纳米微粒的化学特性
- 格式:ppt
- 大小:2.10 MB
- 文档页数:13
纳米粉体材料简介纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。
纳米粉体材料是纳米材料中最基本的一类。
纳米固体是由分体材料聚集,组合而成。
而纳米组装体系则是纳米粉体材料的变形。
纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。
它的尺度大于原子簇而又小于一般的微粒。
按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。
它小于一般生物细胞,和病毒的尺寸相当。
细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。
纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。
纳米粉体材料的基本性质它的性质与以下几个效应有很大的关系:(1).小尺寸效应随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。
(2).表面与界面效应纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。
由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。
以上的这些性质被称为“表面与界面效应”。
(3)量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。
具体从各方面说来有以下特性:(1)热学特性纳米微粒的熔点,烧结温度比常规粉体要低得多。
这是由于表面与界面效应引起的。
比如:大块的pb的熔点600k,而20nm球形pb微粒熔点降低288k,纳米Ag微粒在低于373k时开始融化,常规Ag的熔点远高于1173k。
还有,纳米TiO2在773k加热出现明显致密化,而大晶粒样品要出现同样的致密化需要再升温873k才能达到,这和烧结温度有很大关系。
纳米材料综述功能材料与应用论文(已处理)纳米材料综述摘要概述了纳米材料的基本概念、分类方法及结构特征, 重点介绍了纳米材料的光谱、催化、光电化学及反应性等化学特性及应用.1、纳米材料的基本概念纳米材料是指颗粒尺寸为纳米量级 0.11 nm, 100nm 的超微粒子纳米微粒及由其聚集而构成的纳米固体材料。
纳米固体材料分为纳米晶体材料、纳米非晶态材料及纳米准晶态材料。
其中纳米晶体材料按其结构形态又可分为四类:1 零维纳米晶体, 即纳米尺寸超微粒子;2 一维纳米晶体, 即在一维方向上晶粒尺寸为纳米量级, 如一维纤维, 一维碳纳米管;3 二维纳米晶体, 即在二维方向上晶粒尺寸为纳米量级, 如纳米薄膜、涂层;4 三维纳米晶体, 指晶粒在三维方向上均为纳米尺度, 如纳米体相材料, 纳米陶瓷材料。
另外, 还有纳米复合材料, 以复合方式不同分为0-0、0-2、0-3 型复合, 即零维纳米粒子分别与纳米粒子、二维及三维材料复合而成的固体材料。
纳米材料科学是现代化学、物理学、材料学、生物学等多门学科相互交叉、相互渗透的新兴学科, 其研究内容主要包括两个方面:1 系统地研究纳米材料的性能、微结构和谱学特性,通过和常规材料对比, 找出纳米材料的特殊规律, 建立描述和表征纳米材料的新概念和新理论, 发展完善纳米材料科学体系;2 探索新的制备方法, 发展新型的纳米材料, 研究制备工艺与材料结构、性能之间的关系规律, 并拓宽其应用领域。
2、纳米材料的性质2.1、纳米微粒的结构和特性纳米粒子处于原子簇和宏观物体交界的过渡区域,是由数目很少的原子或分子组成的聚集体。
由于纳米粒子具有壳层结构。
粒子的表面原子占很大比例,并且是无序的类气状结构, 而在粒子内部则存在有序-无序结构,这与体相样品的完全长程有序结构不同。
纳米粒子的结构特征使其产生了小尺寸效应、表面界面效应、量子尺寸效应及宏观量子隧道效应,并由此派生出传统固体材料所不具备的许多特殊性质。
选择题:1.纳米尺度物质的重要工具(A)A扫描隧道显微镜 B.扫描探针显微镜C.显微镜纳米丝微创术D.纳米探针2.1999___教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。
( D )A.清华大学B.复旦大学C.香港大学D.北京大学3. 以下哪个不是纳米级测量技术?(B)A.纳米级精度的尺寸的测量B.纳米尺度物质的测量.C.纳米级精度的尺寸的测量D.纳米级表面形貌的测量4.以下哪种不是纳米位移的测量方法?(C)A.机械测量法B.电学测量法C.纳米探针法D.光学测量法5.(A)年IBM公司苏黎世研究实验室的宾尼和罗雷尔发明了扫描隧道显微镜简称STM,使得人类首次在大气及常温下条件观察到了原子,为纳米科技的发展奠定了基础。
A.1981B.1982C.1983D.19846.1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ (A )”二字,标志着中国开始在国际纳米科技领域占有一席之地.A.中国B.中华C.九州D.神州7.以下哪个不是纳米技术的应用范围?(D)A.医药与健康B.国际贸易与竞争C.电子及计算技术D.生活用品8.以下哪个不是纳米技术的应用范围?(A)A.生物转基因B.材料及加工C.国防D.环境与能源9.(A)研究细胞内部,细胞内外之间以及整个生物体的物质、能量和信息交换。
A.纳米生物学B.纳米化学C.纳米物理学D.纳米物质学10.纳米器件是指器件的(B)在纳米范围内的器件,其空间尺度介于微观体系(分子和原子)和宏观体系(如块体)之间。
A.大小 B.特征尺寸 C.形态D.体积11.纳米多孔碳的分类:微孔材料<2nm,(A) 2nm~50nm,大孔材料50nm>。
A.介孔材料B.中孔材料C.宏孔材料D.空孔材料12. 1977年,MIT的(D)提出从模拟活细胞中生物分子的人工类似物出发可以组装和排布原子,并称之为纳米技术——NanoTechnology。
第四章纳米材料的物理化学性能纳米微粒的物理性能第一节热学性能※1.1. 纳米颗粒的熔点下降由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。
金的熔点:1064o C;2nm的金粒子的熔点为327o C。
银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。
铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。
铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。
※1.2. 开始烧结温度下降所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。
纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。
※1.3. NPs 晶化温度降低非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。
※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。
第二节电学性能2.1 纳米金属与合金的电阻特性1. 与常规材料相比,Pd纳米相固体的比电阻增大;2. 比电阻随粒径的减小而逐渐增加;3. 比电阻随温度的升高而上升4. 随粒子尺寸的减小,电阻温度系数逐渐下降。
电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。
随着尺寸的不断减小,温度依赖关系发生根本性变化。
当粒径为11nm时,电阻随温度的升高而下降。
5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似).电子在晶体中传播由于散射使其运动受阻,而产生电阻。
※纳米材料的电阻来源可以分为两部分:颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射•纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。
第三章纳米微粒的基本特性一、纳米微粒的结构二、纳米微粒的基本特性热学、磁学、光学、动力学、表面活性、光催化性能一、纳米微粒的结构纳米态:物质的第?态!区别于固、液、气态,也区别于“等离子体态”(物质第四态)、地球内部的超高温、超高压态(物质第五态),与“超导态”、“超流态”也不同。
纳米态的物质一般是球形的。
物质在球形的时候,在等体积的条件下,它的界面最小、能量最低、自组织性最强、对称性也最高,有着很好的强关联性。
超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2nm)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体、十面体、二十面体等),它既不同于一般固体,又不同于液体,是一种准固体。
在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态。
尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。
纳米微粒一般为球形或类球形,可能还具有其他各种形状(与制备方法有关)。
纳米微粒的结构一般与大颗粒的相同,内部的原子排列比较整齐,但有时也会出现很大的差别:高表面能引起表层(甚至内部)晶格畸变。
二、纳米微粒的基本特性1. 纳米微粒的热学性质固态物质在其形态为大尺寸时,其熔点是固定的;超细微化后发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。
➢大块Pb的熔点为600K,而20nm的的球形Pb微粒熔点降低288K。
➢ Ag的熔点:常规粗晶粒为960︒C;纳米Ag粉为100︒C ➢ Cu的熔点:粗晶粒为1053︒C;粒度40nm时为750︒C纳米微粒的熔点降低:由于颗粒小,纳米微粒的表面能高、比表面原子数多,这些表面原子近邻配位不全、活性大,因此纳米粒子熔化时所需增加的内能比块体材料小得多,使纳米微粒的熔点急剧下降。
✍应用:降低烧结温度。
纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮没,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。
化学中的纳米颗粒研究纳米颗粒是近年来化学领域的一个研究热点。
随着人们对纳米材料的认识不断深入,纳米颗粒的应用也越来越广泛。
在本文中,我们将重点探讨纳米颗粒在化学中的研究进展。
一、纳米颗粒的基本性质首先,让我们来了解一下纳米颗粒的基本性质。
纳米颗粒是一种尺寸在1-100纳米之间的微粒,实际上这个尺寸范围只是参考值,国际标准组织将纳米定义为尺寸在1-1000纳米之间的物质。
纳米颗粒的异于传统颗粒的关键在于其尺寸。
由于纳米颗粒的尺寸很小,因此其表面积相对于体积来说非常大,其它的物理和化学性质也是因为这个原因产生了非常大的变化。
纳米颗粒的表面活性增强,与其它物质之间的相互作用更加复杂,具有一定的量子效应和容积效应。
二、纳米颗粒的制备方法纳米颗粒的制备方法非常多样化。
下面就介绍几种常用的制备方法。
1. 气相合成法:气相合成法又称为气相沉积法,是一种通过对金属、无机化合物、有机化合物等材料的热解生成气体和颗粒两种物质,再通过一定的装置将颗粒沉积在基体表面上的方法。
2. 溶剂热法:溶剂热法是通过在无水有机溶剂中混合金属盐,产生物化反应制备纳米颗粒,它的优点在于方法简单、操作方便,可以得到单分散的纳米颗粒。
3. 电化学合成法:电化学合成法是通过向溶液中加入离子并施加电压,促使阳极和阴极上的离子产生氧化还原反应,从而沉积纳米颗粒在目标材料或电极上的方法。
这种方法制备的纳米颗粒得到了广泛的应用。
三、纳米颗粒的应用目前,纳米颗粒在很多领域得到了广泛的应用。
下面简要介绍其主要应用领域:1. 生物医学领域:纳米颗粒的尺寸在细胞、DNA、蛋白质等生物体系的尺寸范围内,可以作为一种无毒、可靠的药物靶向载体,具有在癌症诊断和治疗方面的巨大潜力。
2. 新材料领域:纳米材料是新一代的先进材料。
纳米颗粒在材料界面处的大量存在,特定的物理化学性质使其在制备新材料过程中发挥重要作用。
3. 环境污染处理领域:纳米颗粒因其比表面积大、反应活性强等特性,在环境污染处理、水质净化、大气治理、土壤修复等领域也具有巨大的应用前景。
纳米材料的种类和性质摘要:本文简述了纳米材料的基本概念、种类和性质。
关键词:纳米材料;概念;性质;种类正文:1纳米材料概念:从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
