北师大九年级数学上册1.1 菱形的性质与判定(1)
- 格式:pptx
- 大小:481.07 KB
- 文档页数:25
2018-2019学年数学北师大版九年级上册1.1菱形的性质与判定(1)同步训练一、选择题1.平行四边形的一条边长是10cm ,那么它的两条对角线的长可能是()A 、6cm 和8cmB 、10cm 和20cmC 、8cm 和12cmD 、12cm 和32cm +2.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长 是( )A 、24B 、16C 、4D 、2 +3.菱形 的两条对角线长分别为和,则它的周长和面积分别为()A 、B 、C 、D 、 + 4.如图,在菱形中点,则 中, , ,、分别是边 、周长 等于()A、B、C、D、+5.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于(??)A、5B、10C、15D、20+6.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A、2B、2C、4D、4+7.在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC交于点D,且∠BCO=∠EAO,则点D坐标为(),)D、(1,)A、(,)B、(1,)C、(+8.如图,已知菱形ABCD的边长等于2,若∠DAB=60°,则对角线BD的长为( )A、1B、C、2D、+9.如图,在平面直角坐标系中,已知点,若平移点到点为顶点的四边形是菱形,则正确的平移方法是( ),使以点A、向左平移()个单位,再向上平移1个单位B、向左平移个单位,再向下平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移2个单位,再向上平移1个单位+二、填空题10.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相较于点O,点E在AC上,若OE=2 ,则CE的长为+11.菱形的两条对角线长分别为2和2 ,则该菱形的高为.+12.如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FA D=45°,则∠CFE= 度.+13.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.+14.菱形ABCD中,∠A=60°,其周长为32,则菱形面积为.+15.如图,菱形ABC的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE、AE,AE交OD于点F,若AB=2,∠ABC=60°,则AE的长.+三、解答题16.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.+17.如图,四边形ABCD是边长为2的菱形,E,F分别是AB,AD的中点,连接EF,EC,将△FAE绕点F旋转180°得到△FDM.(1)、补全图形并证明:EF⊥AC;(2)、若∠B=60°,求△EMC的面积.+18.如图,已知E、F分别是?ABCD的边BC、AD上的点,且.(1)、求证:四边形AECF是平行四边形;(2)、若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.+19.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)、求证:AE=CF;(2)、若AB=2,点E是AB中点,求EF的长.+20.已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)、如图1,线段EH、CH、AE之间的数量关系是;(2)、如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.+21.如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)、菱形ABCO的边长(2)、求直线AC的解析式;(3)、动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,①当0<t<时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.+。
第一章特殊平行四边形1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
教学难点:菱形的性质的理解及菱形性质的灵活运用。
学习过程:活动一:自学课本例题以上的内容,完成下列问题:______________________ 的四边形叫做菱形,生活中的菱形有______________________________2.按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形?有_________ 对称轴。
图中相等的线段有:__________________________________图中相等的角有:___________________________________③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明性质:证明:活动二:对比菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积2.如图,菱形花坛ABCD勺边长为20cm, / ABC=60沿菱形的两条对角线修建了两条小路AC和BD, 求两条小路的长和花坛的面积。
课效检测:一、填空(1)菱形的两条对角线长分别是12cm, 16cm,它的周长等于____________ ,面积等于_______ 。
(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是___________________________________________________________________________________________ 。
