中阴影部分的面积 S 与时间 t 之间的函数图象大致为( )解析】 【分析】 【详解】解:设 P 点运动速度为 v (常量), AB=a (常量),则 AP=vt ,PB=a-vt ;2则阴影面积 S1(a )2 1(vt )2 1(a vt )2 v 2t2avt2 22 22 244由函数关系式可以看出, D 的函数图象符合题意.故选 D .2.如图,在直角三角形 ABC 中, B 90 , AB 4, BC 3,动点 E 从点 B 开始沿 B C 以 2cm/s 的速度运动至 C 点停止;动点 F 从点 B 同时出发沿 B A 以1cm/s的速度运动至 A 点停止,连接 EF .设运动时间为 x (单位: s ), ABC 去掉 BEF 后剩2cm 2),则能大致反映y 与 x 的函数关系的图象是(答案】 D单位:解析】 分析】根据已知题意写出函数关系, y 为 ABC 去掉 BEF 后剩余部分的面积,注意 1.5 秒时点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关 系,要注意自变量的取值范围,以及是否为分段函数.【解析】根据函数的意义可知:对于自变量 x 的任何值, y 都有唯一的值与之相对应,故 D 正确. 故选 D .4.如图,在 Rt ABC 中,点 D 为 AC 边中点,动点 P 从点 D 出发,沿着 D A B 的 路径以每秒 1 个单位长度的速度运动到 B 点,在此过程中线段 CP 的长度 y 随着运动时间x 的函数关系如图 2所示,则 BC 的长为 ( )点 E 运动到C 点,而点F 则继续运动,因此 y 的变化应分为两个阶段. 解:S ABC2 4 36当 0 x3时,S BEF2当3x 4时,S BEF2由此可知当 0 x 3时 2x3 32x ,y函数为二次函数,当SABC SBEFSABC SBEF 3x 4时,2x ;3 x ,函数为一次函数.y 是 x 的函数的是(B2故选 B .3.下列各曲线中表A.13 2B.4 3 C.4 55D.14 53 C 11 3【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥ AB时AP的长,然后证出△APC∽△ ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点P从点D 出发,线段CP的长度为y ,运动时间为x的,根据图象可知,当x=0 时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x= 2 11 s时,y 最小,即CP 最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P 运动的路程DA+AP=1 2 11 2 11所以此时AP= 2 11 AD 11∵∠ A=∠ A,∠ APC=∠ ACB=90°∴△ APC∽△ ACB∴AP AC∴AC AB即11 44 AB解得:AB=16 1111在Rt△ABC中,BC= AB2AC2 4 55故选 C . 【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及 性质和勾股定理是解决此题的关键.5.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为 v1, v 2, v 3, v 1< v 2< 所用时间 t 的函数关系图象可能是( )【解析】【分析】 根据题意可对每个选项逐一分析判断图象得正误.【详解】 解: A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选 C .6.父亲节当天,学校 “文苑 ”栏登出了某同学回忆父亲的小诗: “同辞家门赴车站,别时叮 咛语千万,学子满载信心去,老父怀抱希望还. ”如果用纵轴 y 表示父亲和学子在行进中离答案】 B 解析】 分析】v 3,则小亮同学骑车上学时,离家的路程 s 与家的距离,横轴 t 表示离家的时间,下面与上述诗意大致相吻合的图像是()当 3 x 5 时, y13 5 x 215正确理解函数图象即可得出答案. 【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站 出发,离家的距离越来越远,父亲离开车站回家,离家越来越近. 故选 B .点睛】 首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.如图,在矩形 ABCD 中, AB 2, BC 3,动点 P 沿折线 BCD 从点 B 开始运动到 点D .设运动的路程为 x , ADP 的面积为 y ,那么 y 与 x 之间的函数关系的图象大致是故选 D.答案】 D 解析】 分析】由题意当 0 x 3 时, y 3,当 3 x 5时, y 13 25x3x 15 ,由此即 22可判断. 