2017年成考专升本高等数学试卷
- 格式:docx
- 大小:255.48 KB
- 文档页数:8
2017年成人高考专升本高等数学模拟试题一高等数学一. 选择题1-10小题;每题4分;共40分1. 设0lim →x =7;则a 的值是AB1C 5D72. 已知函数fx 在点x 0处可等;且f ′x 0=3;则0lim →h 等于A3B0C2D63. 当x0时;sinx 2+5x 3与x 2比较是A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量 4. 设y=x -5+sinx;则y ′等于A-5x -6+cosxB-5x -4+cosxC-5x -4-cosxD-5x -6-cosx5. 设y=;则f ′1等于A0B-1C-3D36. 等于A2e x +3cosx+cB2e x +3cosxC2e x -3cosxD17. dx 等于A0B1C 2πD π8. 设函数 z=arctan;则x z ∂∂等于 y x z∂∂∂2ABCD9. 设y=e 2x+y 则y x z∂∂∂2=A2ye 2x+y B2e 2x+y Ce 2x+y D –e 2x+y10. 若事件A 与B 互斥;且PA =0.5 PAUB =0.8;则PB 等于A0.3B0.4C0.2D0.1二、填空题11-20小题;每小题4分;共40分11. ∞→x lim 1-2x =12. 设函数fx=在x=0处连续;则 k =13. 函数-e -x 是fx 的一个原函数;则fx =14. 函数y=x-e x 的极值点x=15. 设函数y=cos2x; 求y ″=16. 曲线y=3x 2-x+1在点0;1处的切线方程y=17. dx =18. =19.xdx x sin cos 203⎰π=20. 设z=e xy ;则全微分dz=三、计算题21-28小题;共70分 Ke 2x x<0 Hcosxx ≥01. 1lim →x 2. 设函数 y=x 3e 2x ; 求dy3. 计算4. 计算⎰+10)12ln(dx x5. 设随机变量x 的分布列为 1 求a 的值;并求Px<12 求Dx 6. 求函数y=的单调区间和极值7. 设函数z=x;y 是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数;求dz8. 求曲线y=e x ;y=e -x 与直线x=1所围成的平面图形面积2017年成人高考专升本高等数学模拟试题一答案一、1-10小题;每题4分;共40分1.D2.D3.C4.A5.C6.A7.C8.A9.B10.A二、11-20小题;每小题4分;共40分11.e -212.213.e -x 14.015.-4cos2x16.y=-x+117.1ln -x +c18.2e x +3cosx+c19.20.dz=e xy ydx+xdy三、21-28小题;共70分1.1lim →x == 2.y ′=x 3′e 2x +e 2x ′x 3=3x 2e 2x +2e 2x x 3=x 2e 2x 3+2xdy=x 2e 2x dx3.==cosx 2+1+c4.=xln2x+110-dx=ln3-{x-ln2x+1}10=-1+ln35.10.1+a+0.2+0.1+0.3=1得出a=0.3Px<1;就是将x<1各点的概率相加即可;即:0.1+0.3+0.2=0.62Ex=0.1×-2+0.3×-1+0.2×0+0.1×1+0.3×2=0.2Dx=E{xi-Ex}2=-2-0.22×0.1+-1-0.22×0.3+0-0.22×0.2+1-0.22×0.1+2-0.22×0.3=1.966.1定义域 x ≠-12y ′==3令y ′=0;得出x=0注意x=1这一点也应该作为我们考虑单调区间的点函数在-∞;1U-1;0区间内单调递减 在0;+∞内单调递增该函数在x=0处取得极小值;极小值为17.x f ∂∂=2x+2;y f ∂∂=2y-2z zf ∂∂=-2y-e z x z ∂∂=-x f ∂∂÷zf ∂∂= x y -2 0.1 a -1 0 0.2 0.1 1 2 0.3 x y y ′ -∞;1 - - + -1 -1;0 0 0;+∞ 无意义 无意义 F0=1为小极小值 0==-y f ∂∂÷zf ∂∂== dz=dx+dy8.如下图:曲线y=e x ;y=e -x ;与直线x=1的交点分别为-1S=dx e e x x )(10--⎰=e x +e -x 10=e+e -1-22017答案必须答在答题卡上指定的位置;一、选择题:1~10小题;每小题4分;共40分.. 求的;将所选项前的字母填涂在答题卡相应题号的信息点上.............. C1.20lim(1)x x →+= A .3 B .2C .1D .0D2.设sin y x x =+;则'y =A .sin xB .xC .cos x x +D .1cos x +B3.设2x y e =;则dy =A .2x e dxB .22x e dxC .212x e dx D .2x e dxC4.1(1)x dx -=⎰ A .21x C x -+ B .21x C x++ C .ln ||x x C -+ D .ln ||x x C ++C5.设5x y =;则'y =A .15x -B .5xC .5ln 5xD .15x +C6.00lim xt x e dt x →=⎰A .x eB .2eC .eD .1A7.设22z x y xy =+;则z x∂=∂ A .22xy y + B .22x xy +C .4xyD .22x y +A8.过点(1,0,0);(0,1,0);(0,0,1)的平面方程为A .1x y z ++=B .21x y z ++=C .21x y z ++=D .21x y z ++=B9.幂级数1nn x n ∞=∑的收敛半径R =A .0B .1C .2D .+∞B10.微分方程''2'3()()sin 0y y x ++=的阶数为A .1B .2C .3D .4二、填空题:11~20小题;每小题4分;共40分..将答案填写在答题卡相应题号后.......... 11.3lim(1)___.x x x →∞-=112.曲线x y e -=在点(0,1)处的切线斜率___.k =-1/e13.设2x y x e =;则'___.y =2xe^x+x^2e^x14.设cos y x =;则'___.y =-sinx15.3(1)___.x dx +=⎰x^4/4+x+C 16.1___.x e dx ∞-=⎰2/e17.设22z x y =+;则___.dz =2+2y18.设z xy =;则2___.z x y ∂=∂∂119.01___.3n n ∞==∑1 20.微分方程0dy xdx +=的通解为___.y =y=-x^2/2三、解答题:21~28小题;共70分..解答应写出推理、演算步骤;并将其写在答题卡...相应题号后....... 21.本题满分8分1/4设函数22()sin 2x a f x x x⎧+⎪=⎨⎪⎩,0,0x x ≤>;在0x =处连续;求常数a 的值.22.本题满分8分计算0lim .sin x xx e e x-→- 23.本题满分8分设23x t t t ⎧=⎪⎨=⎪⎩;t 为参数;求1t dy dx =.根号下t-124.本题满分8分设函数32()39f x x x x =--;求()f x 的极大值.-925.本题满分8分求1(1)dx x x +⎰. 26.本题满分10分计算2Dx ydxdy ⎰⎰;其中积分区域D 由2y x =;1x =;0y =围成.27.本题满分10分求微分方程2''3'26y y y e ++=的通解.28.本题满分10分证明:当0x >时;(1)ln(1)x x x ++>.。
2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
高等数学请考生按规定用笔将全部试题的答案涂、写在答题纸上。
选择题部分注意事项 :1.答题前,考生务势必自己的姓名、准考据号用黑色笔迹的署名笔或钢笔填写在答题纸规定的地点上。
2. 每题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号。
