化工原理苯和甲苯的分离项目设计方案
- 格式:doc
- 大小:1.60 MB
- 文档页数:44
化工原理课程设计苯甲苯精馏塔设计化工原理是化学工程专业的基本课程之一,涵盖了化学反应、传热传质、流体力学等方面的知识。
在课程设计中,学生需要通过理论知识和实验操作来模拟化工生产过程,掌握正确的生产方法和流程。
本篇文档将重点介绍一种化工原理课程设计,即苯甲苯精馏塔设计。
1. 实验背景苯甲苯精馏塔是一种用于分离苯甲腾、苯和甲苯的设备,广泛应用于化工、医药、石油等领域。
这种设备可以通过调节进出口流量、塔板数等参数来实现不同组分的分离和纯化。
其中,精馏塔的设计是非常重要的,它直接影响到设备的性能和效率。
2. 实验目的本次课程设计的主要目的是让学生通过理论分析和实验操作,了解苯甲苯精馏塔的设计原理、计算方法和优化手段,进而掌握化工生产过程的基本技能。
3. 实验内容实验内容主要分为以下几个方面:(1)整体流程设计。
学生需要综合考虑工艺流程、设备选择和流量控制等因素,确定苯甲苯精馏塔的基本参数和结构设计。
(2)塔板设计。
学生需要针对不同组分的物理性质和传热特性,选择合适的塔板类型和数量,制定塔板布置图。
(3)塔底设计。
学生需要考虑热交换、温度调节、泵送和排放等问题,设计合适的塔底结构和管路连接。
(4)操作优化。
学生需要通过模拟操作和实验验证,寻找最佳的操作条件,比如塔板数、进出口流量、温度控制等。
4. 实验流程本次课程设计的具体流程如下:(1)定义苯甲苯精馏塔的物理和化学性质。
(2)确定生产需求和工艺流程。
(3)选择合适的设备和材料。
(4)估算物料特性参数和传热、传质性能。
(5)计算理论塔板数和进出口流量。
(6)制定塔板布置图和塔底结构。
(7)模拟实验和调整操作参数。
(8)完成实验报告和总结,总结设计经验和教训。
5. 实验要求本次课程设计要求学生具备一定的化工原理知识和操作技能,可以独立完成实验流程和报告撰写。
具体要求如下:(1)熟悉苯甲苯精馏塔的物理和化学性质。
(2)掌握塔板设计和布置的基本原理。
(3)理解热力学和传热传质的基本概念。
化工原理课程设计年产六万吨苯和甲苯化工原理课程设计:年产六万吨苯和甲苯一、引言苯和甲苯是化工行业中重要的有机化合物,广泛应用于染料、塑料、橡胶、医药、农药等领域。
本篇文章将围绕化工原理课程设计的主题——年产六万吨苯和甲苯展开讨论。
二、工艺流程1. 原料准备苯和甲苯的生产主要原料为石油馏分,主要包括石脑油和轻质芳烃。
这些原料经过预处理后,去除杂质和硫化物,以确保后续反应的高效进行。
2. 苯的生产苯的生产主要采用烷基化反应。
首先,将石脑油经过脱氢装置,去除其中的杂质。
然后,将经过脱氢的石脑油与甲烷在催化剂的作用下进行烷基化反应。
反应生成的烷基苯经过分离和精馏,最终得到高纯度的苯产品。
3. 甲苯的生产甲苯的生产主要采用二甲苯法。
首先,将轻质芳烃与甲烷进行烷基化反应,生成甲苯。
然后,将生成的甲苯与甲烷再次进行烷基化反应,生成二甲苯。
最后,通过蒸馏和提纯,得到高纯度的甲苯产品。
4. 副产物处理在苯和甲苯的生产过程中,会产生一些副产物,如废气和废水。
废气经过净化处理后,可以回收利用或进行安全排放。
废水则需要经过处理,去除其中的有机物和重金属离子,以确保环境的安全。
三、工艺优化为了提高苯和甲苯的生产效率和产品质量,可以采取以下措施进行工艺优化。
1. 催化剂选择选择高效的催化剂,可以提高反应速率和产物选择性,从而提高生产效率和产品质量。
2. 反应条件控制合理控制反应温度、压力和反应时间等参数,可以使反应达到最佳状态,提高产物收率和产品纯度。
3. 废物回收利用对于废气和废水中的有用成分,如甲烷和苯类化合物,可以进行回收利用,提高资源利用率。
4. 能源利用通过采用高效能源回收装置,将反应过程中产生的废热回收利用,降低能源消耗,提高工艺经济性。
四、安全与环保在化工生产过程中,安全和环保是至关重要的。
为了确保生产过程的安全可靠,需采取以下措施。
1. 设备监测与维护定期对生产设备进行检查和维护,确保设备运行正常,减少事故发生的可能性。
化工原理设计一、引言化工原理设计是化学工程领域的基础内容之一,它涉及到各种化学物质的物理和化学性质,并通过设计和优化流程来实现目标产物的分离和提纯。
本文将以苯和甲苯的分离为例,介绍其中涉及的一些化工原理设计。
苯(C6H6)是一种无色液体,具有具有独特的芳香气味。
它是许多有机化合物的基础和重要的工业原料。
苯的沸点为80.1℃,相对分子质量为78.11 g/mol。
甲苯(C7H8)也是一种无色液体,具有类似苯的芳香气味。
甲苯可以作为溶剂广泛应用于化工、涂料、药品和塑料等行业。
其沸点为139.1℃,相对分子质量为92.14 g/mol。
苯和甲苯分离的方法有很多种,下面将对其中两种常用的方法进行介绍。
1. 蒸馏法蒸馏法是一种通过液体之间的沸点差异来实现分离的方法。
对于苯和甲苯的分离,可以通过在适当的温度下进行蒸馏,将苯和甲苯分别收集。
在具体操作中,可以将含有苯和甲苯的混合物加热至苯的沸点,然后收集蒸馏出的苯。
接着,将剩余液体继续加热至甲苯的沸点,再次收集蒸馏出的甲苯。
通过多次的蒸馏过程,可以使苯和甲苯得到较好的分离。
2. 结晶法结晶法是一种通过溶解度差异来实现分离的方法。
对于苯和甲苯的分离,可以利用它们在不同溶剂中的溶解度差异进行分离。
在具体操作中,可以将苯和甲苯的混合物溶解在适当的溶剂中,然后逐渐降低温度,使其中一种物质结晶出来。
通过过滤或离心等方法,可以将结晶出的物质分离出来。
再用其他溶剂将残留物溶解,再次进行结晶,以实现苯和甲苯的分离。
四、化工原理设计考虑的因素在化工原理设计中,需要考虑许多因素,以实现苯和甲苯的高效分离。
1. 温度温度是影响蒸馏法和结晶法分离效果的重要因素。
对于蒸馏法,适当的温度可以使苯和甲苯有较大的沸点差异,以便更好地进行分离。
对于结晶法,合适的温度可以使其中一种物质结晶,而另一种物质保持在溶液中。
2. 压力压力也会对蒸馏法的分离效果产生影响。
适当的压力可以改变苯和甲苯的沸点,从而更好地进行分离。
化工原理课程设计苯与甲苯精馏塔本文将针对化工原理课程设计,探讨苯与甲苯精馏塔的工艺设计。
一、工艺流程苯与甲苯精馏塔的工艺流程如下:苯与甲苯混合物在进入塔后,首先通过反应塔抽收制冷剂进行冷却,从而达到冷却效果,然后通过塔顶进入预分离器进行处理,将其中的气相成分与液相成分分离,剩余的液相通过进料口进入塔体,反复上升和下降,与上部的气相进行平衡沸腾,不断提高纯度,最后在顶部凝结出高纯度的甲苯。
二、设计考虑因素1.塔型塔型应根据生产规模和成本考虑。
一般而言,小型的塔型适合处理小流量、高品质的混合物,而大型的塔型则适合处理大流量、低品质的混合物。
2.动力学参数在设计苯与甲苯精馏塔时,要考虑动力学参数,如液相和气相的流速、物料的热量传递效应等等。
这些参数将直接影响塔的效率和产品品质。
3.填料和操作条件由于苯与甲苯混合物具有一定的粘度和密度差异,因此应在填料和操作条件上进行制约,以避免不同成分之间发生混合或分离出现问题。
三、设计基础1.填料设计填料是苯与甲苯精馏塔的重要组成部分,是决定塔效率和塔高的关键因素。
填料材料应具有良好的性能,如高效的传质、良好的气体液体接触、稳定的抗攻击性等等。
常见的填料材料有氧化铝、陶瓷、合金等。
2.除塔器设计除塔器是苯与甲苯精馏塔的一个重要设计组成部分。
它的主要作用是在塔底处收集返回的液相,防止溢出和保持塔内的可控性。
除塔器的设计应根据填料类型、流量、操作温度和压力等多个因素进行综合考虑,以确保塔的正常运行。
3.塔底设计塔底是苯与甲苯精馏塔的重要组成部分,主要用于收集精馏出的液态产品。
由于反应塔存在高温、高压等因素,因此需要考虑塔底的材料和设计。
常见的材料有碳钢、不锈钢、合金等。
此外,塔底还应配备可靠的排放和泄压装置,以确保塔的安全性。
四、结论苯与甲苯精馏塔是一种常见的化工装置,其设计应考虑多种因素,如塔型、填料、动力学参数等等。
从而确保塔的高效、稳定和可靠性。
河西学院Hexi University化工原理课程设计题目: 苯-甲苯精馏分离板式塔设计学院: 化学化工学院专业: 化学工程与工艺学号: 2014210020姓名: 屈渊指导教师: 王海平2016年11月20日化工原理课程设计任务书一、设计题目苯-甲苯精馏分离板式塔设计二、设计任务与操作条件1.设计任务生产能力(进料量)85000 吨/年操作周期7920 小时/年进料组成46% (苯)(质量分率,下同)塔顶产品组成≥98% (苯)塔底产品组成≤1.0% (苯)回流比,自选单板压降≤700Pa2.操作条件操作压力塔顶为常压进料热状态进料温度20℃加热蒸汽0.25Mpa(表压)3.设备型式筛板塔4.厂址河北省三、设计内容1.设计方案的选择与流程说明2.塔的工艺计算3.主要设备工艺尺寸设计(1)塔径、塔高与塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降与接管尺寸的确定4.辅助设备选型与计算5.设计结果汇总6.工艺流程图与精馏工艺条件图7.设计评述目录1.设计方案的确定 (1)2. 精馏塔工艺的设计 (3)2.1产品浓度的计算 (3)2.1.1原料液与塔顶、塔底产品的摩尔分率 (3)2.1. 2原料液与塔顶、塔底产品的平均摩尔质量 (3)2.2物料衡算 (3)2.3最小回流比的确定 (4)2.4精馏段和提馏段操作线方程 (5)2.4.1求精馏塔的气液相负荷 (5)2.4.2求操作线方程 (5)2.5精馏塔理论塔板数与理论加料位置 (5)2.6实际板数的计算 (5)3. 精馏塔主要工艺尺寸的设计计算 (7)3.1物性数据计算 (7)3.1.1操作压力计算 (7)3.1.2操作温度 (8)3.1.3平均摩尔质量计算 (8)3.1.4平均密度计算 (9)3.1.5液体平均表面张力计算 (10)3.1.6液体平均黏度计算 (11)3.2精馏塔主要工艺尺寸的计算 (12)3.2.1精馏塔的塔体工艺尺寸计算 (12)3.2.2塔板主要工艺尺寸的计算 (14)3.3筛板流体力学验算 (16)3.3.1塔板压降 (16)3.3.2 液面落差 (18)3.3.3液沫夹带 (18)3.3.4漏液 (18)3.3.5液泛验算 (19)3.4塔板负荷性能图 (19)3.4.1漏液线 (19)3.4.2液沫夹带线 (20)3.4.3液相负荷下限线 (22)3.4.4液相负荷上限线 (22)3.4.5液泛线 (22)4.接管尺寸的确定 (25)5.板式塔的结构与附属设备 (26)筛板塔设计一览表 (28)参考文献 (30)主要符号说明 (31)致谢 (32)摘要:本设计采用筛板塔分离苯和甲苯,通过图解理论板法计算得出理论板数为21块,回流比为1.5,算出塔板效率0.54,实际板数为39块,进料位置为第18块,在筛板塔主要工艺尺寸的设计计算中得出塔径为1.4米,全塔高19.975米,每层筛孔数目为5739。