(3)已知:菱形的周长是20cm,两个相邻的角的度数比为1:2,则较短的对角线长是。
(4已知:菱形的周长是52 cm, —条对角线长是24 cm,则它的面积是________________ 。
第一章特殊平行四边形1.1 菱形的性质与判定1.1.1 菱形的判定1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2.经历菱形的判定方法的探索过程,在活动中发展合情推理的意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境,丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识.菱形的判定方法.菱形的判定方法的综合运用.复习引入:1.菱形的定义:有一组邻边相等的平行四边形叫作菱形.2.菱形的特殊性质:(1)菱形是轴对称图形;(2)菱形的四条边相等;(3)菱形的对角线互相垂直.今天我们就来研究一下如何判定一个四边形是菱形.思考(1):除了运用菱形的定义,你还能找出判断一个平行四边形是菱形的其他方法吗?猜想1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:如图1-1-5,在平行四边形ABCD中,对角线AC,BD互相垂直且交于点O. 求证:四边形ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线相互平分).又∵AC⊥BD,∴BD所在直线是线段AC的垂直平分线,∴AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理1对角线互相垂直的平行四边形是菱形.·议一议已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?小刚做法:如图1-1-7,分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD看上去是菱形.你认为小刚的做法正确吗?你是怎样做的?图1-1-8学生:小刚的做法正确.还可以作AC的垂直平分线MN,交AC于点O,在MN上取OB=OD,依次连接A,B,C,D,四边形ABCD是菱形,思考(2):除了运用对角线,你还有其他判定菱形的方法吗?猜想2:四边相等的四边形是菱形.已知:如图1-1-9,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).得出结论:判定定理2四边相等的四边形是菱形.思考:这里的条件能否再减少一些呢?能否有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画.学生:动手操作,得到有三条边相等的四边形不一定是菱形.·做一做你能用折纸等办法得到一个菱形吗?动手试一试.你能说说小颖这样做的道理吗?学生:小颖这样做的道理,四边相等的四边形是菱形.例题讲解图1-1-6例2如图1-1-6,已知平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F,求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴AE∥FC(平行四边形的对边平行),∴∠1=∠2.∵EF垂直平分AC,∴AO=OC,∠AOE=∠COF=90°.∴△AOE≌△COF(ASA),∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).·例题讲解图1-1-10例3已知:如图1-1-10,在ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1.求证:ABCD是菱形.证明:在△AOB中,∵AB=5,OA=2,OB=1,∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴ABCD是菱形(对角线互相垂直的平行四边形是菱形).图1-1-11例4如图1-1-11,四边形ABCD是边长为13 cm的菱形,其中对角线BD 为10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,AC与BD相交于点E,∴∠AED=90°(菱形的对角线互相垂直),DE=12BD=12×10=5(cm)(菱形的对角线互相平分).∴AE=AD2-DE2=132-52=12(cm).∴AC=2AE=2×12=24(cm)(菱形的对角线互相平分).(2)S菱形ABCD=S△ABD+S△CBD=2S△ABD=2×12×BD×AE=2×12×10×12=120(cm2).·做一做图1-1-12如图1-1-12,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?解:重叠部分ABCD是菱形.理由如下:过点A作AH⊥BC交BC于点H,过点C作CQ⊥AB交AB于点Q.∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵S ABCD=BC·AH=AB·CQ,且两张纸条等宽,∴AH=CQ,∴AB=BC.∴四边形ABCD是菱形.【巩固练习】1.用两个边长为a的等边三角形纸片拼成的四边形是 ( ).A.等腰梯形B.正方形C.矩形D.菱形2.下列说法中正确的是( ).A.有两边相等的平行四边形是菱形B.两条对角线互相垂直平分的四边形是菱形C.两条对角线相等且互相平分的四边形是菱形D.四个角相等的四边形是菱形本节课应掌握:菱形的判定方法:(1)对角线互相垂直的平行四边形是菱形;(2)四边相等的四边形是菱形.课本习题1.2,1.3。
菱形的判定说课稿一、说教材1、教材的地位和作用本节课选自北师大九年级上册第一章第一节《菱形的性质与判定》的第二课时,主要内容是菱形的判定,尝试从不同角度寻求菱形的判定方法,并能有效地解决问题。
它是在探究平行四边形之后,一个特殊四边形判定方法的探索,它不仅是三角形、四边形知识的延伸,更为探索矩形的性质与判定指明了方向。
学习本课时,通过观察猜想,归纳证明,培养学生的推理能力和演绎能力,为以后圆等知识的学习奠定基础。
