高性能玻璃纤维在气瓶上的应用
- 格式:pptx
- 大小:12.21 MB
- 文档页数:18
高性能纤维及复合材料高性能纤维及复合材料是一种具有优异性能的材料,它们在航空航天、汽车、船舶、体育器材、军事装备等领域都有着广泛的应用。
高性能纤维及复合材料具有轻质、高强度、耐热、耐腐蚀等特点,因此备受青睐。
本文将从高性能纤维及复合材料的种类、特点以及应用领域展开阐述。
首先,高性能纤维及复合材料主要包括碳纤维、玻璃纤维、芳纶纤维等。
碳纤维具有高模量、高强度、低密度的特点,被广泛应用于航空航天、汽车、体育器材等领域。
玻璃纤维具有良好的绝缘性能和化学稳定性,常用于建筑、船舶、电子等领域。
芳纶纤维具有优异的耐热性和耐化学腐蚀性,广泛应用于防弹衣、航空发动机零部件等领域。
其次,高性能纤维及复合材料具有轻质、高强度、耐热、耐腐蚀等特点。
这些特点使得高性能纤维及复合材料在航空航天领域可以减轻飞机、航天器的重量,提高载荷能力和燃料效率;在汽车领域可以提高汽车的安全性能和燃油经济性;在船舶领域可以提高船舶的抗风浪能力和航行速度;在体育器材领域可以提高器材的性能和使用寿命;在军事装备领域可以提高装备的防护性能和机动性。
最后,高性能纤维及复合材料在航空航天、汽车、船舶、体育器材、军事装备等领域都有着广泛的应用。
在航空航天领域,高性能纤维及复合材料被用于制造飞机机身、航天器外壳等部件;在汽车领域,高性能纤维及复合材料被用于制造车身、发动机零部件等部件;在船舶领域,高性能纤维及复合材料被用于制造船体、船舶结构件等部件;在体育器材领域,高性能纤维及复合材料被用于制造滑雪板、自行车车架等器材;在军事装备领域,高性能纤维及复合材料被用于制造防弹衣、武器零部件等装备。
综上所述,高性能纤维及复合材料具有广泛的应用前景,其轻质、高强度、耐热、耐腐蚀等特点使其在各个领域都有着重要的地位。
随着科技的不断进步,相信高性能纤维及复合材料会有更加广阔的发展空间。
玻璃纤维增强塑料在航空领域中的应用研究玻璃纤维增强塑料(Glass Fiber Reinforced Plastics, GFRP),是一种由玻璃纤维与热固性或热塑性塑料基体复合而成的材料。
GFRP具有重量轻、耐腐蚀、强度高、维护成本低等优点,因此在航空领域中有着广泛的应用。
本文将从材料特性、应用领域、研究进展三个方面阐述GFRP在航空领域中的应用研究。
一、材料特性1.重量轻GFRP的比重约为钢的四分之一,铝的三分之一,因此 GFRP 可大量减轻航空器的自重,提高载重能力,减少燃料消耗。
2.强度高GFRP具有高强度、高模量和优异的抗拉强度、抗冲击性等特性,使得GFRP在航空领域中得到广泛应用。
3.维护成本低GFRP具有良好的耐腐蚀性和耐磨性,避免了腐蚀和磨损等问题的出现,减少了航空器的修理和维护成本。
二、应用领域1.机翼GFRP具有很强的强度和刚性,可以承受很大的风载荷。
在大型民用飞机机翼结构中,GFRPCanard和翼上扰流板中也有广泛应用。
2.机身GFRP在机身制造中也应用广泛。
不仅可以制造舵面和机身覆盖板等零部件,也可以制作飞机前缘和进气道。
3.细节部件GFRP还可以制作一些细节部件,如氧气瓶、水箱等容器。
由于GFRP具有优异的耐腐蚀能力,可以避免容器的腐蚀,有效延长使用寿命。
三、研究进展1.材料改进在航空领域中,GFRP的性能要求非常严苛,需要长期的研究和改进。