化工原理课程设计:苯与甲苯精馏塔简介本文主要探讨化工原理课程设计中的苯与甲苯精馏塔。
通过对苯和甲苯进行精馏分离,我们可以获得纯度较高的苯和甲苯产品。
在本文中,我们将从以下几个方面展开讨论:1.背景和目的2.设计流程3.塔设计4.精馏原理5.实验操作6.结果和讨论背景和目的苯和甲苯是常用的工业化学品,广泛应用于加工、涂料、塑料等行业。
苯和甲苯在某些工艺中需要纯度较高,因此需要进行精馏分离。
本课程设计旨在设计一个能有效分离苯和甲苯的精馏塔。
设计流程为了设计一个合适的苯与甲苯精馏塔,我们需要进行以下几个步骤:1.确定原料2.确定塔的类型和结构3.进行塔的热力学计算4.进行实验验证塔设计塔是精馏过程中最关键的组件之一,它可以通过蒸汽冷凝回收馏分。
在苯和甲苯的精馏中,一般采用板式塔。
塔类型在板式塔中,我们可以选择不同的塔类型,如:•始料塔•落料塔•浓差塔•强化塔塔结构塔的结构包括:1.塔筒:用于装载填料或板2.助塔装置:用于改善塔内气液分布精馏原理精馏是利用不同物质的沸点差异进行分离的过程。
在苯与甲苯的精馏过程中,由于苯和甲苯的沸点差异较大,可以有效地进行分离。
实验操作进行苯与甲苯精馏的实验时,我们需要注意以下几个操作步骤:1.准备好实验所需设备和试剂2.开启冷却水,确保设备冷却3.将苯和甲苯加入精馏塔中4.开启加热源,控制温度5.收集馏出的苯和甲苯样品结果和讨论通过实验操作,我们可以得到苯和甲苯的纯度和收率。
根据实验结果,我们可以评估精馏塔的效果,并对塔的设计进行改进。
在进行课程设计时,我们要求学生深入了解苯与甲苯的精馏原理,并通过实验进行验证。
此外,在设计塔的结构和操作过程时,也需要考虑到实际工业生产的要求。
通过本次课程设计,学生不仅能够更好地理解化工原理,还能够培养实验操作和实际问题解决能力。
这对于他们将来的工作和研究具有重要意义。
总结起来,本文对苯与甲苯精馏塔的设计和实验操作进行了详细的讨论。
从背景和目的到实验结果和讨论,我们提供了一个全面的指导,希望能对读者有所帮助。
化工原理课程设计题目分离苯-甲苯精馏塔设计学院专业班级学生姓名指导教师成绩2016年6月27 日摘要精馏塔是分离液体混合物最常用的一种单元操作,主要是利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
本设计的题目是苯-甲苯二元物系筛板式精馏塔的设计。
在确定的工艺条件下,确定设计方案和设计内容,其主要包括精馏塔工艺设计计算、塔辅助设备设计计算、精馏工艺过程流程图、精馏塔设备结构图以及设计说明书。
关键词:筛板塔;苯-甲苯;工艺计算;结构图AbstractFractionator is separating the liquid mixture of the most commonly used as a unit operation, mainly using reflux liquid mixture was distilled to obtain high-purity separation, is the industry's most widely used liquid mixture is separated, widely used in petroleum, chemical, light work, food, metallurgy and other sectors. This design is entitled benzene - Toluene Binary System sieve tray type distillation column design. Under certain conditions, to determine the design and content design, which includes rectifying tower design and calculation process, tower auxiliary equipment design calculations, distillation process flow diagram, distillation apparatus configuration diagram and design specifications.Key words:Sieve tray; benzene - toluene; process calculation; configuration diagram目录摘要 (Ⅱ)Abstract (Ⅲ)第1章绪论 (1)1.1 概述 (1)1.2 设计依据 (3)1.3 厂址选择 (3)第2章设计方案的选择和论证 (3)2.1 设计流程 (3)2.1.1 选择原则 (4)2.1.2 设计流程图 (4)2.2 设计要求 (5)2.2.1 满足工艺与操作的要求 (5)2.2.2 满足经济上的需求 (5)2.2.3 保证安全生产 (5)2.3 设计思路 (5)2.3.1 文献检索 (6)2.3.2 小组讨论 (7)2.4 相关符号说明 (7)第3章塔的工艺计算 (9)3.1 基础物性数据 (9)3.1.1 苯和甲苯的物理性质 (9)3.1.2 苯和甲苯饱和蒸汽压P o (9) (9)3.1.3 苯和甲苯的液相密度ρL3.1.4 液体表面张力σ (10)3.1.5 液体粘度μ (10)3.2 塔的工艺计算 (10)3.2.1 操作压力的计算 (10)3.2.2 操作温度的计算 (11)3.2.3 原料液及塔顶、塔底产品的摩尔分率 (11)3.2.4 原料液及塔顶、塔底产品的平均摩尔质量 (12)3.2.5 物料衡算 (12)3.3 理论板数计算 (12)3.3.1 相对挥发度的求取 (12)3.3.2 操作回流比的求取 (13)3.3.3 精馏塔的气液负荷 (13)3.3.4 操作线的求取 (13)3.3.5 理论板层数N T的求取 (13)3.3.6 实际板数N的求取 (15)3.4 塔的工艺条件及有关物性数据的计算 (16)3.4.1 平均密度计算 (16)3.4.2 液体表面张力计算 (17)3.4.3 液体平均粘度计算 (18)3.4.4 气液负荷计算 (19)3.5 精馏塔的工艺尺寸的计算 (20)3.6 塔板流体力学校核 (21)3.6.1 溢流装置计算 (21)3.6.2 塔板布置 (24)3.7 塔板负荷性能图 (25)第4章辅助设备的选型 (34)4.1 进料管的选择 (34)4.2 回流管的选择 (34)4.3 塔底出口管路的选择 (35)4.4 塔顶蒸汽管的选择 (35)4.5 加料蒸汽管的选择 (36)4.6 人孔的设计 (36)4.7 法兰 (36)第5章塔附件设计计算 (37)5.1 选用釜式再沸器 (37)5.2 冷凝器的选型 (37)设计总结 (37)参考文献 (40)附录1 设计结果一览表 (42)附录2 苯-甲苯精馏塔的工艺流程图 (43)致谢 (45)第1章绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
设计题目:分离苯—甲苯混合液的筛板精馏塔生产能力:年处理苯—甲苯混合液30000t(开工率300天/a);原料:组成为45%(苯的质量分数)的苯—甲苯混合液;分离要求:塔顶流出液的组成为0.92,塔底釜液的组成为0.02。
设计条件:1、处理量: 30000 (吨/年)。
2、进料组成:甲苯、乙苯的混合溶液,含甲苯的质量分数为30%。
3、进料状态:泡点进料4、料液初温: 35℃5、冷却水的温度: 25℃6、饱和蒸汽压强:5Kgf/cm2(1Kgf/cm2=98.066)KPa7、精馏塔塔顶压强: 4 KPa(表压)8、单板压降不大于 0.7 kPa9、总塔效率为 0.5210、分离要求:塔顶的甲苯含量不小于92%(质量分数),塔底的甲苯含量不大于2%(质量分数)。