2纳米材料种类:纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
2.1纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
纳米材料有哪四个特性纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1nm~100nm)或由他们作为基本单元构成的材料。
这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。
例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。
纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。
随着粒径减小,表面原子数迅速增加。
这是由于粒径小,表面积急剧变大所致。
由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。
例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附并与气体进行反应。
纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。
随着粒径变小,表面原子所占百分数将会显著增加。
当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。
由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。
2、小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。
例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变等由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
纳米材料的特性与其在化学化工的应用关键词:纳米材料;特殊性质;化学化工;应用摘要:纳米科技的发展,将促进人类对客观世界认知的革命。
人类在宏观和微观理论充分完善之后,在介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头。
纳米科技也将促进传统科技“旧貌换新颜”。
它的巨大影响还在于使纳米尺度上的多学科交叉展现了巨大的生命力,迅速形成一个具有广泛学科内容和潜在应用前景的研究领域。
该领域可大致包括纳米材料学、纳米化学、纳米计量学、纳米电子学、纳米生物学、纳米机械学、纳米力学等7个新生学科,这里主要介绍纳米材料的特性与其在化工领域中的几种应用。
正文纳米材料(又称超细微粒材料、超细粉末)是指三维空间中至少有一维处于1~100nm或由它们作为基体单元构成的材料,纳米材料处在原子簇和宏观物体交界过渡区域,其结构既不同于体块材料,也不同于单个的原子,显示出许多奇异的特性。
一.纳米材料的特性纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子百分数远远大于晶态材料表面原子所占的百分数,晶界原子达15%~50%,导致了纳米材料具有传统固体所不具备的许多特殊性质。
所有的纳米材料具有三个共同的结构特点:即纳米尺度结构单元、大量的界面或自由表面以及纳米单元之间存在着强或弱的交互作用。
●表面效应表面效应是指纳米微粒的表面原子与总原子之比随着纳米微粒尺寸的减小而大幅度增加,粒子表面结合能随之增加,从而引起纳米微粒性质变化的现象。
●小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及- 1 - / 8超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等物性呈现新的效应,称为小尺寸效应。
●量子尺寸效应当粒子尺寸下降到接近或小于某一值时,金属费米能级附近的电子能级由准连续态变为离散能级态的现象和纳米半导体微粒存在能隙变宽现象均称为量子尺寸效应。
第四章纳米材料的物理化学性能纳米微粒的物理性能第一节热学性能※1.1. 纳米颗粒的熔点下降由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。
金的熔点:1064o C;2nm的金粒子的熔点为327o C。
银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。
铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。
铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。
※1.2. 开始烧结温度下降所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。
纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。
※1.3. NPs 晶化温度降低非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。
※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。
第二节电学性能2.1 纳米金属与合金的电阻特性1. 与常规材料相比,Pd纳米相固体的比电阻增大;2. 比电阻随粒径的减小而逐渐增加;3. 比电阻随温度的升高而上升4. 随粒子尺寸的减小,电阻温度系数逐渐下降。
电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。
随着尺寸的不断减小,温度依赖关系发生根本性变化。
当粒径为11nm时,电阻随温度的升高而下降。
5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似).电子在晶体中传播由于散射使其运动受阻,而产生电阻。
※纳米材料的电阻来源可以分为两部分:颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射•纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。