不可以答在试题卷上。
一、选择题 :本大题共5小题,每题4分,共20分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
11.已知函数 f ( x) e x,则 x=0 是函数 f(x) 的().(A )可去中断点( B)连续点( C)跳跃中断点( D)第二类中断点2.设函数 f(x) 在[a,b] 上连续,则以下说法正确的选项是(A )必存在bf ( x)dx f ()(b a)( a,b ) , 使得a(B )必存在( a,b ) , 使得 f(b)-f(a)= f '()(b a)(C)必存在( a,b ) , 使得 f ()0(D )必存在( a,b ) , 使得 f '()03以下等式中,正确的选项是( A ) f '( x)dx f (x) (B)df (x) f ( x) (C)df ( x)dx f (x) (D)dxd f ( x)dx f ( x)4.以下广义积散发散的是+111+ ln x+x(A )1+x2 dx(B)0 1x2dx (C)0x dx( D )0e dx5.微分方程y -3 y 2 y e x sin x, 则其特解形式为(A )ae x sin x(B )xe x( acosx b sin x)(C)xae x sin x(D)e x(a cosx b sin x)非选择题部分注意事项 :1.用黑色笔迹的署名笔或钢笔将答案写在答题纸上,不可以答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确立后一定使用黑色笔迹的署名笔或钢笔描黑。
二.填空题 :本大题共10小题,每题 4 分,共 40 分。
2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为( ) A.21xB.x2 C.x sin D.()e x +ln 2.=⎪⎭⎫⎝⎛+→xx x 21lim 0( ) A.e B.1-e C.2e D.2-e3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=( ) A.0 B.21C.1D.2 4.设函数()x x x f ln =,则()='e f ( ) A.-1 B.0 C.1 D.25.函数()x x x f 33-=的极小值为( ) A.-2 B.0 C.2 D.46.方程132222=++z y x 表示的二次曲面是( ) A.圆锥面 B.旋转抛物面 C.球面 D.椭球面7.若()1210=+⎰dx k x ,则常数=k ( ) A.-2 B.-1 C.0 D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则( ) A.()0>dx x f ba ⎰B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为( ) A.(3,-1,2) B.(1,-2,3) C.(1,1,-1) D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ( ) A.发散 B.条件收敛 C.绝对收敛 D.敛散性与a 的取值有关 二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________ 13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________ 14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________ 17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________ 18.设二元函数()y x z +=2ln ,则=∂∂xz_________ 19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________ 20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin lim x x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy23.已知x sin 是()x f 的一个原函数,求()⎰'dx x f x24.计算dx x⎰+401125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy 的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6='' ()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
2017专升本 高等数学(二)(工程管理专业)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 211lim1x x x →-=-() A.0 B.1 C.2 D.3C ()()()2111111limlim lim 1211x x x x x x x x x →→→+--==+=--. 2. 设函数()f x 在1x =处可导,且()12f '=,则()()11limx f x f x→--=()A.-2B. 12-C.12 D.2 A ()()()()()001111limlim 12x x f x f f x f f x x →→----'=-=-=--. 3. 设函数()cos f x x =,则π2f ⎛⎫' ⎪⎝⎭=()A.-1B.- 12C.0D.1A 因为()cos f x x =,()sin f x x '=-,所以πsin 122f π⎛⎫'=-=- ⎪⎝⎭.4. 设函数()f x 在区间[],a b 连续且不恒为零,则下列各式中不恒为常数的是() A.()f aB.()d baf x x ⎰C. ()lim x b f x +→ D.()dtxaf t ⎰D 设()f x 在[],a b 上的原函数为()F x .A 项,()0f a '=⎡⎤⎣⎦;B 项,()()()d 0b a f x x F b F a ''⎡⎤=-=⎡⎤⎣⎦⎢⎥⎣⎦⎰;C 项,()()lim 0x b f x F b +→''⎡⎤==⎡⎤⎣⎦⎢⎥⎣⎦;D 项,()()dt x a f t f x '⎡⎤=⎢⎥⎣⎦⎰.故A 、B 、C 项恒为常数,D 项不恒为常数.5. 2d x x =⎰()A. 33x C + B. 3x C +C. 33x C +D. 2xC +C 2d x x =⎰33x C +.6. 设函数()f x 在区间[],a b 连续,且()()()d d u uaaI u f x x f t t =-⎰⎰,,a u b <<则()I u ()A.恒大于零B.恒小于零C.恒等于零D.可正,可负C 因定积分与积分变量所用字母无关,故()()()()()()d d d d d 0uuuaaaaauaI u f x x f t t f x x f x x f x x =-=+==⎰⎰⎰⎰⎰.7. 设函数()ln z x y =+,则()1,1z x∂=∂().A.0B.12C.ln2D.1B 因为()ln z x y =+,1z x x y ∂=∂+,所以()1,112z x∂=∂. 8. 设函数33z x y =+,则zy∂∂=(). A. 23x B. 2233x y +C. 44yD. 23yD 因为33z x y =+,所以zy∂∂=23y . 9. 设函数 ,则(). A. B . C . D .B 因为,则,.10. 设事件A ,B 相互独立,A ,B 发生的概率分别为0.6,0.9,则A ,B 都不发生的概率为(). C.0.1 D.0.4B 事件A ,B 相互独立,则A ,B 也相互独立,故P(AB )=P(A )P(B )=(1-0.6)×(1-0.9)=0.04. 二、填空题(11~20小题,每小题4分,共40分) 11.函数()51f x x =-的间断点为x =________.1 ()f x 在x =1处无定义,故()f x 在x =1处不连续,则x =1是函数()f x 的间断点.12.