2、教学目标根据本节课的教学内容,结合新课标理念, 我制定了以下教学三维目标:知识目标:理解菱形的判别条件及其证明,并能利用这两个定理解决一些简单的问题。
能力目标:(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)经历实际操作,探索菱形判定定理的证明过程,发展合情推理能力和初步的演绎推理的能力;(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。
情感态度价值观(1)积极参与数学学习活动,对数学有好奇心和求知欲.(2)通过“实验—猜想—证明—应用“的数学活动提升科学素养.3、教学重点、难点基于本节课的主要内容是围绕着菱形的判定方法而展开的,菱形的判定方法在本节课中处于核心地位,所以我确定本节课的教学重点为菱形判定方法的探究。
由于学生还没有具备辨证分析问题的能力,所以我确定本节课的教学难点是菱形判定方法的探究及灵活运用。
4、教材处理根据教学目标,为突出重点,突破难点,在探索菱形的有关对角线的判定定理时,用教具演示,四边形的两条对角线在保持互相平分的前提下进行转动,当它们的位置关系是垂直时,平行四边形变为菱形,给学生以直观感受,印象深刻;在探索菱形的另一个判定定理时,让学生根据它的特殊点去猜想边之间满足的关系,从而得出定理,拓展学生的思维空间。
二、说教法1、创设问题情境,恰当设疑,引发学生兴趣。
2、采用直观操作和几何论证相结合的探究式的教学方法。
1.1菱形的性质与判定-重难点题型【题型1 菱形的性质(求角度)】【例1】如图,四边形ABCD为菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.20°B.25°C.30°D.35°【变式1-1】如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD 沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为()A.30°B.45°C.60°D.75°【变式1-2】如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC 交于点O,连接BO.若∠OBC=62°,则∠DAC为°.【变式1-3】如图,在菱形ABCD中,∠BAD=110°,AB的垂直平分线交AC于点N,点M 为垂足,连接DN ,则∠CDN 的大小是 .【题型2 菱形的性质(求长度)】【例2】如图,在菱形ABCD 中,BC =10,点E 在BD 上,F 为AD 的中点,FE ⊥BD ,垂足为E ,EF =4,则BD 长为( )A .8B .10C .12D .16【变式2-1】如图四边形ABCD 为菱形,点E 为BC 的中点,点F 在CD 上,若∠DAB =60°,∠DF A =2∠EAB ,AD =4,则CF 的长为( )A .45B .45√3C .65D .85 【变式2-2】如图,在菱形ABCD 中,AB =13cm ,AC =24cm ,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为 cm .【变式2-3】如图,在菱形ABCD 中,AB =BD ,点E ,F 分别在BC ,CD 边上,且CE =DF ,BF 与DE 交于点G ,若BG =3,DG =5,则CD = .【题型3 菱形的性质(等积法)】【例3】如图,菱形ABCD 的对角线AC ,BD 交于点O .过O 作OE ⊥AB 于点E .延长EO 交CD 于点F ,若AC =8,BD =6,则EF 的值为( )A .5B .125C .245D .485【变式3-1】如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BE CE 的值为( )A .512B .725C .718D .524【变式3-2】如图,在菱形ABCD 中,AB =10,AC =16,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为 .【变式3-3】如图,在菱形ABCD中,∠ADC=120°,AB=3,点E在BC上,且BE=2EC,BF⊥AE,垂足为F,则BF的值为.【题型4 菱形的判定(选择条件)】【例4】在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.∠AOB=60°B.AC⊥BD C.AC=BD D.AB⊥BC【变式4-1】已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有()A.①③B.②③C.③④D.①②③【变式4-2】如图,在▱ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是菱形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【变式4-3】如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF ∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是菱形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AB=AC,那么四边形AEDF是菱形.其中,正确的有.(只填写序号)【题型5 菱形的判定(证明题)】【例5】如图,在▱ABCD中,点E、F在对角线BD上,BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BD平分∠ABC,求证:四边形AECF是菱形.【变式5-2】已知:如图,在四边形ABCD中,AB∥DC,对角线AC、BD交于点O,过点C作CE⊥CD交AB的延长线于点E,联结OE,OC=OE.(1)求证:OE=12AC;(2)如果DB平分∠ADC,求证:四边形ABCD是菱形.【变式5-3】如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF.(1)求证△ADE≌△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.【变式5-3】如图,在平行四边形ABCD中,点O是BC的中点,连接DO并延长,交AB 延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠ADE=°时,四边形BECD是菱形.【题型6 菱形的判定与性质综合(最值问题)】【例6】如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.3√3B.3+3√3C.6+√3D.6√3【变式6-1】如图,菱形ABCD的边长为2√3,∠ABC=60°,点E、F在对角线BD上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4B.4+√3C.2+2√3D.6【变式6-2】如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB的最小值等于.【变式6-3】如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.【题型7 菱形的判定与性质综合(多结论问题)】【例7】如图,▱ABCD中,对角线AC、BD相交于点O,AD=12AC,M、N、P分别是OA、OB、CD的中点,下列结论:①CN⊥BD;②MN=NP;③四边形MNCP是菱形;④ND平分∠PNM.其中正确的有()A.1 个B.2 个C.3 个D.4 个【变式7-1】如图,平行四边形ABCD中,对角线AC,BD交于点O,BD=2AD,E,F,G 分别是OC,OD,AB的中点.下列结论正确的是()①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.A.③⑤B.①②④C.①②③④D.①②③④⑤【变式7-2】如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF 相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF ≌△CGB;④S菱形ABCD=AB2;⑤2DE=√3DC;⑥BF=BC,正确结论的有()个.A.1B.2C.3D.4【变式7-3】如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①∠DBC=60°:②△AED≌△DFB;③GC与BD一定不垂直;④∠BGE 的大小为定值.其中结论正确的是()A.①②③B.①②④C.①③④D.②③④【题型8 菱形的判定与性质综合(动点问题)】【例8】如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .53 【变式8-1】如图,菱形ABCD 中,∠BAD =60°,AB =8,对角线AC ,BD 交于点O ,E 是线段OC 上一动点,F 是射线AD 上一动点,若∠BEF =120°,则在点E 运动的过程中,EF 长度为整数的个数有( )A .6个B .5个C .4个D .3个【变式8-2】如图,▱ABCD 的对角线AC 、BD 相交于点O .AB =10,AC =12,BD =16.(1)求证:▱ABCD 是菱形;(2)若点P 是对角线BD 上一动点(不与点B 、D 重合),PE ⊥AB 于点E ,PF ⊥AD 于点F ,PE +PF 是否为定值?若是,求出这个定值;若不是,请说明理由.【变式8-3】如图1,四边形ABCD 为菱形,对角线AC ,BD 相交于点O ,点E 为OC 上的动点.(1)当AD =AE 时,OE =1,OD =5,求菱形ABCD 的面积;(2)如图2,当OE =OD 时,过点A 作CD 的垂线,垂足为F ,交ED 延长线于点G ,求证:GE=√2AO.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第1单元菱形的性质与判定一、选择题(本大题共12小题,共36分)1.菱形不具备的性质()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.323.如图,在菱形ABCD中,对角线AC,BD相交于点O,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.505.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()6.C.3D.4A.2B.527.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.83B.8C.43D.238.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△'''.当点'与点C重合时,点A与点'之间的距离为()A.6B.8C.10D.129.下列条件中,不能判定一个四边形是菱形的是()A.一组邻边相等的平行四边形B.一条对角线平分一组对角的四边形C.四条边都相等的四边形D.对角线互相垂直平分的四边形10.下列条件中,能判定▱ABCD是菱形的是()A..=B.⊥.C.=D..⊥11.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠=90∘B.=C.=.D.=.12.如图,在△ABC中,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形13.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形二、填空题(本大题共7小题,共21分)14.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.15.16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.17.18.如图,在菱形ABCD中,AB=6,∠ABC=60∘,M为AD的中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是。