11、设备热损失为加热蒸汽供热量的5%12、年开工时间: 300(天)13、完成日期: 2011 年 12 月 25 日14、厂址:湖北荆门地区(大气压为760mmHg)一、精馏塔的物料衡算(1)原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量 MA=78.11kg/kmol 甲苯的摩尔质量 MB=92.13 kg/kmol x F =13.92/55.011.78/45.011.78/45.0+= 0.491x D =13.92/08.011.78/92.011.78/92.0+= 0.931x w =13.92/98.011.78/02.011.78/02.0+=0.024(2)原料液及塔顶、塔底产品的平均摩尔质量 M F =0.491*78.11+(1-0.491)*92.13=85.24 kg/kmol M D =0.931*78.11+(1-0.931)*92.13=79.08 kg/kmolM W =0.024*78.11+(1-0.024)*92.13=91.80 kg/kmol(3)物料衡算原料处理量 F=3*10^7/(300*24)/85.24=48.88kmol/h 总物料衡算 F=D+W苯物料衡算 48.88*0.491=0.931*D+0.024*W D=25.17kmol/hW=23.71kmol/h二、塔板数的确定(1)理论板层数NT 的求取苯-甲苯物系在某些温度下的α值取α=2.48①二元物系的相平衡方程: y=x*48.11x*48.2+②求最小回流比及操作回流比采用作图法求最小回流比。
化工原理课程设计题目:姓名:班级:学号:指导老师:设计时间:序言化工原理课程设计是综合运用化工原理课程和有关先修课程物理化学,化工制图等所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用;通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等;精馏是分离液体混合物含可液化的气体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用;精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离;根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离;本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离;目录一、化工原理课程设计任书 (3)二、设计计算 (3)1.设计方案的确定 (3)2.精馏塔的物料衡算 (3)3.塔板数的确定 (4)4.精馏塔的工艺条件及有关物性数据的计算 (8)5.精馏塔的塔体工艺尺寸计算 (10)6.塔板主要工艺尺寸的计算 (11)7.筛板的流体力学验算 (13)8.塔板负荷性能图 (15)9.接管尺寸确定 (30)二、个人总结 (32)三、参考书目 (33)一化工原理课程设计任务书板式精馏塔设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 7万吨/年进料组成: 37%苯,苯-甲苯常温混合溶液质量分率,下同分离要求:塔顶产品组成苯≥95%塔底产品组成苯≤6%2、操作条件平均操作压力: kPa平均操作温度:94℃回流比:自选单板压降: <= kPa工时:年开工时数7200小时化工原理课程设计三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程;对选定的工艺流程,主要设备的形式进行简要的论述;2、主要设备工艺尺寸设计计算1收集基础数据2工艺流程的选择3做全塔的物料衡算4确定操作条件5确定回流比6理论板数与实际板数7确定冷凝器与再沸器的热负荷8初估冷凝器与再沸器的传热面积9塔径计算及板间距确定10堰及降液管的设计11塔板布置及筛板塔的主要结构参数12塔的水力学计算13塔板的负荷性能图14塔盘结构15塔高16精馏塔接管尺寸计算3、典型辅助设备选型与计算略包括典型辅助设备换热器及流体输送机械的主要工艺尺寸计算和设备型号规格的选定;4、设计结果汇总5、工艺流程图及精馏塔工艺条件图6、设计评述四、参考资料化工原理课程设计天津大学化工原理教研室,柴诚敬刘国维李阿娜编;化工原理第三版化学工业出版社,谭天恩窦梅周明华等编;化工容器及设备简明设计手册化学工业出版社,贺匡国编;化学工程手册上卷化学工业出版社,化工部第六设计院编;常用化工单元设备的设计华东理工出版社;二、设计计算1.设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物;由于对物料没有特殊的要求,可以在常压下操作;对于二元混合物的分离,应采用连续精馏流程;设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内;塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐;该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍;塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐;其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量;塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列;筛板塔也是传质过程常用的塔设备,它的主要优点有:1结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右; 2处理能力大,比同塔径的泡罩塔可增加10~15%;3塔板效率高,比泡罩塔高15%左右;4压降较低,每板压力比泡罩塔约低30%左右;筛板塔的缺点是:1塔板安装的水平度要求较高,否则气液接触不匀;2操作弹性较小约2~3;3小孔筛板容易堵塞;下图是板式塔的简略图表1 苯和甲苯的物理性质项目分子式分子量M 沸点℃临界温度t C℃临界压强P C kPa苯A 甲苯BC6H6C6H5—CH3表2 苯和甲苯的饱和蒸汽压温度C085 90 95 100 105 0AP,kPaBP,kPa表3 常温下苯—甲苯气液平衡数据2:8P例1—1附表2 温度C085 90 95 100 105 液相中苯的摩尔分率汽相中苯的摩尔分率表4 纯组分的表面张力1:378P附录图7温度80 90 100 110 120 苯,mN/m甲苯,Mn/m20表5 组分的液相密度1:382P附录图8温度℃80 90 100 110 120 苯,kg/3m814 805 791 778 763甲苯,kg/3m809 801 791 780 768表6 液体粘度μL 1:365P温度℃80 90 100 110 120 苯a甲苯a表7常压下苯——甲苯的气液平衡数据温度t ℃液相中苯的摩尔分率x气相中苯的摩尔分率y2 精馏塔的物料衡算1 原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量甲苯的摩尔质量0.37/78.110.4090.37/78.110.63/92.13Fx==+2原料液及塔顶、塔底产品的平均摩尔质量0.40978.110.59192.1386.39F M kg kmol =⨯+⨯=3物料衡算原料处理量70000000121.5486.39*7200F kmol h ==总物料衡算 =D +W 苯物料衡算 ×=+ W 联立解得 D = kmol /h W= kmol /h式中 F------原料液流量 D------塔顶产品量 W------塔底产品量3 塔板数的确定1理论板层数N T 的求取苯一甲苯属理想物系,可采用图解法求理论板层数;①由手册查得苯一甲苯物系的气液平衡数据,绘出x ~y 图,见下图 ②求最小回流比及操作回流比;采用作图法求最小回流比;在上图中对角线上,自点e,作垂线ef 即为进料线q 线,该线与平衡线的交点坐标为q y = , q x =故最小回流比为min 0.9570.5671.460.5670.346q q D qx y R y x --===--取操作回流比为min 2 2.92R R ==③求精馏塔的气、液相负荷 2.9242.99125.53L R D =⨯=⨯=kmol h'(1)(1)(2.921)42.99168.52/V R D q F kmol h =+--=+⨯= 泡点进料:q=1④求操作线方程 精馏段操作线方程为 提馏段操作线方程为 2逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α= 相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+1D y x = = 1111111(1) 2.475(1)y y x y y y y ==+α-+-=320.7450.24420.850y x =+= 3333(1)y x y y ==+2.475-因为6x <f x 精馏段理论板 n=5555''5''0.042(1)y x y y ==+2.475-<w x 所以提留段理论板 n=4全塔效率的计算查表得各组分黏度1μ=,2μ= 捷算法求理论板数min 11/ln {ln[()()]}19.89818.8981W D m D Wx xN x x α-=-=-=-由公式 0.5458270.5914220.002743/Y X X =-+ 代入 Y= 由min0.3165,102N N N N -==+ 精馏段实际板层数5/=≈,提馏段实际板层数4/=≈8进料板在第11块板4 精馏塔的工艺条件及有关物性数据的计算1操作压力计算塔顶操作压力D P = kPa 塔底操作压力w P = kPa 每层塔板压降 △P = kPa 进料板压力F P =+×10=精馏段平均压力 P m =+/2= kPa 提馏段平均压力P m =+/2 = kPa 2操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由 