设函数 ,在1x =处连续,则a =________.1 ()()11lim lim 1x x f x a x a --→→=-=-,因为函数()f x 在1x =处连续,故()()1lim 1ln10x f x f -→===,即a -1=0,故a =1.13. 0sin 2lim3x xx→=________.23 00sin 22cos 2lim lim 33x x x x x →→== 23.14. 当x →0时,()f x 与sin 2x 是等价无穷小量,则()0lim sin 2x f x x→=________.1 由等价无穷小量定义知,()0lim1sin 2x f x x →=.15. 设函数sin y x =,则y '''=________.cos x-因为sin y x =,故cos y x '=,sin y x ''=-,cos y x '''=-.16.设曲线y=a 在点(1,a+2)处的切线与直线y=4x 平行,则a=________.1 因为该切线与直线y=4x 平行,故切线的斜率k=4,而曲线斜率y ′(1)=2a+2,故2a+2=4,即a=1. 17. 22e d x x x =⎰________.2e x C + 22222e d e d e x x x x x x C ==+⎰⎰.18.πsin 20e cos d x x x =⎰________.e-1 ()πππsin sin sin 222e cos d ed sin exxx x x x ===⎰⎰ =e-1.19.21d 1x x +∞=+⎰________. π2220011πd lim d limarctan limarctan 0112a a a a a x x x a x x +∞→∞→∞→∞====++⎰⎰.20. 设函数e x z y =+,则d z =________.e d d x x y +d d d z zz x y x y∂∂=+=∂∂e d d x x y +. 三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分) 计算()20lim 1xx x →+.解: ()()2212lim 1lim e xx x x x x →→⎡⎤+=⎢⎥⎣⎦=1+. 22.(本题满分8分)设函数y=sin ,求dy.解:因为()222cos 22cos 2y x x x x ''=+=+, 故()2d 2cos 2d y x x x =+. 23.(本题满分8分) 计算e1ln d .x x ⎰解:()e e11e ln d ln d ln 1x x x x x x =-⎰⎰ 24.(本题满分8分)设()y y x =是由方程e 1y xy +=所确定的隐函数,求d d yx. 解:方程e 1y xy +=两边对x 求导,得d de 0d d yy yy x x x ++=. 于是d de y y yx x=-+. 25.(本题满分8分)(2)求X 的数学期望E(X )和方差D(X ). 解: (1)因为0.2+0.1+0.3+a =1,所以a =0.4.(2) E(X )=0×0.2+1×0.1+2×0.3+3×0.4=1.9.D(X )()()()()22220 1.90.21 1.90.12 1.90.33 1.90.4=-⨯+-⨯+-⨯+-⨯=1.29.26.(本题满分10分)求函数()31413f x x x =-+的单调区间、极值、拐点和曲线()y f x =的凹凸区间.解:函数的定义域为(-∞,+∞). 令0.y '=,得 2.x =±0y ''=,得x =0.(如下表所示)函数()f x 的单调增区间为(-∞,-2),(2,+∞), 函数()f x 的单调减区间为(-2,2), 曲线的拐点坐标为(0,1), 曲线的凸区间为(-∞,0), 曲线的凹区间为(0,+∞). 27.(本题满分10分)求函数()22,f x y x y =+在条件231x y +=下的极值. 解:作辅助函数()22231x y x y λ=+++-.令220,230,2310,x y F x F y F x y λλλ'=+=⎧⎪'=+=⎨⎪'=+-=⎩ 得232,,131313x y λ===-.因此,(),f x y 在条件231x y +=下的极值为231,131313f ⎛⎫= ⎪⎝⎭.28.(本题满分10分)设曲线24y x =- (x ≥0)与x 轴,y 轴及直线x =4所围成的平面图形为D .(如图中阴影部分所示). (1)求D 的面积S.(2)求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积V. 解: (1)面积()()2422024d 4d S x x x x =---⎰⎰(2)体积420πd V x y =⎰8π=.。
2017专升本 高等数学(二)(工程管理专业)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 211lim 1x x x →-=-()A.0B.1C.2D.3C ()()()2111111lim lim lim 1211x x x x x x x x x →→→+--==+=--. 2. 设函数()f x 在1x =处可导,且()12f '=,则()()11limx f x f x→--=()A.-2B. 12-C. 12D.2 A ()()()()()001111limlim 12x x f x f f x f f x x→→----'=-=-=--.3. 设函数()cos f x x =,则π2f ⎛⎫' ⎪⎝⎭=()A.-1B.- 12C.0D.1A 因为()cos f x x =,()sin f x x '=-,所以πsin 122f π⎛⎫'=-=- ⎪⎝⎭.4. 设函数()f x 在区间[],a b 连续且不恒为零,则下列各式中不恒为常数的是()A.()f aB.()d baf x x ⎰C. ()lim x b f x +→ D.()dtxaf t ⎰D 设()f x 在[],a b 上的原函数为()F x .A 项,()0f a '=⎡⎤⎣⎦;B 项,()()()d 0b a f x x F b F a ''⎡⎤=-=⎡⎤⎣⎦⎢⎥⎣⎦⎰;C 项,()()li m 0x b f x F b +→''⎡⎤==⎡⎤⎣⎦⎢⎥⎣⎦;D 项,()()dt x a f t f x '⎡⎤=⎢⎥⎣⎦⎰.故A 、B 、C 项恒为常数,D 项不恒为常数.5.2d x x =⎰()A. 33x C + B. 3x C +C. 33x C +D. 2x C +C 2d x x =⎰33x C +.6. 设函数()f x 在区间[],a b 连续,且()()()d d u ua aI u f x x f t t =-⎰⎰,,a u b <<则()I u () A.恒大于零B.恒小于零C.恒等于零D.可正,可负C 因定积分与积分变量所用字母无关,故()()()()()()d d d d d 0uuuaaaaauaI u f x x f t t f x x f x x f x x =-=+==⎰⎰⎰⎰⎰.7. 设函数()ln z x y =+,则()1,1z x∂=∂().A.0B.12C.ln2D.1B 因为()ln z x y =+,1z x x y ∂=∂+,所以()1,112z x∂=∂. 8. 设函数33z x y =+,则zy∂∂=(). A. 23x B. 2233x y +C. 44yD. 23yD 因为33z x y =+,所以zy∂∂=23y . 9. 设函数,则().A.B .C .D .B 因为,则,.10. 设事件A ,B 相互独立,A ,B 发生的概率分别为0.6,0.9,则A ,B 都不发生的概率为(). A.0.54 B.0.04 C.0.1 D.0.4B 事件A ,B 相互独立,则A ,B 也相互独立,故P(A B )=P(A )P(B )=(1-0.6)×(1-0.9)=0.04. 二、填空题(11~20小题,每小题4分,共40分) 11.函数()51f x x =-的间断点为x =________.1 ()f x 在x =1处无定义,故()f x 在x =1处不连续,则x =1是函数()f x 的间断点.12.