详解】由题意当 0 x 3 时, y 3, )【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,D 2020次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是()【答案】A【解析】【分析】火车通过隧道分为3 个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD中,AB 4,BC 6,当直角三角板MPN 的直角顶点P在BC 边上移动时,直角边MP 始终经过点A,设直角三角板的另一直角边PN 与CD相交于点Q.BP x,CQ y,那么y与x之间的函数图象大致是()【答案】 D 【解析】试题解析:设 BP=x ,CQ=y ,则 AP 2=42+x 2, PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△ APQ 为直角三角形,13 ∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得: y=- 1x 2+3x4219整理得: y=- (x-3)2+44根据函数关系式可看出 D 中的函数图象与之对应. 故选 D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直 角三角形中的勾股定理.10. 小明从家骑车上学,先匀速上坡到达 A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是解析】 分析】先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返 回家的时间 详解】根据图形得,从家到学校:上坡距离为 1km ,用时 5min ,下坡距离为 2km ,用时为 4minC .8 分钟D . 10 分钟12 1故上坡速度 V 1 (km/min) ,下坡速度 V 2 (km/min)5 4 2从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡∴总用时为: 10+2=12(min) 故选: B点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应11.如图,矩形 ABCD 的周长是 28cm ,且 AB 比 BC 长2cm .若点 P 从点 A 出发,以答案】 A 解析】分析】与 t 的关系式,分析图像可排除选项 B 、C ;当 4< t ≤6时, Q 在边 BC 上, P 在边 AD 上,如图 2,计算 S 与 t 的关系式,分析图像即可排除选项 D ,从而得结论. 【详解】 解:由题意得 2AB 2BC 28, AB BC 2 , 可解得 AB 8, BC 6,即 AD 6 , ① 当0≤t ≤时4,Q 在边 AB 上, P 在边 AD 上,如图 1,2km ,下坡 1km故上坡时间t 121 =10(min) ,下坡t21 1=2(min)2 1cm / s 的速度沿 A D C 方向匀速运动, A B C 方向匀速运动,当一个点到达点 时间为 t( s) , VAPQ 的面积为 S cm 2 ,则同时点 Q从点 A 出发,以 2cm/ s 的速度沿 C 时,另一个点也随之停止运动.若设运动2 S cm 2 与 t (s) 之间的函数图象大致是( )先根据条件求出 AB 、AD 的长,当 0≤t ≤时4, Q 在边 AB 上, P 在边 AD 上,如图 1 ,计算 S BS △APQ = 1 APgAQ 1tg2t t 2,22图像是开口向上的抛物线,故选项 B 、C 不正确;图像是一条线段,故选项 D 不正确; 故选: A . 点睛】12.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 y (千米)与行驶时间 x (小时)的对应关系如图所示,下列叙述正确的是( )A .甲乙两地相距 1200 千米B .快车的速度是 80 千米 ∕小时C .慢车的速度是 60 千米 ∕小时D .快车到达甲地时,慢车距离乙地 100 千米【答案】 C 【解析】 【分析】P 在边 AD 上,如图 2, 本题考查了动点问题的函数图象,根据动点P 和 Q 的位置的不同确定三角形面积的不同, S 与 t 的函数关系式.② 当 4<t ≤6时, Q 在边 BC 上,8(1)由图象容易得出甲乙两地相距600 千米;(2)由题意得出慢车速度为600 =60(千米10 /小时);设快车速度为x 千米/小时,由图象得出方程60× 4+4x=60,0 解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600 千米,故选项A错;(2)由题意得:慢车总用时10 小时,∴慢车速度为:600 =60(千米/ 小时);10 设快车速度为x 千米/ 小时,由图象得:60× 4+4x=600,解得:x=90,∴快车速度为90 千米/小时,慢车速度为60 千米/小时;选项B错误,选项C正确;600 20 20(3)快车到达甲地所用时间:小时,慢车所走路程:60× =400 千米,此时90 3 3慢车距离乙地距离:600-400=200 千米,故选项D 错误.故选C 【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式13.