安托尼方程计算,计算过程略;计算结果如下: 塔顶温度w t =℃进料板温度F t =℃ 塔底温度w t =℃精馏段平均温度m t = +/2 = ℃提馏段平均温度m t =+/2 =℃ 3平均摩尔质量计算 塔顶平均摩尔质量计算 由x D=y 1=,代入相平衡方程得x 1=,0.90178.11(10.901)92.1379.50L Dm M kg kmol=⨯+-⨯=,0.95778.11(10.957)92.1378.71V Dm M kg kmol =⨯+-⨯=进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =,,0.63278.11(10.368)92.1383.27V F m M kg kmol=⨯+-⨯=,0.40978.11(10.409)92.1390.08L Fm M kg kmol =⨯+-⨯=塔底平均摩尔质量计算 由xw=,由相平衡方程,得yw=,0.07078.11(10.070)92.1390.59L wm M kg kmol =⨯+-⨯=精馏段平均摩尔质量,78.7183.2780.992V m M kg kmol kg kmol +==提馏段平均摩尔质量 4平均密度计算①气相平均密度计算 由理想气体状态方程计算,精馏段的平均气相密度即,3,97.780.972.638.314(273.1588.45)m v m v m mP M kg m RT ρ⨯===⨯+提馏段的平均气相密度 ②液相平均密度计算 液相平均密度依下式计算,即塔顶液相平均密度的计算 由t D =℃,查手册得33812.7,806.7A B kg m kg m ρρ==塔顶液相的质量分率 0.95778.110.8850.95778.1192.130.043A α⨯==⨯+⨯,,10.885812.70.115807.6,813.01L Dm L Dm kg kmol ρρ=+=进料板液相平均密度的计算 由tF =,查手册得33799.1,796.0A B kg m kg m ρρ==进料板液相的质量分率0.40978.110.370.40978.1192.130.591A α⨯==⨯+⨯塔底液相平均密度的计算 由t w =℃,查手册得33786.13,785.2A B kg m kg m ρρ==塔底液相的质量分率 0.0778.110.060.0778.1192.130.93A α⨯==⨯+⨯,,10.06/786.130.94/785.2,783.4L wm L wm kg kmol ρρ=+=精馏段液相平均密度为,813.01781.25797.132L m kg kmol ρ+==提馏段液相平均密度为',781.25785.54783.42L m kg kmol ρ+==5 液体平均表面张力计算液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算 由 tD =℃,查手册得 σA=m σB= mN/m σLDm=×+×= mN/m进料板液相平均表面张力的计算 由t F =℃,查手册得 σA= m N/m σB= m N/m σLFm=×+×= mN/m塔底液相平均表面张力的计算由 tD=℃,查手册得σA= mN/m σB= mN/mσLwm=×+×=m精馏段液相平均表面张力为σLm=+/2= mN/m提馏段液相平均表面张力为σ‘Lm=+/2= mN/m6 液体平均粘度计算液相平均粘度依下式计算,即lgμLm=Σxi lgμi塔顶液相平均粘度的计算由tD=℃,查手册得μA= mPa·s μB= mPa·slgμLDm=×lg+ ×lg解出μLDm= mPa·s进料板液相平均粘度的计算由tF=℃,查手册得μA= mPa·s μB= mPa·slg μLFm=×lg+ ×lg解出μLFm= mPa·s塔底液相平均粘度的计算由tw=℃,查手册得μA= mPa·s μB= mPa·slgμLwm=×lg+ ×lg解出μLwm= mPa·s精馏段液相平均粘度为μLm=+/2= mPa·s提馏段液相平均粘度为μ‘Lm=+/2= mPa·s7 气液负荷计算精馏段:提馏段:5 精馏塔的塔体工艺尺寸计算 1 塔径的计算塔板间距H T的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关;可参照下表所示经验关系选取;表7 板间距与塔径关系塔径D T,m ~~~~~板间距200~300 250~350 300~450 350~600 400~600H T ,mm对精馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;11220.0037797.130.04231.606 2.36S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查教材P131图 得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为20.42/mN m 时2020.980.0720.07132020C C σ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,max 0.80.8 1.2390.991/m s μμ==⨯=故 1.44D m ===按标准,塔径圆整为,则空塔气速s; 对提馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;11220.0075783.40.0901.37 2.90S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查2:165P 图3—8得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为19.58/mN m 时0.22019.580.1060.1032020C C σ⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,'max 0.80.8 1.69 1.35/m s μμ==⨯=故 1.02D m ===按标准,塔径圆整为,则空塔气速s;将精馏段和提溜段相比较可以知道二者的塔径不一致,根据塔径的选择规定,对于相差不大的二塔径取二者中较大的,因此在设计塔的时候塔径取6 塔板主要工艺尺寸的计算1 溢流装置计算因塔径D =,可选用单溢流弓形降液管,采用平行受液盘;对精馏段各项计算如下:a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.66W l D =, 2.5 2.536000.0037/13.3531.056h W L l m ⨯==查2:169P 图3—11,知E=,依式232.841000h ow w L h E l ⎛⎫= ⎪⎝⎭可得22332.84 2.8413.3531.0420.01710001000 1.056h OW W L h E m l ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭ 故0.060.0170.043w h m =-=c 降液管的宽度d W 与降液管的面积f A :由66.0/=D l w 查2:170P 图3—13得124.0/=D W d ,0722.0/=T f A A 故0.1240.124 1.60.198d W D m ==⨯=,2223.140.07220.0722 1.60.145244f A D m π=⨯=⨯⨯= 利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即0.14520.4015.700.0037f T sA H s L τ⨯===大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ= 依2:171P 式3—11:'0.00370.0351.060.09s o w o L h m l μ===⨯⨯符合00.006w h h =- e 受液盘采用平行形受液盘,不设进堰口,深度为60mm 同理可以算出提溜段a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.8W l D = 2.5/23.34h W L l m =查2:169P 图3—11,知E=,依式232.841000h ow w L h E l ⎛⎫= ⎪⎝⎭可得232.840.0261000h OW W L h E m l ⎛⎫== ⎪⎝⎭故0.060.0260.034w h m =-=c 降液管的宽度d W 与降液管的面积f A :由/0.8w l D =查2:170P 图3—13得/0.124d W D =,/0.0722f T A A = 故0.1240.20d W D m ==, 220.07220.1454f A D m π=⨯=利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即11.6f T sA H s L τ==大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ= 依2:171P 式3—11:'0.032so w oL h m l μ==⨯符合00.006w h h =- 2 塔板布置精馏段①塔板的分块因D ≥800mm,故塔板采用分块式;查表3-7得,塔极分为4块;对精馏段:a 取边缘区宽度W c =30~50mm,安定区宽度0.075s W m =,当D 〈时,W s =60~75mm 