设函数在1x =处连续,则a =________.1 ()()11lim lim 1x x f x a x a --→→=-=-,因为函数()f x 在1x =处连续,故()()1lim 1ln10x f x f -→===,即a -1=0,故a =1.13. 0sin 2lim 3x xx→=________.23 00sin 22cos 2lim lim 33x x x x x →→== 23.14. 当x →0时,()f x 与sin 2x 是等价无穷小量,则()0lim sin 2x f x x→=________.1 由等价无穷小量定义知,()0lim1sin 2x f x x →=.15. 设函数sin y x =,则y '''=________.cos x-因为sin y x =,故cos y x '=,sin y x ''=-,cos y x '''=-.16.设曲线y=a 在点(1,a+2)处的切线与直线y=4x 平行,则a=________.1 因为该切线与直线y=4x 平行,故切线的斜率k=4,而曲线斜率y ′(1)=2a+2,故2a+2=4,即a=1. 17. 22e d x x x =⎰________.2e x C + 22222e d e d e x x x x x x C ==+⎰⎰.18. πsin 20e cos d x x x =⎰________.e-1 ()πππsin sin sin 222e cos d ed sin exxx x x x ===⎰⎰ =e-1.19.21d 1x x +∞=+⎰________.π2220011πd lim d limarctan limarctan 0112a a a a a x x x a x x +∞→∞→∞→∞====++⎰⎰. 20. 设函数e x z y =+,则d z =________.e d d x x y +d d d z zz x y x y∂∂=+=∂∂e d d x x y +. 三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分) 计算()20lim 1xx x →+.解: ()()2212lim 1lim e xx x x x x →→⎡⎤+=⎢⎥⎣⎦=1+. 22.(本题满分8分)设函数y=sin ,求dy.解:因为()222cos 22cos 2y x x x x ''=+=+, 故()2d 2cos 2d y x x x =+. 23.(本题满分8分) 计算e1ln d .x x ⎰解:()ee11e ln d ln d ln 1x x x x x x =-⎰⎰ e e 1x=-1.=24.(本题满分8分)设()y y x =是由方程e 1y xy +=所确定的隐函数,求d d y x.解:方程e 1y xy +=两边对x 求导,得d de 0d d yy yy x x x ++=. 于是d de y y yx x=-+. 25.(本题满分8分)(1)求常数a ;(2)求X 的数学期望E(X )和方差D(X ).解: (1)因为0.2+0.1+0.3+a =1,所以a =0.4. (2) E(X )=0×0.2+1×0.1+2×0.3+3×0.4=1.9.D(X )()()()()22220 1.90.21 1.90.12 1.90.33 1.90.4=-⨯+-⨯+-⨯+-⨯=1.29.26.(本题满分10分)求函数()31413f x x x =-+的单调区间、极值、拐点和曲线()y f x =的凹凸区间.解:函数的定义域为(-∞,+∞).24,2.y x y x '''=-=令0.y '=,得 2.x =±0y ''=,得x =0.(如下表所示)函数()f x 的单调增区间为(-∞,-2),(2,+∞), 函数()f x 的单调减区间为(-2,2), 曲线的拐点坐标为(0,1), 曲线的凸区间为(-∞,0), 曲线的凹区间为(0,+∞). 27.(本题满分10分)求函数()22,f x y x y =+在条件231x y +=下的极值.解:作辅助函数()()(),,,231F x y f x y x y λλ=++-()22231x y x y λ=+++-.令220,230,2310,x y F x F y F x y λλλ'=+=⎧⎪'=+=⎨⎪'=+-=⎩ 得232,,131313x y λ===-. 因此,(),f x y 在条件231x y +=下的极值为231,131313f ⎛⎫= ⎪⎝⎭.28.(本题满分10分)设曲线24y x =- (x ≥0)与x 轴,y 轴及直线x =4所围成的平面图形为D .(如图中阴影部分所示). (1)求D 的面积S.(2)求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积V.解: (1)面积()()2422024d 4d S x x x x =---⎰⎰3324440233x x x x ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭16.=(2)体积420πd V x y =⎰()4π4d y y =-⎰241=π402y y ⎛⎫- ⎪⎝⎭8π=.。
2017年成人高考专升本高等数学模拟试题一小题,每题4分,共40分)一.选择题(1-10sinax lim=7,则a的值是( 1.设)x0x?1D 7 C 5 B 1 A 7)f(x)-f(x00+2h lim则)等于(2.已知函数f(x)在点x处可等,且f ′(x)=3,00h0h?D 6C 2 A 3 B 0232比较是(x0时,sin(x)+5x3.当x ) 与A较高阶无穷小量B较低阶的无穷小量C等价无穷小量D同阶但不等价无穷小量-5+sinx,则y′等于( 4.设y=x)-6-4-4-6A -5x+cosx B -5x+cosx C -5x-cosx D -5x-cosx2,则f′(1)等于(y=4-3x)5.设A 0 B -1 C -3 D 3x?(2e-3sinx)dx 等于( 6.)?xxx-3cosx D 1 +3cosx A 2e +3cosx+c B 2eC 2e1dx?)7.dx 等于(2 1-x ?0?? D A 0 B 1 C22?z?z y8.设函数z=arctan ,则等于()x?x?y?x-yyx-x B CD A22222222+y+yxx+yx+yx2z?2x+y则=(设9.y=e)?x?y2x+y2x+y2x+y2x+y–e B 2eD A 2yeC e10.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A 0.3B 0.4C 0.2D 0.1二、填空题(11-20小题,每小题4分,共40分)12x lim= 11.(1- ) x x??2x x<0Ke设函数f(x)= 在x=0处连续,则k=12.Hcosx x≥0-x是f(x)的一个原函数,则f(x)=13.-e 函数x的极值点x= 14. 函数y=x-e设函数y=cos2x ,求y″= 15.2y= )处的切线方程0,1在点(-x+1y=3x曲线16.1?17.dx =?x-1x?(2e-3sinx)dx =?xdxxcossin2= 19. 18.??30xy20.设z=e ,则全微分dz=分)小题,共70三、计算题(21-282-1x lim 1.2-x-12x1?x2x3dy e求,2.设函数y=x2? xsin(x计算+1)dx 3.?1?dx?1)xln(2 4.计算0 2 -1 0 1 x -2 的分布列为设随机变量x5.P(x<1) 的值,并求求a(1)0.3a0.2y0.10.1D(x) 求(2)x e 的单调区间和极值y=求函数6.1+xz22dz x+y所确定的隐函数,求+2x-2yz=ez=(x,y)7.设函数是由方程-xx x=1求曲线y=e,y=e所围成的平面图形面积与直线8.答案2017年成人高考专升本高等数学模拟试题一分)4分,共40一、(1-10小题,每题10. A 8.A 9. B 6. A 7. C 1. D 2. D 3. C 4. A 5. C分)分,共4011-20二、(小题,每小题4x-x-21x ln+3cosx+c 14. 