目前,研究人员通过改进纤维和树脂的制备工艺,使GFRP的性能得到了显著提高。
2.加工工艺改进随着制造技术的发展,航空制造业开始在机身制造中应用自动化生产线和先进的机器人技术,提高了生产效率和制造精度。
这也促进了GFRP在航空领域的应用。
3.质量控制GFRP的制造过程中需要严格的质量控制,确保材料的性能和质量达到航空领域的要求。
因此,航空制造业需要不断完善质量管理体系和检测技术,提高生产效率和质量。
总结随着航空工业的不断发展,GFRP在航空领域的应用前景非常广阔。
玻璃纤维增强塑料的防火性能随着工业化的不断发展和人民生活水平的不断提高,各种高性能材料的应用也日益广泛。
玻璃纤维增强塑料(FRP)作为一种新型材料,由于其具有轻质高强、耐腐蚀、耐磨、易加工成型等优点,因而在建筑、航空、船舶、汽车、电子等领域得到了广泛应用。
然而,在这些应用领域中,塑料材料安全防范问题越来越受到重视,并被广泛讨论。
特别是在建筑行业中,防火问题是一项关键的安全技术。
为了提高玻璃纤维增强塑料的防火性能,人们采取了多种措施。
本文主要就这个问题作一些探讨。
一、塑料材料的燃烧特性首先,我们应该了解塑料材料的燃烧特性,这是提高塑料材料防火性能的前提。
塑料材料通常具有易燃、可燃、半可燃和难燃四种燃烧特性。
易燃材料在接触火源后,除了能自身燃烧外,其周围材料也会因放热而继续燃烧。
可燃材料在火焰作用下能燃烧,但其燃烧不会引起周围材料的继续燃烧。
半可燃材料在火焰作用下会局部燃烧,但其能引起周围材料的继续燃烧。
难燃材料在遇火源时仅发生表面炭化,继续燃烧能力较差,不会引起周围材料的继续燃烧。
二、提高FRP的防火性能针对玻璃纤维增强塑料的易燃燃烧特性,下面介绍一些改进措施,以提高其防火性能。
1.选择阻燃剂阻燃剂是一种能减缓、抑制或预防燃烧的物质。
与其他材料相比,FRP材料中阻燃剂的增加可以有效降低其燃烧速率,并减少燃烧过程中有毒气体和黑烟的产生。
目前,若干种化合物被证明是有效的阻燃剂,例如三聚磷酸酯(TPP)、六偏磷酸酯(IPP)、聚氨酯(PU)等。
2.添加玻璃纤维FRP材料中添加玻璃纤维能够提高其强度和刚度,并对其防火性能发挥积极作用。
玻璃纤维的加入能够改变FRP的化学结构,降低燃烧温度,并促使其在燃烧时产生较少的有毒气体和黑烟。
除此之外,玻璃纤维的加入也能够使FRP材料具有更好的抗拉强度和抗冲击性。
3.采用二氧化硅材料二氧化硅材料是一种无机材料,其加入可提高FRP材料的防火性能。
二氧化硅材料的加入能够降低FRP的燃烧速率,并减少燃烧过程中有毒气体和黑烟的产生。
高性能纤维的性能及应用新材料智库摘要: 高性能纤维是具有特殊的物理化学结构、性能和用途,或具有特殊功能的化学纤维。
简述了高性能纤维的基本分类,并介绍了芳纶纤维、PBO 纤维、碳纤维、玻璃纤维四种高性能纤维的性能及应用,并分析了高性能纤维今后的发展趋势。
0 引言高性能纤维是指具有高承载力、高耐久性的化学纤维,它们具有特殊的物理、化学结构以及功能性,如高强、高模、高弹性、耐高温、耐高压、耐腐蚀、耐辐射、抗燃、耐磨损、导电等功能。
一般指强度大于17. 6cN/dtex,弹性模量在440cN/dtex 以上的纤维。
这类纤维采用高新技术制成,大多应用于工业、国防、医疗、环境保护和尖端科学等领域。
高性能纤维分为两大类:有机纤维和无机纤维。