〉b 依2:173P 式3—18:⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 1.60.050.7522C D R W m =-=-=,()()1.60.1850.0750.5422d s D x W W =-+=-+= c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距mm t 0.1550.3=⨯= 筛孔数3322115810115810 1.467755115.0a n A t ⨯⨯=⨯=⨯=个,则0200.907%%10.08%()a A t A d φ===在5—15范围内 则每层板上的开孔面积0A 为00.1008 1.4670.148a A A φ=⋅=⨯= 气体通过筛孔的气速为0 1.60610.85/0.148S o V m s A μ=== 提馏段:a 取边缘区宽度W c =30~50mm,安定区宽度0.075s W m =,当D 〈时,W s =60~75mm 〉b 依2:173P 式3—18:⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 0.752C DR W m =-=, ()0.5252d s D x W W =-+= c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距mm t 0.1550.3=⨯=筛孔数321158105729a n A t⨯=⨯=个, 则0200.907%%10.08%()a A t A d φ===在5—15范围内 则每层板上的开孔面积0A 为'00.1124a A A φ=⋅= 气体通过筛孔的气速为012.189/So V m s A μ== 7 筛板的流体力学验算塔板的流体力学计算,目的在于验算预选的塔板参数是否能维持塔的正常操作,以便决定对有关塔板参数进行必要的调整,最后还要作出塔板负荷性能图;1 气体通过筛板压强相当的液柱高度计算精馏段:a 干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式220011.15 2.630.0510.0510.0330.78797.13V c L h m C μρρ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭b 气体穿过板上液层压降相当的液柱高度l h :1.6060.86/2.010.145S a T f V m s A A μ===--,0.86 1.395a F u === 由o ε与a F 关联图查得板上液层充气系数o ε=,依式0.610.060.037l o L h h m ε==⨯=c 克服液体表面张力压降相当的液柱高度σh : 依式304420.42100.002797.139.810.005L h mgd σσρ-⨯⨯===⨯⨯,故0.0340.0370.0020.073p h m =++=则单板压强:0.073797.139.81571.50.9P p L P h g Pa kPa ρ∆==⨯⨯=<2 液面落差 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 雾沫夹带3.23.26635.710 5.7100.860.022/0.1/20.46100.40 2.50.06av Tf e kg kg kg kgH h μσ---⎛⎫⨯⨯⎛⎫===< ⎪ ⎪ ⎪-⨯-⨯⎝⎭⎝⎭故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()V L L ow h h C ρρμσ/13.00056.04.40-+= 筛板的稳定性系数012.1891.777 1.56.38OW K μμ===>,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ 依式dl p d h h h H ++=, 而2200.00370.153()0.153()0.0011.0560.0415s d w l h l h =⨯=⨯=⋅⨯ H d =++=取5.0=φ,则()()0.50.400.04330.223T w H h m ϕ+=+= 故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的;提溜段:a 干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式2000.0510.046V c L h m C μρρ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭b 气体穿过板上液层压降相当的液柱高度l h :0.735/Sa T fV m s A A μ==-, 1.252a F u == 由o ε与a F 关联图查得板上液层充气系数o ε=,依式0.039l o L h h m ε== c 克服液体表面张力压降相当的液柱高度σh : 依式040.002L h m gd σσρ==, 故0.052p h m = 则单板压强:399.60.9P p L P h g Pa kPa ρ∆==<2 液面落差 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 液沫夹带3.265.7100.0092/0.1/av Tf e kg kg kg kg Hh μσ-⎛⎫⨯==< ⎪ ⎪-⎝⎭故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()V L L ow h h C ρρμσ/13.00056.04.40-+= 筛板的稳定性系数01.99 1.5OWK μμ==>,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ 依式d l p d h h h H ++=, 而20.153()0.0075s d w l h l h =⨯=⋅ H d =取5.0=φ,则()0.217T w H h m ϕ+=故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的;8 塔板负荷性能图 精馏段: 1 漏液线由,得2/32/32.840.00560.130.00211000797.134.40.780.00560.130.04330.6720.002)2.63w w c L V w S L h E h l L ρ⎛⎫⎡⎤⎛⎫ ⎪⎢⎥++⨯⨯-- ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎡⎤=⨯++-⎣⎦2/3,min 0.416 6.467SVo L =+在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19; 表3-19L s /m 3/sV s /m 3/s由上表数据即可作出漏液线; 2 雾沫夹带线以 ev =液/kg 气为限,求 Vs-Ls 关系如下:由2/32/336002.841 1.6531000 1.056s w s L h L ⎛⎫=⨯⨯= ⎪⎝⎭2/332/336002.5 2.8410 1.0560.1110.676s f w s L h h E L -⎡⎤⎛⎫=+⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+ 0.5362.010.145s sa s t f V V u V A A ===--联立以上几式,整理得2/32.978 6.963s s V L =-在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表3-20L s /m 3/sV s /m 3/s由上表数据即可作出液沫夹带线2;3 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;由式3-21得2/3,min 33,min 3600 2.84, 1.035101000s w s w L h E L m s l -⎛⎫==⨯ ⎪⎝⎭据此可作出与气体流量无关的垂直液相负荷下限线3; 4 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限3,max 40.40.470.01464f T SS A H L L m s θ==⨯==据此可作出与气体流量元关的垂直液相负荷上限线; 5 液泛线 令由联立得忽略h σ,将h OW 与L s,h d 与L s,h c 与V s 的关系式代人上式,并整理得式中:2/332/336002.84100.6722.04S owS L h L -⎛⎫=⨯⨯= ⎪⎝⎭将有关的数据代入整理,得222/311.4146815.11380.751S s s V L L =--在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-22; 表3-22L s /m 3/sV s /m 3/s由上表数据即可作出液泛线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;图3-23 精馏段筛板负荷性能图在负荷性能图上,作出操作点P,连接OP,即作出操作线;由图可看出,该筛板的操作上限为液泛控制,下限为漏液控制;由上图查得V s,max= m 3/s V s,min= m 3/s故操作弹性为 V