0 15.-4cos2x 16. y=-x+118. 2e+c 11. e17. 12. 2 13. e1xy(ydx+xdy)20. dz=e 19. 4 分)小题,共70三、(21-2822(x-1)(x-1)-1x lim = = 1. 2-x-132x(x-1)(2x+1)1x?2x2x22x3222x32x32x dx x =xdy=x x2. y′=(x)′e+(e)′=3xeee+2e(3+2x)112222??+1)+c cos(x=+1)dx sin(x+1)d(x+1) 3. =xsin(x??221132x1?11?ln3ln(2x+1)}=xln(2x+1) -=-1+ dx 4. =ln3-{x-ln(2x+1)dx ??2 2(2x+1)0000a=0.3得出5. (1) 0.1+a+0.2+0.1+0.3=10.6 =各点的概率相加即可,即:0.1+0.3+0.2P(x<1),就是将x<12=0.20+0.1×1+0.3×E(x)=0.1×(-2)+0.3×(-1)+0.2×(2)2222220.3=1.96×××0.1+(-1-0.2)×0.3+(0-0.2)0.1+(2-0.2)D(x)=E{xi-E(x)}×=(-2-0.2)0.2+(1-0.2)-1x≠6. 1) 定义域2) y′=22(1+x)(1+x)) 得出x=0(注意x=1这一点也应该xxx xe(1+x)-ee =作为我们考虑单调区间的点3)令y′=0,x0 -1 +∞0)),(0,(-1),-(∞10 y+--无意义无意义y′为小F(0)=1???极小值)区间内单调递减-1,0(U)1,∞-函数在(.在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为1?f?ff?z =-2y-e 7. =2x+2, =2y-2z ?y?x?z?f?fz?2(x+1)? = =-z2y+e ?z?xx??ff?2y-2z2y-2zaz? ==-= = zz2y+e)ay-(2y+e ?y?z2(x+1)2y-2zdz= dy dx+zz2y+e2y+e x-x-1的交点分别为A(1,e),B(1,e)则,y=e8.如下图:曲线y=e,与直线x=1?dx?ee)(-xx-1=e+e-2) = (eS=+e0x0 y=e-x y=e1x?x11B年成人高考专升本高等数学模拟试题二2017。
2017专升本 高等数学(二)(工程管理专业)一、选择题(1 , -10小题,每小题4分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的)X 1 1. lim ---- x 1x 1()A.0B.1C.2D.3A. -2B.C. B. 2f 1 x f 1 limx 04.设函数f x 在区间a,b 连续且不恒为零,贝U 下列各式中不恒为常数的是()x 21 x 1 x 1lim limlim x 12x 1 x 1 x 1x 1x 1C2.设函数f x 在x 1处可导,且f 1()3.设函数f x cosx ,则f()A.-1B.-C. 0D. 1 A因为 f x cosx, f x sinx,所以sin — 1.2 21 2.B.bf x dx aC. lim f xx bxD. fa t dtA. f a设f x在a,b上的原函数为F x .A 项,dx F b F a 0 ; C 项, 0 ; B 项, 0 ; D 项,dt x .故A B C项恒为常数, D项不恒为常数5 . x2dx()A. 3x3B. x3C.D.x2dx6 . 设函数f 在区间a,b连续,且I u u uf x dxa at dt a u b,则I u ()A. 恒大于零B. 恒小于零C. 恒等于零D. 可正,可负7. 设函数 z In x y ,则—I 11()A. 0B.B. l n2C. 18. 设函数z x3y3,则—=()yA. 3x22 2B. 3x 3y2D. 3yD 因为z x3y3,所以—=3y2. y----- S 诫_9. 设函数疋二xe\则办血-()KA. eyB. 蚪yC. 怕u u uf x dx f t dta a ax dxaf x dxuaf x dx 0a44B 因为z In x y 所以-zxD. :B 因为疋二xeV,则釉-七,曲內_ E10. 设事件A, B 相互独立,A, B 发生的概率分别为0.6 , 0.9,则A, B 都不发 生的概率为(). A. 0.54 B. 0.04 C. 0.1 D. 0.4B 事件A , B 相互独立,则A , B 也相互独立,故P( A B)=P( A)P( B)=(1-0.6) X (1-0.9)=0.04. 二、填空题(11〜20小题,每小题4分,共40分) 511. 函数f x ------ 的间断点为x =.x 11 f x 在x =1处无定义,故f x 在x =1处不连续,则x =1是函数f X 的间断点.=[Inx, X > j7is ~ JCX V 112. 设函数 在x 1处连续,则a= __________ .1 limfx lim a x a 1 ,因为函数fx 在x 1处连续,故x 1x 1lim f x f 1 ln1 0,即 a -仁0,故 a =1.x 1sin2x13. lim ---- = ________ .x 0 3x2sin 2x 2cos2x 2 lim lim3x 03x x 03 314.当 x — 0 时, x 与sin 2x 是等价无穷小量,则 f xlim x 0sin2x1 由等价无穷小量定义知,lim-^ 1x 0sin 2xcosx 因为 y sinx,故 y cosx, y sinx, y cosx.2 I16. 设曲线y=a;. ”,-在点(1, a+2)处的切线与直线y=4x平行,贝1 因为该切线与直线y=4x平行,故切线的斜率k=4,而曲线斜率故 2a+2=4,即 a=1.x1 217. 2xe dx __________ .11+ x x22. (本题满分8分)设函数y=sin * + 2"求dy.a= _______ y' (1)=2a+2,n18.2e sinx cosxdx0 --------------------------------------19. 丄rdx0 1 x 2--------20. 设函数z e x e x dx dy dz — dx — dy e x dx dy .x y三、解答题(21〜28题,共70分.解答应写出推理、演算步骤)21. (本题满分8分)2计算 lim 1 x x .x 02e xCx 22xe dx/dx 2e-12 sin x2e cosxdx2 sinx .2e d sinxsin xe=e-1.12dx1 x2 lima12dx xlimarctan xalimarctan a - a2.xm 1故 dy 2xcosx 2 2 dx . 23. (本题满分8分)e计算 In xdx.1e解:In xdxie e x 11.24. (本题满分8分)解:方程e yxy 1两边对x 求导,得悄 y xdx 0.e y25.(本题满分8分)已知离散型随机变量X 的概率分布为(1)求常数a ;⑵ 求X 的数学期望E(X)和方差D(X).解:(1)因为 0.2+0.1+0.3+ a =1,所以 a =0.4. (2) E( X)=0 X 0.2+1 X 0.1+2 X 0.3+3 X 0.4=1.9.2 2 2 2D(X) 0 1.90.2 1 1.90.1 2 1.90.3 3 1.9 0.4=1.29.26. (本题满分10分)设y y x 是由方程e yxy 1所确定的隐函数,求竺dxe xl n x1 e xd In xi1求函数f x —x3 4x 1的单调区间、极值、拐点和曲线 y f x的凹凸区间.3解:函数的定义域为(-g,+ %).2 y x 4,y 2x.令 y 0.,得x 2.函数f x的单调增区间为(-g,-2),(2,+ g),函数f x的单调减区间为(-2,2 ),曲线的拐点坐标为(0,1 ), 曲线的凸区间为(-g,0 ), 曲线的凹区间为(0, +g).27. (本题满分10分)求函数f x, y x2 y2在条件2x 3y 1下的极值.解:作辅助函数F x,y, f x ,y 2x 3y 12 x2y 2x 3y 1 .F x2x 2 0, 令F y 2y 3 0,F 2x 3y 1 0,2132 3 1因此,f x ‘y 在条件2x 3y 1下的极值为f -,1^ -.28. (本题满分10分)设曲线y 4 x 2 ( x >0)与x 轴,y 轴及直线x =4所围成的平面图形为D.(如图 中阴影部分所示).(1) 求D 的面积S.(2) 求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积V. 解:(1)面积S 2 4 0 x 2 dx 442 x 2 dx4x 3 x 2 4x 3 x 43 0 3 2 16.⑵体积V n 4 x 2dy4n 4 y dy=n 4y 1 2y8 n.。