甲、乙两同学骑自行车从A地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:① 他们都骑行了20km;② 乙在途中停留了0.5h;③ 甲、乙两人同时到达目的地;④ 相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1 个B.2 个C.3 个D.4 个答案】B解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5 小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.下列图形中的曲线不表示y是x 的函数的是()【解析】【分析】函数是指:对于任何一个自变量x 的值都有唯一确定的函数值y 与之相对应. 【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y 与之对应,故不是函数. 故选C【点睛】考点:函数的定义15.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是()【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.16.如图所示,边长分别为1和2 的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t, 大正方形内去掉小正方形重叠部分后的面积为s,那么s与t 的大致图象应为()A . AB .BC .C 【答案】D 【解析】D .D根据题意,设小正方形运动的速度为 v ,分三个阶段; ① 小正方形向右未完全穿入大正方形, S=2× 2-vt × 1=,4-vt ② 小正方形穿入大正方形但未穿出大正方形, S=2× 2-1 × ,1=3 ③ 小正方形穿出大正方形, S=Vt ×,1 分析选项可得, D 符合, 故选 D . 【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依 次分析各个阶段得变化情况,进而综合可得整体得变化情况.17.如图 1,点 F 从菱形 ABCD 的项点 A 出发,沿 A -D -B 以 1cm/ s 的速度匀速运动到点 x (s)变化的关系图象,则 a 的值为 ( ) 答案】 CD . 2 5 解析】分析】 E 由图象可知,点 F 由点 A 到点 D 用时为 as , FBC 的面积为 acm 2 .求出 DE=2,再由图像得BD 5 ,进而求出 BE=1,再在 Rt △DEC 根据勾股定 理构造方程,即可求解. 【详解】 过点 D 作DE BC 于点 解:过点 D 作DE BC 于点E 由图象可知,点F 由点 A 到点 D 用时为 as , FBC 的面积为 acm 2.AD BC a1 DEgAD a DE2 由图像得,当点F 从D 到 B 时,用 5sBD 5 RtVDBE 中,BE BD 2 DE 2 ( 5) 2 221 ∵四边形 ABCD 是菱形,EC a 1 , DC aRt △DEC 中,2 2 2a 2 22 (a 1)25解得 a 52 本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关 系,解答此题关键根据图像关键点确定菱形的相关数据.18. 如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( ) 答案】 C 解析】 试题分析: A . y x 2 ,x 为任意实数,故错误;B . y x 2 2,x 为任意实数,故错误;C . y x 2 , x 2 0,即 x 2 ,故正确; 1D . y , x 2 0 ,即 x 2 ,故错误;x2故选 C .考点: 1.函数自变量的取值范围; 2.在数轴上表示不等式的解集19.如图,在 △ABC 中, AC = BC ,有一动点 P 从点 A 出发,沿 A →C →B →A 匀速运动.则 CP 的长度 s 与时间 t 之间的函数关系用图象描述大致是( )A . y=x+2B .y=x 2+2C .y= x 2D .y= 1x2点睛】如图,过点 C 作 CD ⊥AB 于点 D .∵在 △ABC 中, AC=BC ,∴ AD=BD .① 点 P 在边 AC 上时, s 随 t 的增大而减小.故 A 、B 错误;② 当点 P 在边 BC 上时, s 随 t 的增大而增大;③ 当点 P 在线段 BD 上时, s 随t 的增大而减小,点 P 与点 D 重合时, s 最小,但是不等于 零.故 C 错误;④ 当点 P 在线段 AD 上时, s 随 t 的增大而增大.故 D 正确.故答案选 D . 考点:等腰三角形的性质,函数的图象;分段函数.20.木杆 AB 斜靠在墙壁上,当木杆的上端 A 沿墙壁 NO 竖直下滑时,木杆的底端 B 也随 之沿着射线 OM 方向滑动.下列图中用虚线画出木杆中点 P 随之下落的路线,其中正确的【答案】 D【解析】 解:如右图,解析】试题分析:连接OP,由于OP是Rt△AOB斜边上的中线,1所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,2O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线.故选D.P就在以。