s,max / V s,min=所设计筛板的主要结果汇总于表3-23; 提馏段 1 漏液线由,得2/3,min 0.1067 2.209SVo L =+在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19; 表3-19L s /m 3/sV s /m 3/s由上表数据即可作出漏液线; 2 液沫夹带线以 ev =液/kg 气为限,求 Vs-Ls 关系如下:由2/31.95618.593s s V L =-在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表3-20L s /m 3/sV s /m 3/s1.66由上表数据即可作出液沫夹带线2; 3 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;由式3-21得2/3,min 43,min 36002.84,9.0101000s w s w L h E L m s l -⎛⎫==⨯ ⎪⎝⎭据此可作出与气体流量无关的垂直液相负荷下限线3; 4 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限3,max 40.0145f T SS A H L L m sθ===据此可作出与气体流量元关的垂直液相负荷上限线; 5 液泛线 令由联立得忽略h σ,将h OW 与L s,h d 与L s,h c 与V s 的关系式代人上式,并整理得将有关的数据代入整理,得222/36.365319.242.36S s s V L L =--在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-22; 表3-22L s /m 3/s由上表数据即可作出液泛线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;所设计筛板的主要结果汇总于表;设计结果一览表项目符号单位计算数据精馏段提留段各段平均压强P m kPa 各段平均温度t m℃平均流量气相V S m3/s 液相L S m3/s实际塔板数N 块10 8板间距H T m塔的有效高度Z m塔径 D m空塔气速u m/s塔板液流形式单流型单流型溢流管型式弓形弓形堰长l w m堰高h w m溢流堰宽度W d m管底与受业盘距离h o m板上清液层高度h L m孔径d o mm孔间距t mm孔数n 个7551 5729 开孔面积m2筛孔气速u o m/s塔板压降h P kPa液体在降液管中停留时间τs降液管内清液层高度H d m 雾沫夹带 e Vkg 液/kg 气 负荷上限 雾沫夹带控制雾沫夹带控制负荷下限漏液控制 漏液控制气相最大负荷 V S ·max m 3/s 气相最小负荷 V S ·minm 3/s操作弹性9. 各接管尺寸的确定 1 进料管进料体积流量33112.5486.3912.44/0.0035/781.25fSf fFM V m h m s ρ⨯====取适宜的输送速度 2.0/f u m s =,故经圆整选取热轧无缝钢管YB231-64,规格:573mm φ⨯实际管内流速:240.00351.7/0.051f u m s π⨯==⨯2 釜残液出料管釜残液的体积流量:取适宜的输送速度 1.5/W u m s =,则经圆整选取热轧无缝钢管YB231-64,规格:503mm φ⨯ 实际管内流速:240.00221.45/0.044W u m s π⨯==⨯ 3 回流液管回流液体积流量利用液体的重力进行回流,取适宜的回流速度0.5/L u m s =,那么 经圆整选取热轧无缝钢管YB231-64,规格:1086mm φ⨯ 实际管内流速:240.00341.88/0.096W u m s π⨯==⨯ 4 塔顶上升蒸汽管塔顶上升蒸汽的体积流量: 取适宜速度20/V u m s =,那么经圆整选取热轧无缝钢管YB231-64,规格:32510mm φ⨯ 实际管内流速:24 1.2717.4/0.305SV u m s π⨯==⨯ 5 再沸气产生的蒸汽进口管通入塔的水蒸气体积流量: 取适宜速度020/u m s =,那么经圆整选取热轧无缝钢管YB231-64,规格:32010mm φ⨯ 实际管内流速:024 1.10325.43/0.235u m s π⨯==⨯ 二、个人总结课程设计是化工原理课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练;在整个教学计划中,它也起着培养学生独立工作能力的重要作用;课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计;所以,课程设计是培养学生独立工作能力的有益实践;通过课程设计,学生应该注重以下几个能力的训练和培养:1. 查阅资料,选用公式和搜集数据包括从已发表的文献中和从生产现场中搜集的能力;2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;3. 迅速准确的进行工程计算的能力;整个设计是由论述、计算和绘图三部分组成;论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所用数据必须注明出处;图表应能简要表达计算的结果;设计后期的答辩,及时了解学生设计能力的补充过程,也是提高设计水平,交流心得和扩大收获的重要过程;答辩通常包括个别答辩和公开答辩两种形式;个别答辩的目的不仅是对学生进行全面考核,更主要的是促进学生开动脑筋,提高设计水平;所以,在个别答辩后,应允许学生修改补充自己的图纸和说明书;公开答辩是在个别答辩的基础上,选出几个有代表性的学生在全班公开答辩,实际上是以他们的中心发言来引导全班性的讨论,目的是交流心得、探讨问题和扩大收获;三、参考书目⑴匡国柱,史启才主编化工单元过程及设备课程教材,化学工业出版社,⑵天津大学华工学院柴诚敬主编化工原理下册,高等教育出版社,⑶大连理工大学主编化工原理下册,高等教育出版社,⑷谭天恩,李伟等编着过程工程原理,化学工业出版社,⑸大连理工大学化工原理教研室主编化工原理课程设计;⑹汤金石等着化工原理课程设计,化学工业出版社,⑺化学工业物性数据手册,有机卷。
化工原理课程设计苯与甲苯精馏塔苯与甲苯精馏塔是化工原理课程设计中常见的研究对象之一。
精馏是一种常用的分离技术,通过利用物质的不同挥发性,将混合物中的组分分离出来。
在苯与甲苯精馏塔的设计中,需要考虑到不同物质的挥发性、沸点以及相互作用力等因素。
本文将从苯与甲苯的性质、精馏原理、塔板设计以及操作参数等方面进行探讨。
我们来了解一下苯和甲苯的基本性质。
苯是一种无色液体,具有特殊的芳香气味,可以溶于大多数有机溶剂,不溶于水。
甲苯是一种无色透明的液体,有芳香气味,可以溶于大多数有机溶剂,与水微溶。
苯和甲苯在温度和压力下都可以发生挥发,而且甲苯的沸点要高于苯。
精馏是利用不同组分的挥发性差异,通过加热混合物使其部分蒸发,然后再将蒸汽冷凝回液体,从而实现组分的分离。
在苯与甲苯的精馏过程中,苯和甲苯会根据其不同的挥发性分别在塔中的不同高度达到平衡。
较容易挥发的组分会向上升到较高的位置,而较不容易挥发的组分则会下降到较低的位置。
通过在塔中设置塔板,可以增加接触面积,提高分离效果。
塔板是精馏塔中的重要组成部分,其设计需要考虑到传质效果和传热效果。
塔板上的孔洞可以增加气液接触面积,使得组分之间更容易进行传质。
此外,还需要考虑到塔板上的液相和气相的分布均匀性,以及塔板的密度和孔洞的尺寸等参数。
通过合理的塔板设计,可以提高精馏塔的分离效率。
在苯与甲苯精馏塔的操作中,还需要考虑到一些重要的参数。
例如,塔顶温度、塔底温度、进料流量、回流比等都会对精馏效果产生影响。
塔顶温度和塔底温度可以通过调节塔顶和塔底的回流比来控制,进料流量则可以通过调节进料阀门的开度来控制。
合理选择这些操作参数,可以提高精馏塔的分离效率。
苯与甲苯精馏塔的设计需要考虑到苯和甲苯的挥发性差异、沸点差异以及塔板的设计和操作参数的选择等因素。
通过合理的设计和操作,可以实现苯和甲苯的有效分离。
精馏技术在化工领域中具有广泛的应用,不仅可以用于分离有机物,还可以用于提纯化学品、回收溶剂等。
化工原理课程设计任务书1.设计题目 : 苯——甲苯二元物系板式精馏塔的设计2.设计条件 :常 压: 1p atm (绝压) 处理 量: 100kmol/h 进料组成: F x =0.45 馏出液组成:D x =0.98釜液组成: W x =0.035 (以上均为摩尔分率) 塔顶全凝器 泡点回流回流比: R =(1.1-2.0)R min 加料状态: q =0.96 单板压降: ≤0.7kpa 3.设 计 任 务 :1.完成该精馏塔的工艺设计(包括物料衡算、热量衡算、筛板塔的设计计算).2.绘制带控制点的工艺流程图、塔板负荷性能图、精馏塔工艺条件图、精馏塔设备条件图. 3.撰写精馏塔的设计说明书(包括设计结果汇总).课程设计是化工原理课程的一个非常重要的实践教学内容。
不仅能够培养学生运用所学的化工生产的理论知识,解决生产中实际问题的能力,还能够培养学生的工程意识。
健全合理的知识结构可发挥应有的作用。
此次化工原理设计是精馏塔的设计。
精馏塔是化工生产中十分重要的设备。
精馏塔内装有提供气液两相逐级接触的塔板,利用混合物当中各组分挥发度的不同将混合物进行分离。
在精馏塔中,塔釜产生的蒸汽沿塔板之间上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔内实现多次接触,进行传质传热过程,轻组分上升,重组分下降,使混合物达到一定程度的分离。