2017年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,下列变量是无穷小量的为【】A.B.2xC.sinxD.ln(x+e)正确答案:C解析:本题考查了无穷小量的知识点.=sin0=0.2.= 【】A.eB.e1C.e2D.e-2正确答案:C解析:本题考查了的知识点..3.若函数在x=0处连续,则常数a= 【】A.0B.C.1D.2正确答案:B解析:本题考查了函数在一点处连续的知识点.因为函数f(x)在x=0处连续,则.4.设函数f(x)=xlnx,则f?(e)= 【】A.-1B.0C.1D.2正确答案:D解析:本题考查了导数的基本公式的知识点.因为f?(x)=lnx+x(lnz)?=lnx+1,所以f?(e)=lne+1=2.5.函数f(x)=x3-3x的极小值为【】A.-2B.0C.2D.4正确答案:A解析:本题考查了极小值的知识点.因为f?(x)=3x2-3,令f?(x)=0,得驻点x1=-1,x2=l.又f?(x)=6x,f?(-1)=-60.所以f(x)在x2=l处取得极小值,且极小值f(1)=1-3=-2.6.方程x2+2y2+3z2=1表示的二次曲面是【】A.圆锥面B.旋转抛物面C.球面D.椭球面正确答案:D解析:本题考查了二次曲面的知识点.可将原方程化为,所以原方程表示的是椭球面.7.若,则常数k= 【】A.一2B.一1C.0D.1正确答案:C解析:本题考查了定积分的知识点.=1+k=1所以k=0.8.设函数f(x)在[a,b]上连续且f(x)>0,则【】A.f(x)dx>0B.f(x)dx 0,则定积分f(x)dx的值为由曲线y=f(x),直线x=a,x=b,y=0所围成图形的面积,所以f(x)dx>0.9.空间直线的方向向量可取为【】A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-l,-1)正确答案:A解析:本题考查了直线方程的方向向量的知识点.因为直线方程为=,所以其方向向量为(3,-1,2).10.已知a为常数,则级数【】A.发散B.条件收敛C.绝对收敛D.收敛性与a的取值有关正确答案:B解析:本题考查了级数的收敛性的知识点.发散.由莱布尼茨判别法知,vn=填空题11.=______.正确答案:l解析:本题考查了的知识点..12.曲线的水平渐近线方程为______.正确答案:解析:本题考查了水平渐近线方程的知识点.,所求曲线的水平渐近线方程为.13.若函数f(x)满足f?(1)=2,则=______.正确答案:1解析:本题考查了一阶导数的知识点.14.设函数,则f?(x)= ______.正确答案:1+解析:本题考查了一阶导数的性质的知识点.15.(sinx+cos)dx=______.正确答案:2解析:本题考查了函数的定积分的知识点.16.=______.正确答案:解析:本题考查了反常积分的知识点..17.已知曲线y=x2+x-2的切线l斜率为3,则l的方程为______.正确答案:3x-y-3=0解析:本题考查了切线的知识点.曲线上某一点的切线斜率为k=y?=2x+1,因为该切线的斜率为3,即k=2z+1=3,x=1,y|x=1=0,即切线过点(1,0),所求切线为y=3(x-1),即3x-y-3=0.18.设二元函数z=ln(x2+y),则=______.正确答案:解析:本题考查了二元函数偏导数的知识点.19.设f(x)为连续函数,则=______.正确答案:f(x)解析:本题考查了导数的原函数的知识点.20.幂级数的收敛半径为______.正确答案:3解析:本题考查了幂级数的收敛半径的知识点.解答题21.求正确答案:22.设正确答案:23.已知sinx是f(x)的一个原函数,求.正确答案:因为sinx是f(x)的一个原函数,所以24.计算正确答案:25.设二元函数z=x2y2+x-y+1,求正确答案:26.计算二重积分,其中区域D={(x,y)|x2+y2≤4}.正确答案:D可表示为0≤θ≤2π,0≤r≤2.27.求微分方程的通解.正确答案:28.用铁皮做一个容积为V的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小.正确答案:设圆柱形的底面半径为r,高为h,则V=πr2h.所用铁皮面积S=2πr2+2πrh,于是由实际问题得,S存在最小值,即当圆柱的高等于底面直径时,所使用的铁皮面积最小.。
高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1。
答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上。
一、选择题: 本大题共5小题,每小题4分,共 20分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数1x()ef x =,则x=0是函数f(x)的( ).(A )可去间断点 (B)连续点 (C )跳跃间断点 (D)第二类间断点2.设函数f(x)在[a,b]上连续,则下列说法正确的是(A)ba()()()f x dx f b a ζζ∈=-⎰必存在(a,b ),使得(B )'()()f b a ζζ∈-必存在(a,b ),使得f(b)-f(a)= (C )()0f ζξ∈=必存在(a,b ),使得 (D )'()0f ζζ∈=必存在(a,b ),使得3 下列等式中,正确的是(A )'()()f x dx f x =⎰(B)()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D )()()d f x dx f x =⎰4.下列广义积分发散的是(A )+2011+dx x ∞⎰(B )10⎰ (C )+0ln x dx x ∞⎰ (D)+0xe dx ∞-⎰ 5. y -32sin ,x y y e x '''+=微分方程则其特解形式为(A)sin xae x (B )(cos sin )xxe a x b x +(C )sin x xae x(D )(cos sin )xe a x b x +非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