中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题17二次函数中几何存在性的问题【典型例题】1.(2022·全国·九年级专题练习)抛物线C1:y14-=x212-x+2交x轴于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求A,B两点的坐标.(2)M为平面内一点,将抛物线C1绕点M旋转180°后得到抛物线C2,C2经过点A且抛物线C2上有一点P,使△BCP是以△B为直角的等腰直角三角形.是否存在这样的点M?若存在,求出点M的坐标,若不存在,说明理由.【专题训练】一、解答题1.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,已知抛物线y=ax2+32x+c(a≠0)与x轴相交于A,B两点,与y轴交于点C,B点坐标为(4,0),C点坐标为(0,2).(1)求该抛物线的函数表达式;(2)点P为直线BC上方抛物线上的任意一点,过P作PF△x轴交直线BC于点F,过P作PE△y轴交直线BC 于点E,求线段EF的最大值及此时P点坐标;(3)将该抛物线沿着射线AC个单位得到新抛物线y,N是新抛物线对称轴上一点,在平面直角坐标系中是否存在点Q,使以点B、C、Q、N为顶点的四边形为矩形?若存在,请直接写出点Q点的坐标;若不存在,请说明理由.2.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于A、B两点(点A在点B的左侧),交y轴于点E,一次函数y=x+1与抛物线交于A、D两点,交y轴于点C,且D(4,5).(1)求抛物线的解析式;(2)若点P是第四象限内抛物线上的一点,过点作PQ△AD交AD于点Q,求PQ的最大值以及相应的P点坐标;(3)将抛物线向右平移1个单位长度,再向上平移1个单位长度得到新抛物线,新抛物线与原抛物线交于点R,M点在原抛物线的对称轴上,在平面内是否存在点N,使得以点A、R、M、N为顶点的四边形是矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.3.(2022·全国·九年级专题练习)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于A(﹣1,0),B两点,与y轴交于点C,直线y=﹣x+n经过B、C两点.点D为第一象限内抛物线上一动点,过点D作DE△y轴,分别交x轴,BC于点E,F.(1)求直线BC及抛物线的表达式;(2)点D在移动过程中,若存在△DCF=△ACO,求线段DE的长;(3)在抛物线上取点M,在坐标系内取点N,问是否存在以C、B、M、N为顶点且以CB为边的矩形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.4.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线L:y=ax2+c与x轴相交于A、B两点,顶点C(0,2).AB=M(m,0)是x轴正半轴上一点,抛物线L关于点M对称的抛物线为L'.(1)求抛物线L的函数表达式;(2)点P是第一象限抛物线L上一点,点P到两坐标轴的距离相等,点P在抛物线L'上的对应点为P'.设E 是抛物线L上的动点,E'是点E在抛物线L'上的对应点,试探究四边形PEP'E′能否成为正方形.若能,求出m的值;若不能,请说明理由.5.(2022·全国·九年级专题练习)如图,抛物线y2x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴。
初二一次函数与几何1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB 最短时,试求点B的坐标。
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。
4、如图,在平面直角坐标系中,直线y=2x—6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC5、在平面直角坐标系中,已知A(1,4)、B(3(1)当P的坐标为多少时,AP+BP取最小值,AP-BP取最大值,最大值为多少?6x轴于点B(-6,0),△AOB的面积为15,且AB=AO析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x 轴负半轴上,A点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L 的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y 轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S AOP=6.求:(1)△COP的面积(2)求点A的坐标及m的值;(3)若S BOP=S DOP,求直线BD的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
初二反比例函数、一次函数、平面几何难题一、选择题.