精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。
本设计我们使用筛板塔。
其突出优点为结构简单,造价低板上液面落差小,气体压强低,生产能力较大,气体分散均匀,传质效率较高。
筛板塔是最早应于手工业生产的设备之一。
合理的设计和适当的操作筛板塔能够满足要求的操作弹性而且效率高。
采用筛板塔可解决堵塞问题适当控制漏夜实际操作表明,筛板在一定程度的漏液状态下,操作是板效率明显降低,其操作的负荷范围较泡罩塔窄,但设计良好的筛板塔其操作弹性仍可达到标准。
化工原理课程设计苯与甲苯精馏塔1.引言苯和甲苯是广泛应用于化工工业的有机化合物。
苯用于生产塑料、橡胶、染料、医药等领域,甲苯则用于生产苯酚、甲醇、马来酸酯等有机化合物。
为了从苯和甲苯的混合物中获得高纯度的目标物质,需要进行精馏过程。
本次课程设计将设计苯与甲苯的精馏塔。
2.设计目标本次设计的目标是设计一个能够将苯和甲苯混合物中的甲苯分离出来,获得高纯度的甲苯产品的精馏塔。
设计要求如下:(1)产物中甲苯的纯度大于99%;(2)若需要,可考虑对废气回收的技术。
3.设计步骤(1)确定温度、压力和流量条件:根据实际情况,确定苯与甲苯的蒸馏温度和压力范围,以及流量要求。
(2) 确定理论塔板数:根据精馏物质的性质,使用McCabe-Thiele图来确定理论塔板数。
假设有N个塔板,输入混合物的进料温度T1,塔底温度T2,塔顶温度T3、若有Q个馏出物从塔顶进入回流相,那么Q个馏出物中,有αQ个进入塔顶,(1-α)Q个进入回流液,并且最终得到的进料液中含有αQ个甲苯。
通过计算可得到,苯与甲苯的含量变化和温度分布情况,进而确定塔板数。
(3)安装塔床和设备:根据设计要求,选择合适的填料和塔板,进行塔床的安装。
确定合适的进料方式和回流液的流量。
(4)进行操作条件和算例计算:根据输入的温度、压力和流量条件,进行操作条件的预测。
利用模拟软件或手工计算,进行塔板上的组分计算和流量平衡计算,以确定最佳操作条件。
(5)安全措施:在设计过程中,需要考虑安全措施,包括防爆、监测和报警系统的设置。
4.结果与讨论通过精心的设计和计算,得到了一个满足要求的苯与甲苯精馏塔。
该塔能够将苯和甲苯的混合物中的甲苯分离出来,并获得高纯度的甲苯产品。
在设计过程中,需要考虑到流量、温度和压力等因素对操作效果的影响,以确保塔的性能和安全运行。
5.结论本次设计实现了苯与甲苯精馏塔的设计,满足了高纯度甲苯产品的要求。
通过合理的操作条件和安全措施,确保了塔的性能和安全运行。
【设计计算】1.塔物料衡算(1)苯的摩尔质量:kmol kg M A /78=甲苯的摩尔质量:kmol kg M B /92=998.092/2.078/8.9978/8.99=+=D x012.092/9978/178/1=+=W x(2)原料液及塔顶、塔底产品的平均摩尔质量:M F =0.44×78+(1-0.44)×92=85.8kg/kmolM D =0.998×78+(1-0.998)×92=78.028kg/kmolM W =0.012×78+(1-0.0.12)×92=91.83kg/kmol(3)物料衡算 原料液的处理量h kg /44.69442430050000000=⨯= F h kmol /94.808.8544.6944==总物料衡算h kmol W D F /94.80=+=苯物料衡算80.94×0.44=0.998D+0.012W联立得h kmol D /13.35= h kmol W /81.45=2.塔板数的确定(1)挥发度的确定苯的沸点为80.1 甲苯的沸点为110.6当温度为80.1℃时: ㏒A P °=6.023006.224.2201.8035.1206=+-㏒B P °=6.078593.158.2191.8094.1343=+-解得P A °=101.39kPa P B °=39.17kPa当温度为110.6℃时:㏒A P °=6.023-337.224.2201.803.1206=+㏒B P °=6.078008.258.2196.11094.1343=+-44.092/6078/4078/40=+=F x解得A P °kPa 23.138= B P °kPa 86.101=则有=1a 588.217.39/39.101= 339.286.101/23.2382==a46.2339.2588.221=⨯==a a a(2)回流比R 的求取由于是饱和液体进料得q=1,q 线为一直线,故x q =x F =0.44659.044.046.1144.046.2)1(1=⨯+⨯=-+=q q q x a ax y 最小回流比为55.144.0659.0659.0998.0min =--=--=qq q D x y y x R取回流比为最小回流比的2倍 即1.355.12min =⨯==R R 操作线方程的确定 L=RD=3.1×35.13=108.9kmol/hV=(1+R)D=144.03kmol/hL ’=qF L + =108.90+80.94=189.94kmol/h V=V ’=144.03kmol/h 即精馏段操作线方程243.0756.01.4998.01.41.3111+=+=+++=+n Dn n x R x x R Ry提馏段操作线方程0038.0318.1012.003.14481.4503.14484.1891-=⨯-='-''=+m m Wm m x x V Wx x V L y 气液相平衡公式x a axy )1(1-+=则=x y y46.146.2-精馏段理论塔板数的确定D x y =1 0.998 =1x 0.995=2y 0.995 =2x =0.988=3y 0.990 =3x =0.976=4y 0.981 =4x 0.955=5y 0.965 =5x 0.918=6y 0.937 =6x 0.858=7y 0.892 =7x 0.771=8y 0.826 =8x 0.659=9y 0.741 =9x 0.538=10y 0.650 =10x 0.43<0.44提馏段理论塔板数的确定=11y 0.563 =11x 0.344=12y 0.449 =12x 0.249=13y 0.324 =13x 0.163=14y 0.212 =14x 0.099=15y 0.127 =15x 0.056=16y 0.07 =16x 0.03036.017=y 015.017=x=18y 0.016 =18x 0.007<0.012理论板(不包括再沸器)=18实际精馏段板数 N 精=1852.09==T E N实际提馏段板数N 提=1452.07==T E N实际板数=18+14=32 进料位置为第十块板(3)精馏塔的工艺条件及有关物性的计算1)精馏段塔顶操作压力: kPa 3.10543.1010=+=+=表P P P D每层塔板压降: kPa 7.0=∆P进料板操作压力: kPa 9.117187.03.105=⨯+=F P精馏段平均压力: kPaP P P F D m 6.1112/)9.1173.105(2/)(=+=+=塔底压力: kPa P w 7.127327.03.105=⨯+=塔底平均压力: kPa P m 5.1162/)7.1273.105(=+='2)操作温度的计算:塔顶由查手册经内插法可得:塔顶温度 24.80=D t ℃ 进料温度 09.94=f t ℃ 塔底温度 9.109=W t ℃精馏段平均温度:17.872/)09.9424.80(=+=m t ℃提馏段平均温度:1022/)9.10909.94(=+='m t ℃3)平均摩尔质量的计算塔顶:998.01==y x D x 1=0.995kmol kg M VDM /03.7892)998.01(78998.0=⨯-+⨯=kmol kg M LDM /07.7892)995.01(78995.0=⨯-+⨯=进料板:Y f =0.65 X f =0.43kmol kg M VFM /09.8292650.01(7865.0=⨯-+⨯=kmol kg M LFM /98.8592)43.01(7843.0=⨯-+⨯=精馏段: kmol kg M VM /47.802/)9.8203.78(=+=kmol kg M LM /03.822/)98.8507.78(=+=塔底: kmol kg M VWM /78.9192)016.01(78016.0=⨯-+⨯=kmol kg M LWM /90.9192)007.01(78007.0=⨯-+⨯=提馏段: kmol kg M VM /34.872/)78.919.82(=+='kmol kg M LM /88.882/)78.9198.85(=+='4)平均密度的计算精馏段:(1)气相平均密度Vm ρ计算理想气体状态方程计算,即 精馏段气相密度:311/998.2)15.27317.87(314.847.806.111m kg RT M P ml vm M VM =+⨯⨯=⨯=ρ 提馏段气相密度度;32222/262..3)15.27305.102(314.834.875.116m kg RT M P m vm m vm =+⨯⨯=⨯=ρ(2)液相平均密度Lm ρ计算由式 1A B i Lm i LA LBαααρρρρ==+∑ 求相应的液相密度。
化工原理苯和甲苯的分离项目设计方案第1章绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
1.1概述高径比很大的设备称为塔器。
塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备,更是成为化工、炼油生产中最重要的设备之一。