2017年成考专升本高等数学(二)试卷2017专升本 高等数学(二)(工程管理专业)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 211lim1x x x →-=-()A.0B.1C.2D.3C ()()()2111111lim lim lim 1211x x x x x x x x x →→→+--==+=--.2.设函数()f x 在1x =处可导,且()12f '=,则()()11limx f x f x→--=()A.-2B. 12-C.12D.2 A ()()()()()001111limlim 12x x f x f f x f f x x→→----'=-=-=--.3.设函数()cos f x x =,则π2f ⎛⎫' ⎪⎝⎭=()A.-1B.-12C.0D.1A 因为()cos f x x =,()sin f x x '=-,所以πsin 122f π⎛⎫'=-=- ⎪⎝⎭.4.设函数()f x 在区间[],a b 连续且不恒为零,则下列各式中不恒为常数的是()A.()f aB.()d baf x x ⎰C.()lim x b f x +→ D.()dtxaf t ⎰D 设()f x 在[],a b 上的原函数为()F x .A 项,()0f a '=⎡⎤⎣⎦;B 项,()()()d 0b a f x x F b F a ''⎡⎤=-=⎡⎤⎣⎦⎢⎥⎣⎦⎰;C 项,()()lim 0x b f x F b +→''⎡⎤==⎡⎤⎣⎦⎢⎥⎣⎦;D 项,()()dt x a f t f x '⎡⎤=⎢⎥⎣⎦⎰.故A 、B 、C 项恒为常数,D 项不恒为常数.5.2d x x =⎰()A. 33x C + B. 3x C +C. 33x C +D. 2x C +C 2d x x =⎰33x C +.6.设函数()f x 在区间[],a b 连续,且()()()d d u uaaI u f x x f t t =-⎰⎰,,a u b <<则()I u () A.恒大于零 B.恒小于零 C.恒等于零 D.可正,可负C 因定积分与积分变量所用字母无关,故()()()()()()d d d d d 0uuuaaaaauaI u f x x f t t f x x f x x f x x =-=+==⎰⎰⎰⎰⎰.7.设函数()ln z x y =+,则()1,1z x∂=∂().A.0B.12C.ln2D.1B 因为()ln z x y =+,1z x x y ∂=∂+,所以()1,112z x∂=∂. 8. 设函数33z x y =+,则zy∂∂=().A. 23xB. 2233x y +C.44y D.23yD 因为33z x y =+,所以zy∂∂=23y . 9. 设函数,则().A.B .C .D .B 因为,则,.10.设事件A ,B 相互独立,A ,B 发生的概率分别为0.6,0.9,则A ,B 都不发生的概率为(). A.0.54 B.0.04 C.0.1 D.0.4B 事件A ,B 相互独立,则A ,B 也相互独立,故P(A B )=P(A )P(B )=(1-0.6)×(1-0.9)=0.04. 二、填空题(11~20小题,每小题4分,共40分) 11.函数()51f x x =-的间断点为x =________.1 ()f x 在x =1处无定义,故()f x 在x =1处不连续,则x =1是函数()f x 的间断点. 12.设函数在1x =处连续,则a =________.1 ()()11lim lim 1x x f x a x a --→→=-=-,因为函数()f x 在1x =处连续,故()()1lim 1ln10x f x f -→===,即a -1=0,故a =1.13.0sin 2lim3x xx→=________.23 00sin 22cos 2limlim 33x x x xx →→== 23.14.当x →0时,()f x 与sin 2x 是等价无穷小量,则()0lim sin 2x f x x→=________.1 由等价无穷小量定义知,()0lim1sin 2x f x x→=.15.设函数sin y x =,则y '''=________.cos x- 因为sin y x =,故cos y x '=,sin y x ''=-,cos y x '''=-.16.设曲线y=a在点(1,a+2)处的切线与直线y=4x 平行,则a=________.1 因为该切线与直线y=4x 平行,故切线的斜率k=4,而曲线斜率y ′(1)=2a+2,故2a+2=4,即a=1. 17. 22ed x x x =⎰________.2e x C + 22222e d e d e x x x x x x C ==+⎰⎰.18. πsin 20e cos d x x x =⎰________.e-1 ()πππsin sin sin 222e cos d ed sin exxx x x x ===⎰⎰ =e-1.19. 21d 1x x+∞=+⎰________.π2220011πd lim d limarctan limarctan 0112a a a a a x x x a x x +∞→∞→∞→∞====++⎰⎰.20.设函数e x z y =+,则d z =________.e d d x x y+ d d d z zz x y x y∂∂=+=∂∂e d d xx y +. 三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分) 计算()20lim 1xx x →+.解:()()221200lim 1lim e xx x x x x →→⎡⎤+=⎢⎥⎣⎦=1+.22.(本题满分8分)设函数y=sin,求dy.解:因为()222cos 22cos 2y x x x x ''=+=+, 故()2d 2cos 2d y x x x =+. 23.(本题满分8分) 计算e1ln d .x x ⎰解:()e e11e ln d ln d ln 1x x x x x x =-⎰⎰ee 1x =-1.= 24.(本题满分8分)设()y y x =是由方程e 1y xy +=所确定的隐函数,求d d yx.解:方程e 1y xy +=两边对x 求导,得d de 0d d yy yy x x x ++=. 于是d de y y yx x=-+. 25.(本题满分8分)X0 1 2 3 Y0.2 0.1 0.3a(1)求常数a ;(2)求X 的数学期望E(X )和方差D(X ).解: (1)因为0.2+0.1+0.3+a =1,所以a =0.4. (2) E(X )=0×0.2+1×0.1+2×0.3+3×0.4=1.9.D(X )()()()()22220 1.90.21 1.90.12 1.90.33 1.90.4=-⨯+-⨯+-⨯+-⨯=1.29.26.(本题满分10分)求函数()31413f x x x =-+的单调区间、极值、拐点和曲线()y f x =的凹凸区间.解:函数的定义域为(-∞,+∞).24,2.y x y x '''=-=令0.y '=,得 2.x =±0y ''=,得x =0.(如下表所示)x(-∞,-2) -2 (-2,0) 0 (0,2) 2 (2,+∞) y '+--+y ''- - 0 + +y()1923y -=为极大值()1323y =-为极小值函数()f x 的单调增区间为(-∞,-2),(2,+∞), 函数()f x 的单调减区间为(-2,2), 曲线的拐点坐标为(0,1), 曲线的凸区间为(-∞,0), 曲线的凹区间为(0,+∞). 27.(本题满分10分)求函数()22,f x y x y =+在条件231x y +=下的极值.解:作辅助函数()()(),,,231F x y f x y x y λλ=++-()22231x y x y λ=+++-.令220,230,2310,x y F x F y F x y λλλ'=+=⎧⎪'=+=⎨⎪'=+-=⎩ 得232,,131313x y λ===-. 因此,(),f x y 在条件231x y +=下的极值为231,131313f ⎛⎫= ⎪⎝⎭.28.(本题满分10分)设曲线24y x =- (x ≥0)与x 轴,y 轴及直线x =4所围成的平面图形为D .(如图中阴影部分所示). (1)求D 的面积S.(2)求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积V.解: (1)面积()()2422024d 4d S x x x x =---⎰⎰3324440233x x x x ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭16.=(2)体积420πd V x y =⎰()4π4d y y =-⎰241=π402y y ⎛⎫- ⎪⎝⎭8π .。