目前,比较常见的有机纤维主要包括间位芳纶(芳纶1313)、对位芳纶(芳纶1414)、PBO 纤维等;无机纤维主要包括碳纤维、玻璃纤维等。
其主要性能对比如表1 所示:1 几种主要的高性能纤维1. 1 芳纶纤维芳纶(Aramid fiber),又称芳香族聚酰胺纤维,是一种新型高科技合成纤维,主要包括全芳香族聚酰胺纤维和杂环芳香族聚酰胺纤维两种,可分为间位(PMTA)、对位(PPTA) 和邻位三种,目前常用的主要有间位芳纶和对位芳纶两种。
其中PMTA与PPTA 的主要区别在于酰胺键与苯环上的连接位置不同,其分子结构见图1。
1. 1. 1 间位芳纶间位芳纶,即聚间苯二甲酰间苯二胺(PMTA)纤维,商品名为Nomex,是由酰胺基团相互连接间位苯基构成的排列规整的锯齿型大分子。
间位芳纶具有良好的力学特性,属难燃纤维,极限氧指数LOI≥29%,在空气中不会自燃,离火后自熄,阻燃性好;玻璃化温度为270℃,高温环境中仍可保持较高的强度和较好的稳定性,当温度超过400℃时,纤维逐渐开始发脆、炭化形成隔热层,起到保护作用;间位芳纶介电常数很低、绝缘性好,并具有优良的抗辐射性能。
间位芳纶具有优异的耐热性、化学稳定性,可在高温环境中长期工作,将其加工成过滤袋,可用于空气污染较重领域的高温烟尘过滤。
56中国产业用纺织品行业协会市场与行情技术纺织品玻纤复合材料给CNG 气瓶带来优势与传统化石燃料相比,天然气具有价格较低、绿色环保等优点,最近几年,以天然气为动力的车辆(NGV )受到普遍欢迎。
每年新增投入使用的至少有150万辆。
在过去几十年间,以气体燃料为动力的车辆主要是重型载重车辆(HDV ),即卡车和公共汽车。
而今天,由于新型大规模生产技术的进步和能力的提升,复合材料行业能够为乘用车、轻型商务货车或轻型载重车辆(LDV )提供经济且轻量化的复合材料压缩天然气瓶。
虽然NGV 市场现在使用的气瓶,90%仍然是钢制气瓶,但是鉴于新型玻纤复合材料气瓶可以给定牌加工(OEM )、中间商和终端用户带来利益,这些钢制气瓶将不可避免地被玻纤复合材料气瓶所取代。
天然气轻型载重车市场统计数据显示,截止2010年底,在用的天然气动力车辆有近1320万辆,较上一年有两位数的增长。
即使在汽车市场遭遇困境一年之后的2010年(尽管过去十年经历了最低的全球年增长率),其增长率也达到了可观的12%。
如果在2010年,约有150万辆使用压缩天然气为动力的车辆能够上路,那么鉴于国际国内各个协会的大力推动,可以合理地假设,在未来几年内,每年采用车载CNG 燃油系统的新增车辆至少会有150万辆。
过去20年中,复合材料行业将焦点主要集中在重型载重车领域。
NG 燃料车辆比传统石化燃料车辆需要更大的燃料储存空间。
因此,需要突破车辆设计的限制,并增加其有效载重量。
显而易见,例如在欧洲,很多以天然气为燃料的城市公交汽车在顶部装备了容积超过150L 的轻质碳纤维复合材料气瓶,确保可载乘客数量的最大化。
然而,轻质玻璃纤维复合材料与昂贵的碳纤维复合材料相比,其在经济性方面具有优势。
现在,对钢材的使用已经受到了限制,这是因为钢材的重量大,致使可载乘客数量减少,还经常需要进行昂贵的、结构性的改进,尤其需要解决车辆稳定性的问题。
货车和公共汽车市场(重型载重车)占据了全球天然气车辆市场的20%,主要受车队所有者和OEM 的驱动(以B2B 模式),这是因为,他们都意识到减轻重量的意义及对投资回报率的影响。