常见的可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。
而工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。
此外,还要求不易堵塞、耐腐蚀等。
根据塔气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
它们都可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。
而板式塔又大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。
工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。
根据设计任务书,此设计的塔型为筛板塔。
筛板塔是很早出现的一种板式塔。
五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。
与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。
从而一反长期的冷落状况,获得了广泛应用。
近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。
筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分。
工业塔常用的筛孔孔径为3-8mm,按正三角形排列。
空间距与孔径的比为2.5-5。
近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,便。
只是漏液点低,操作弹性小。
筛板塔的特点如下:(1)结构简单、制造维修方便(2)生产能力大,比浮阀塔还高。
(3)塔板压力降较低,适宜于真空蒸馏。
(4)塔板效率较高,但比浮阀塔稍低。
(5)合理设计的筛板塔可是具有较高的操作弹性,仅稍低与泡罩塔。
(6)小孔径筛板易堵塞,故不宜处理脏的、粘性大的和带有固体粒子的料液。
1.2设计依据1设计题目:分离苯-甲苯精馏塔设计2设计任务及操作条件(1)设计任务生产能力(进料量):20000吨/年操作周期:300*24=7200小时/年进料组成:>45%(质量分率,下同)塔顶产品组成:>98%塔底产品组成:<2%(2)操作条件操作压力:常压进料热状态:泡点进料冷却水:20℃加热蒸汽:0.2MPa塔顶为全凝器,中间泡点进料,连续精馏。
设备型式:筛板式3设计原则本设计任务为分离苯-甲苯混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用气液混合物进料,将原料液通过预热器加热至温度后送入精馏塔。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔,其余部分作为塔顶产品冷却后送至储罐。
该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
1.3 厂址选择市富拉尔基区第2章设计方案的选择与论证设计方案的确定是指整个精馏装置的流程、各种设备的结构型式和某些操作指标的确定。
例如组分的分离顺序、塔设备的型式、操作压力、进料热状态、塔顶蒸汽的冷凝方式等。
确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。
苯和甲苯混合液经原料预热器加热至泡点后送入精馏塔。
塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品,经冷却器冷却后送至贮槽。
2.1 设计流程板式塔工艺尺寸设计计算的主要容包括:板间距、塔径、塔板型式、溢流装置、塔板布置、流体力学性能校核、负荷性能图以及塔高等。
其设计计算方法可查阅有关资料。
着重应注意的是:塔板设计的任务是以流经塔气液的物流量、操作条件和系统物性为依据,确定具有良好性能(压降小、弹性大、效率高)的塔板结构与尺寸。
塔板设计的基本思路是:以通过某一块板的气液处理量和板上气液组成,温度、压力等条件为依据,首先参考设计手册上推荐数据初步确定有关的独立变量,然后进行流体力学计算,校核其是否符合所规定的围,如不符合要求就必须修改结构参数,重复上述设计步骤直到满意为止。
最后给制出负荷性能图,以确定适宜操作区和操作弹性。
塔高的确定还与塔顶空间、塔底空间、进料段高度以及开人孔数目的取值有关,可查资料[2]。
表2-1 参数选取项目方式压力加料状态加热方式回流比冷凝器冷却介质板式塔选取连续精馏常压气液混合间接蒸汽R=(1.1-2.0)Rmin 全凝器自来水筛板塔2.1.1 选择原则通过老师确定选题,小组成员通过文献检索、讨论等方式进行计算、设计,最终确定设计流程图。
主要遵循满足选题要求、经济、安全、环保、节能等原则。
2.1.2 设计流程图本设计任务为分离苯一甲苯混合物。
由于对物料没有特殊的要求,可以在常压下操作。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔,其余部分经产品冷却器冷却后送至储罐。
图1 工艺流程图2.2 设计要求2.2.1 满足工艺和操作的要求所设计出来的流程和设备,首先必须保证产品达到任务规定的要求,而且质量要稳定,这就要求各流体流量和压头稳定,入塔料液的温度和状态稳定,从而需要采取相应的措施。
其次所定的设计方案需要有一定的操作弹性,各处流量应能在一定围进行调节,必要时传热量也可进行调整。
因此,在必要的位置上要装置调节阀门,在管路中安装备用支线。
计算传热面积和选取操作指标时,也应考虑到生产上的可能波动。
再其次,要考虑必需装置的仪表(如温度计、压强计,流量计等)及其装置的位置,以便能通过这些仪表来观测生产过程是否正常,从而帮助找出不正常的原因,以便采取相应措施。
2.2.2 满足经济上的需求同时要尽可能的节省热能和电能的消耗,减少设备及基建费用。
如前所述在蒸馏过程中如能适当地利用塔顶、塔底的废热,就能节约很多生蒸汽和冷却水,也能减少电能消耗。
又如冷却水出口温度的高低,一方面影响到冷却水用量,另方面也影响到所需传热面积的大小,即对操作费和设备费都有影响。
同样,回流比的大小对操作费和设备费也有很大影响。
2.2.3 保证安全生产条件可以的话,保证安全生产也是必要的。
对于有毒物料,不能让其蒸汽弥漫车间。
如,苯是易挥发的毒性液体。
塔是指定在常压下操作的,塔压力过大或塔骤冷而产生真空,都会使塔受到破坏,因而需要安全装置。
以上三项原则在生产中都是同样重要的。
但在化工原理课程设计中,对第一个原则应作较多的考虑,对第二个原则只作定性的考虑,而对第三个原则只要求作一般的考虑。
2.3 设计思路在本次设计中,我们进行的是苯和甲苯二元物系的精馏分离,简单蒸馏和平衡蒸馏只能达到组分的部分增浓,如何利用两组分的挥发度的差异实现高纯度分离,是精馏塔的基本原理。
实际上,蒸馏装置包括精馏塔、原料预热器、蒸馏釜、冷凝器、釜液冷却器和产品冷却器等设备。
蒸馏过程按操作方式不同,分为连续蒸馏和间歇蒸馏,我们这次所用的就是筛板式连续精馏塔。
蒸馏是物料在塔的多次部分汽化与多次部分冷凝所实现分离的。
热量自塔釜输入,由冷凝器和冷却器中的冷却介质将余热带走。
在此过程中,热能利用率很低,有时后可以考虑将余热再利用,在此就不叙述。
要保持塔的稳定性,流程中除用泵直接送入塔原料外也可以采用高位槽。
回流比是精馏操作的重要工艺条件。
选择的原则是使设备和操作费用之和最低。
在设计时要根据实际需要选定回流比。
设计过程中主要通过文献检索与小组讨论确定设计方案及流程图。
2.3.1 文献检索通过查找两物质的性质以及文献检索等确定设计方案。
苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。
苯比水密度低,密度为0.88g/ml,但其分子质量比水重。
苯难溶于水,1 L水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。
甲苯是最简单,最重要的芳烃化合物之一。
在空气中,甲苯只能不完全燃烧,火焰呈黄色。
甲苯的熔点为-95 ℃,沸点为111 ℃。
甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866g/cm,对光有很强的折射作用(折射率:1.4961)。
甲苯几乎不溶于水(0.52 g/l),但可以和二硫化碳,酒精,乙醚以任意比例混溶,在氯仿,丙酮和大多数其他常用有机溶剂中也有很好的溶解性。
甲苯的粘性为0.6 mPas,也就是说它的粘稠性弱于水。
甲苯的热值为40.940 kJ/kg,闪点为4 ℃,燃点为535 ℃。
分离苯和甲苯,可以利用二者沸点的不同,采用塔式设备改变其温度,使其分离并分别进行回收和储存。
板式精馏塔、浮法塔都是常用的塔类型,可以根据不同塔各自特点选择所需要的塔。
本设计选用筛板式精馏塔。
2.3.2 小组讨论小组成员共同研究确定设计计算过程以及解决设计流程中遇到的问题。
2.4 相关符号说明表2-1 相关符号说明接上:第 3 章塔的工艺计算3.1 基础的物性据3.1.1 苯和甲苯的物理性质表3-1 苯和甲苯的物理性质项目分子式分子量M 沸点℃临界温度℃临界压强kPa 苯C6H678.11 80.1 289.2 4910 甲苯C6H5CH392.14 110.6 321.0 40503.1.2 苯和甲苯的饱和蒸汽压P O苯和甲苯的饱和蒸汽压可用Antoine方程求算,即式中T —物系温度,℃P o —饱和蒸汽压,kPaA、B、 C — Antoine 常数,其值见下表。