2017专升本 高等数学(二)(工程管理专业)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 211lim1x x x →-=-()C ()()()2111111lim lim lim 1211x x x x x x x x x →→→+--==+=--.2. 设函数()f x 在1x =处可导,且()12f '=,则()()11limx f x f x→--=()B. 12-C.12 A ()()()()()001111limlim 12x x f x f f x f f x x→→----'=-=-=--.3. 设函数()cos f x x =,则π2f ⎛⎫' ⎪⎝⎭=()12A 因为()cos f x x =,()sin f x x '=-,所以πsin 122f π⎛⎫'=-=- ⎪⎝⎭.4. 设函数()f x 在区间[],a b 连续且不恒为零,则下列各式中不恒为常数的是()A.()f aB.()d baf x x ⎰C. ()lim x b f x +→ D.()dtxaf t ⎰D 设()f x 在[],a b 上的原函数为()F x .A 项,()0f a '=⎡⎤⎣⎦;B 项,()()()d 0b a f x x F b F a ''⎡⎤=-=⎡⎤⎣⎦⎢⎥⎣⎦⎰;C 项,()()lim 0x b f x F b +→''⎡⎤==⎡⎤⎣⎦⎢⎥⎣⎦;D 项,()()dt x a f t f x '⎡⎤=⎢⎥⎣⎦⎰.故A 、B 、C 项恒为常数,D 项不恒为常数.5.2d x x =⎰()A. 33x C + B. 3x C +C. 33x C +D. 2x C +C 2d x x =⎰33x C +.6. 设函数()f x 在区间[],a b 连续,且()()()d d u uaaI u f x x f t t =-⎰⎰,,a u b <<则()I u () A.恒大于零 B.恒小于零 C.恒等于零 D.可正,可负C 因定积分与积分变量所用字母无关,故()()()()()()d d d d d 0uuuaaaaauaI u f x x f t t f x x f x x f x x =-=+==⎰⎰⎰⎰⎰.7. 设函数()ln z x y =+,则()1,1z x∂=∂().B. 12B 因为()ln z x y =+,1z x x y ∂=∂+,所以()1,112z x∂=∂. 8. 设函数33z x y =+,则zy∂∂=(). A. 23x B. 2233x y +C. 44yD. 23yD 因为33z x y =+,所以zy∂∂=23y . 9. 设函数z=xe y,则∂2z∂x ∂y =(). A. e x B .e y C .xe y D .ye xB 因为z=xe y,则∂z∂x =e y, ∂2z∂x ∂y =e y .10. 设事件A ,B 相互独立,A ,B 发生的概率分别为,,则A ,B 都不发生的概率为().B 事件A ,B 相互独立,则A ,B 也相互独立,故P(A B )=P(A )P(B )=×=. 二、填空题(11~20小题,每小题4分,共40分) 11.函数()51f x x =-的间断点为x =________.1 ()f x 在x =1处无定义,故()f x 在x =1处不连续,则x =1是函数()f x 的间断点.12.设函数f (x )={lnx,x ≥1,a −x,x <1在1x =处连续,则a =________.1 ()()11lim lim 1x x f x a x a --→→=-=-,因为函数()f x 在1x =处连续,故()()1lim 1ln10x f x f -→===,即a -1=0,故a =1.13. 0sin 2lim 3x xx→=________.23 00sin 22cos 2lim lim 33x x x x x →→== 23.14. 当x →0时,()f x 与sin 2x 是等价无穷小量,则()0lim sin 2x f x x→=________.1 由等价无穷小量定义知,()0lim1sin 2x f x x →=.15. 设函数sin y x =,则y '''=________.cos x-因为sin y x =,故cos y x '=,sin y x ''=-,cos y x '''=-.16.设曲线y=a x 2+2x 在点(1,a+2)处的切线与直线y=4x 平行,则a=________.1 因为该切线与直线y=4x 平行,故切线的斜率k=4,而曲线斜率y ′(1)=2a+2,故2a+2=4,即a=1. 17. 22e d x x x =⎰________.2e x C + 22222e d e d e x x x x x x C ==+⎰⎰.18.πsin 20e cos d x x x =⎰________.e-1 ()πππsin sin sin 222e cos d ed sin exxx x x x ===⎰⎰ =e-1.19.21d 1x x+∞=+⎰________.π2220011πd lim d limarctan limarctan 0112a a a a a x x x a x x +∞→∞→∞→∞====++⎰⎰.20. 设函数e x z y =+,则d z =________.e d d x x y +d d d z zz x y x y∂∂=+=∂∂e d d x x y +. 三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分) 计算()20lim 1xx x →+.解: ()()2212lim 1lim e xx x x x x →→⎡⎤+=⎢⎥⎣⎦=1+. 22.(本题满分8分)设函数y=sin x 2+2x ,求dy.解:因为()222cos 22cos 2y x x x x ''=+=+, 故()2d 2cos 2d y x x x =+. 23.(本题满分8分) 计算e1ln d .x x ⎰解:()e e11e ln d ln d ln 1x x x x x x =-⎰⎰e e 1x=-1.=24.(本题满分8分)设()y y x =是由方程e 1y xy +=所确定的隐函数,求d d y x.解:方程e 1y xy +=两边对x 求导,得d de 0d d yy yy x x x ++=. 于是d de y y yx x=-+. 25.(本题满分8分)(1)求常数a ;(2)求X 的数学期望E(X )和方差D(X ).解: (1)因为+++a =1,所以a =. (2) E(X )=0×+1×+2×+3×=.D(X )()()()()22220 1.90.21 1.90.12 1.90.33 1.90.4=-⨯+-⨯+-⨯+-⨯ =.26.(本题满分10分)求函数()31413f x x x =-+的单调区间、极值、拐点和曲线()y f x =的凹凸区间.解:函数的定义域为(-∞,+∞).24,2.y x y x '''=-=令0.y '=,得 2.x =±0y ''=,得x =0.(如下表所示)函数()f x 的单调增区间为(-∞,-2),(2,+∞), 函数()f x 的单调减区间为(-2,2), 曲线的拐点坐标为(0,1), 曲线的凸区间为(-∞,0), 曲线的凹区间为(0,+∞). 27.(本题满分10分)求函数()22,f x y x y =+在条件231x y +=下的极值.解:作辅助函数()()(),,,231F x y f x y x y λλ=++-()22231x y x y λ=+++-.令220,230,2310,x y F x F y F x y λλλ'=+=⎧⎪'=+=⎨⎪'=+-=⎩ 得232,,131313x y λ===-. 因此,(),f x y 在条件231x y +=下的极值为231,131313f ⎛⎫= ⎪⎝⎭.28.(本题满分10分)设曲线24y x =- (x ≥0)与x 轴,y 轴及直线x =4所围成的平面图形为D .(如图中阴影部分所示). (1)求D 的面积S.(2)求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积V.解: (1)面积()()2422024d 4d S x x x x =---⎰⎰3324440233x x x x ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭16.=(2)体积420πd V x y =⎰()4π4d y y =-⎰241=π402y y ⎛⎫- ⎪⎝⎭8π=.。