1.如图1,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4
x
和y=
2
x
的
图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()
A. 3
B. 4
C. 5
D. 6
2.如图2,双曲线y=k
x
经过点A(2,2)与点B(4,m),则△AOB的面积为()
A.2 B.3 C.4 D.5
3.如图,直线y=-x+b(b>0)与双曲线y=k
x
(x>0)交于A、B两点,连接OA、OB,
AM⊥y轴于M,BN⊥x轴于N;有以下结论:
①OA=OB ②△AOM≌△BON ③若∠AOB=45°,则S△AOB=k ④当AB=2时,ON-BN=1;其中结论正确的个数为()
A.1 B.2 C.3 D.4
(1)(2)(3)
.如图4,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=4
x
(x>0)图象上位
于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=()
A.8 B.6 C.4 D.2
5.如图5,已知动点P在反比例函数的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为()
A.4 B.2 C.1 D.1 2
6. 如图6.已知P是反比列函数y=8
x
(x>0)图象上一点,点B的坐标为(1,0),A是
y轴正半轴上一点,且AP⊥BP,AP:BP=1:2,那么四边形AOBP的面积为()A. C10 D.7
(4)(5)(6)
二、填空题.
7. 如图,延长四边形ABCD的四边分别至E、F、G、H,使AB=nBE,BC=nCF,CD=nDG,DA=nAH(n>0),则四边形EFGH与四边形ABCD的面积之比为______________________ (用含n的代数式表示).
8.已知如图8,在矩形ABCD中,AE⊥BD,垂足为E,∠ADB=30°且BC=43,△ECD 的面积是___________
9. 如图9,已知AD∥BC,AC与BD相交于点O.BE⊥AC,CF⊥BD,垂足分别为E、F,AC
BD
=
4 5.
BE
CF
的值为__________.
(7)(8)(9)
10. 正方形的A1B1P1P2顶点P1、P2在反比例函数y=2
x
(x>0)的图象上,顶点A1、
B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=2 x
(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为 __________
11已知点A(-2,0),B(2,0),点C在反比例函数y=k
x
(x>0)第一象限内的图象上,
且∠ACB=90°,则k的最大值是___________
12.四边形ABCD对角线分四边形所得的4个三角形面积为S△AOB=52,S△BOC=26,s△COD=34,S△DOA=68.又E,F,G、H分别是边AB、BC,CD、DA上第1个2等分点、3等分点、4等分点和5等分点,则S四边形EFGH=_____________.
(10)(11)(12)
13.如图13 四边形ABCD中,AD>BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE_____∠BGE(填“>”或“=”或“<”号)
14. 如图14,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF=_________
15. 如图15,四边形ABCD是直角梯形,且AB=BC=2AD,PA=1,PB=2,PC=3,那么梯形ABCD的面积=__________
16. 如图,一个面积为40的正方形与另一个小正方形并排放在一起,则三角形ABE的面积为_________
(13)(14)(15)(16)
三、解答题.
17.如图,已知E、F是矩形ABCD的BC边的三等分点,G、H是CD边的三等分点,连结AE、AF和BG、BH,AE与BG交于M,AF与BH交于N,连结MN。
求证:
MN如图.点A,点B是反比例函数y=k x
上两点,过这两点的直线与x轴的夹角为45度,与y轴的交点为(0,2),作AC∥x轴,AC⊥BC于点C,
①求阴影部分面积(用k的代数式表示);
②若S△ABC=4,求出这两个函数解析式
.
19.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小
20. 如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDC和CBFG,点P 是EF的中点,求证:点P到AB的距离是AB的一半.
21. 如图,在平面直角坐标系中,有平行四边形ABCD,且A(-1,0),B(0,3),C
(3,0),BD交x轴于E点.
(1)求证:四边形ABCD是矩形;
(2)若反比例函数y=k
x
(k≠0)与BC交于M、N两点,且BM=MN,求k;
(3)在反比例函数y= k
x
(k≠0)上取一点F,使∠BFE=30°,连接AF,判断AF与BF
EF之间存在怎样的数量关系并证明.
22.如图,等腰梯形ABCD中,CD∥AB,对角线ACBD相交于O,∠ACD=6O°,点S,P,Q 分别是OD,OA,B C的中点,
(1)求证:△PQS是等边三角形;
(2)若A B=5,CD=3,求△PQS的面积;
(3)若△PQS的面积与△AOD的面积的比是7:8,求梯形上、下两底的比CD:AB.
*22.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.
*23. 如图,P为正方形ABCD内的一点,作PAHD,PBEA,PCFB,PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.
.。