第一章焊接电弧及其电特性-欢迎进入山东大学材料科学与工程
- 格式:pptx
- 大小:1.44 MB
- 文档页数:37
焊接方法知识点整理第一章电弧物理基础1.电弧:在一定条件下通过两电极间气体的一种导电过程。
或一种气体放电现象。
2.等离子体态:由于电离气体整体行为表现为电中性,即电离气体内正负电荷数相等,所以称这种气体状态为等离子态。
焊接电弧本质是一种等离子体。
3.气体粒子的碰撞:弹性:气体粒子只产生动能的传递和再分配,碰撞后粒子动能之和不变。
非弹性:部分或全部转化为内能,如果此内能大于激励电压则粒子被激励,如果此能量大于电离电压时也产生电离。
只有非弹性碰撞才产生电离过程,为气体空间制造带电粒子。
4. 气体的电离:按是否需要外界电离源来维持放电,分为自持放电、非自持放电。
非自持放电:带电粒子由外界电离源所引起,呈暗放电状态,外界电离源取消后,放电立刻停止。
自持放电:当电流大于一定数值时,气体导电过程本身可以产生所需带电粒子,放电过程可以维持,成为自持放电。
自持放电区间:自持暗放电、辉光放电、电弧放电。
5. 电弧放电特点:1)电流密度大,2)阴极电压低,3)高温(非常适合焊接需要)6. 电离:在一定条件下,中性气体分子或原子分离为正离子或电子的现象称电离。
7. 第一电离能:使中性气体粒子失去第一个电子所需要的最低外加能量为第一电离能,eV 为单位。
8. 电离种类:热电离、电场电离、光电离。
热电离:高温下气体粒子受热作用,在热运动中相互碰撞产生的。
电场电离:带电粒子从电场中获得能量,通过碰撞而产生的电离过程。
光电离:中性粒子接受光辐射的作用而产生的电离现象。
9. 电子发射:热发射、电场发射、热发射、粒子碰撞发射。
电子发射:阴极表面的分子或原子,接受外界能量而释放自由电子到电弧空间的现象。
逸出功:产生电子发射需要的最低外加能量。
金属表面带有氧化物,逸出功小。
热发射:金属表面承受热作用,电子具有大于逸出功而产生电子发射的现象。
电场发射:金属表面温度不高,但存在强电场并在表面附近形成加大电位差时,金属内自由电子受库仑力,到一定程度时,阴极有较多电子发射出来,这种现象为电场发射,或自发射。
焊接工艺学第一章焊接电弧1.什么叫焊接电弧?电弧是两电极之间或电极与母材之间的气体介质中产生强烈而持久的放电现象2.最小电压原理在电流和周围条件一定的情况下,稳定燃烧的电弧将自动选择一个适当的断面,以保证电弧的电场强度具有最小的数值,即在固定弧长上的电压最小。
这意味着电弧总是保持最小的能量消耗。
3.电离电子发射电弧放电两个最基本物理现象气体介质的电离和电极的电子发射4.电离种类1)热电离气体粒子受热的作用而产生的电离称热电离。
其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。
根据气体分子运动理论可知,气体的温度高低意味着气体粒子(包括中性粒子、电子和离子)总体动能的大小,亦即气体粒子平均运动速度的快慢。
2)场致电离当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。
3)光电离中性粒子接受光辐射的作用而产生的电离现象称为光电离。
不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。
5.电子发射种类根据外加能量的不同,电子发射可分为:(1)热发射:金属表面承受热作用而产生电子发射的现象称为热发射。
(2)场致发射:当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射(自发射)。
(3)光发射:当金属电极表面接受光辐射时,电极表面的自由电子能量增加,当电子的能量达到一定值时能飞出电极的表面,这种现象称为光发射。
(4)粒子碰撞发射:高速运动的粒子(电子或正离子)碰撞金属电极表面时,将能量传给电极表面的电子,使电子能量增加并飞出电极表面,这种现象称为粒子的碰撞发射。
6.阳极区导电机构电弧燃烧时,阳极区的任务主要是接受来自弧柱占总电流 99.9% 的电子流,同时还要向弧柱区发送约占总电流 0.1% 的正离子流。
§1.2 焊接电弧特性电弧特性是指电弧在导电行为方面表现出的一些特征,其中的电弧电特性与电弧热平衡、电弧稳定性等有很深的联系,是很重要的事项。
焊接电弧静特性焊接电弧动特性阴极斑点和阳极斑点电弧的阴极清理作用最小电压原理电弧的挺直性与磁偏吹1. 焊接电弧静特性1)电弧静特性曲线变化特征(与金属电阻对应理解)电弧的电流·电压特性左图概念性示出稳定状态下焊接电弧的电流·电压特性,称作电弧静特性曲线。
静特性曲线是在①某一电弧长度数值下,在②稳定的保护气流量和③电极条件下(还应包括其他稳定条件),改变电弧电流数值,在电弧达到稳定燃烧状态时所对应的电弧电压曲线。
呈现3个区段的变化特点下降特性区(负阻特性区)平特性区上升特性区3个特性区域的特点是由于电弧自身性质所确定的,主要和电弧自身形态、所处环境、电弧产热与散热平衡等有关在小电流区:电弧电压随电流的增大而减小,呈现负阻特性。
原因如下:电流小时,电弧热量低,导电性差,需要较高的电场推导电荷运动;电弧极区(特别是阴极区),温度低,提供电子能力差,会形成较强的极区电场;电流增大:电弧中产生和运动等量的电荷不再需要更高的电场;电弧自身性质具有保持热量动态平衡的能力当电流稍大时:焊条金属将产生金属蒸气的发射和粒子流。
消耗能量,故E不用降低当电流进一步增大时,金属蒸气的发射和等离子流的冷却作用进一步增强,同时由于电磁收缩力的作用,电弧断面不能随电流的增加而成比例的增加,电弧电压降升高,电弧静特性呈正特性。
埋弧焊电弧静特性曲线埋弧焊电弧的散热损失小,且电弧中基本没有GTA、GMA那样的等离子流存在,采用粗焊丝大电流,电弧特性呈下降趋势。
电弧特性反应了电弧的导电性能和变化特征,电弧种发生的许多现象都与静特性有关,也可以用于对比解释各种电弧焊方法的差别③电极条件非熔化电极情况下,电极成分对电弧电压会有一定程度的影响④母材情况母材热导率影响所形成的熔池大小以及母材热输入量中散失热量的快慢,对电流产生间接的冷却作用。