全品学练考 选修2-3
- 格式:doc
- 大小:858.56 KB
- 文档页数:21
全品学练考测评卷高中数学选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第一课时加法原理与乘法原理(一)基础检验:1.某班有男生26名,女生23名,现在要从中派选1人参加演讲比赛,则有不同的选派方法有()种 A.26 B.23 C.49 D.512.从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以乘飞机。
一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘这些交通工具从甲地到乙地的不同走法有() A.10 B.12 C.4 D.73.小王家的书柜里有8本不一样的语文书,10本不一样的数学书,先从中取出一本语文书和一本数学书,则不同的取法有()A.2 B .18 C.40 D.804.由三个数码组成的号码锁,每个数码可取0,1,2,……,9中的任意一个数字,不同的开锁号码设计共有________个。
5. 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法有____种。
6.人们习惯把最后一位是6的多位数叫做“吉祥数”,则无重复数字的4位吉祥数(首位不能是0)共有____个。
能力提升7.[2013⋅济南模拟]如图1-1-1所示,使电路接通,开关不同的开闭方式有()种A.11B.20C.21D.128.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系内位于第一、二象限的不同点的个数是()A.18B.16C.14D.109.某公司员工义务献血,在体检合格的人中,O型血的人有10人,A型血的人有5人,B型血的人有8人,AB 型血的人有3人。
从四种血型的人中各选一人去献血,不同的选法种数为() A.1200 B.600 C.300 D.2610.四位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,答对甲题得100分,答错得-100分,答对乙题得90分,答错得-90分。
全品学练考语文选修下答案一、解释下列句子中括号前面的字词:(每空1分,共46分)1、太行之阳()有盘谷 [填空题] *_________________________________(答案:南面|南边)2、名声昭()于时 [填空题] *_________________________________(答案:显扬|彰显)3、昌黎韩愈闻其言而壮()之 [填空题] *_________________________________(答案:推崇|赞美)4、恒()惴栗 [填空题] *_________________________________(答案:经常|常常)5、穷()回溪 [填空题] *_________________________________(答案:穷尽)6、意()有所极 [填空题] *_________________________________(答案:旨趣|想法)7、因()坐法华西亭 [填空题] *_________________________________(答案:由于)8、游于是()乎始 [填空题] *_________________________________(答案:从这里)9、无()远不到 [填空题] *_________________________________(答案:无论)10、缘()染溪 [填空题] *_________________________________(答案:沿着)11、被()于来世者何如哉 [填空题] *_________________________________(答案:施及| 影响)12、外与天际() [填空题] *_________________________________(答案:连接)13、攒()蹙()累积 [填空题] *_________________________________(答案:聚集,收缩|聚集收缩) 14、颓然就()醉 [填空题] *_________________________________(答案:接近|靠近)15、必有过人之节() [填空题] *_________________________________(答案:节操|操守)16、使之忍小忿而就()大谋 [填空题] *_________________________________(答案:成就|完成)17、其锋不可犯( ),而其势未可乘() [填空题] *_________________________________(答案:对抗,利用)18、非有平生之素() [填空题] *_________________________________(答案:早有的交情)19、非子房其谁全()之 [填空题] *_________________________________(答案:保全)20、夫人之有一能,而使后人尚()之如此 [填空题] *_________________________________(答案:尊重|推崇)21、辙生()好为文 [填空题] *_________________________________(答案:生性|生来)22、气可以养而致() [填空题] *_________________________________(答案:得到)23、以为文者气之所形() [填空题] *_________________________________(答案:显现)24、虽()无所不读 [填空题] *_________________________________(答案:虽然)25、虽()多而何为 [填空题] *_________________________________(答案:即使)26、故决然()舍去 [填空题] *_________________________________(答案:的样子 |......的样子)27、太尉以()才略冠天下 [填空题] *_________________________________(答案:凭借)28、闻一言以自壮( ) [填空题] *_________________________________(答案:使得到提高 |使......得到提高) 29、临()池学书 [填空题] *_________________________________(答案:靠近)30、方羲之之不可强()以仕() [填空题] *_________________________________(答案:勉强, 做官)31、而尝极()东方 [填空题] *_________________________________(答案:穷尽)32、岂有徜徉肆恣() [填空题] *_________________________________(答案:放纵|纵情|任意放纵)33、羲之之书晚乃()善 [填空题] *_________________________________(答案:才)34、则其所能(),盖亦以精力自致()者 [填空题] *_________________________________(答案:能做的事|这里指写字,取得|达到) 35、书()‘晋王右军墨池’之六字于楹间以揭()之 [填空题] *_________________________________(答案:写,标识)36、推()王君之心 [填空题] *_________________________________(答案:推究|考察)37、岂爱人之善(),虽()一能不以废() [填空题] *_________________________________(答案:长处,即使,埋没)二、指出下列句子中括号前面字的活用现象并解释:(每空1分,共12分)1、则树()旗旄 [填空题] *_________________________________(答案:名词作动词,树起)2、武夫前()呵 [填空题] *_________________________________(答案:名词作状语,在前面)3、飘()轻裾,翳长袖 [填空题] *_________________________________(答案:动词的使动用法 ,使飘动)4、日()与其徒上高山 [填空题] *_________________________________(答案:名词作状语,每日|每天)6、望西山,始指异()之 [填空题] *_________________________________(答案:形容词的意动用法,以为奇异) 7、目()为党人 [填空题] *_________________________________(答案:名词作动词,视|名词作动词,看) 8、臣妾()于吴者 [填空题] *_________________________________(答案:名词作动词,做奴仆)9、池水尽黑() [填空题] *_________________________________(答案:名词作动词,变成黑色) 10、又下()石焉者 [填空题] *_________________________________(答案:名词用作动词,扔下)11、以娱()其意于山水之间 [填空题] *_________________________________(答案:形容词的使动用法,使快乐) 12、岂爱人之善(),虽一能不以废 [填空题] *_________________________________(答案:形容词作名词,长处)三、指出下列句子中的通假字并解释:(每空1分,共8分)1.意有所及,梦亦同趣() [填空题] *_________________________________(答案:通趋,到)2.教授王君盛恐其不章()也 [填空题] *_________________________________(答案:通彰,显明|通彰,显著)3.才畯()满前 [填空题] *_________________________________(答案:通俊,出众)4.秀外而惠()中 [填空题] *_________________________________(答案:通慧,聪慧)5.卒()然相遇于朝野之间 [填空题] *_________________________________(答案:通猝,突然)6.自余为僇()人 [填空题] *_________________________________(答案:通戮,刑罚)7.郑伯肉袒牵羊以逆() [填空题] *_________________________________(答案:通迎,欢迎)8.养其全锋而待其弊() [填空题] *_________________________________(答案:通敝,疲敝)四、判断下列句式(每空2分,共24分)1、大丈夫之遇知于天子() [填空题] *_________________________________(答案:被动句)2、以为凡是州之山水有异态者() [填空题] *_________________________________(答案:定语后置 |定语后置句) 3、理乱不知,黜陟不闻() [填空题] *_________________________________(答案:宾语前置|宾语前置句) 4、无不足兮奚所望() [填空题] *_________________________________(答案:宾语前置|宾语前置句) 5、书“晋王右军墨池”之六字于楹间以揭之。
全品高中物理选修二在高中课程中,物理作为一门重要的科学学科,对于学生的科学素养和综合能力培养具有重要作用。
选修课程《全品高中物理选修二》旨在进一步拓展学生对物理知识的理解和应用能力,让学生更深入地认识物理学的精髓。
本文档将对该选修课程的内容进行全面介绍。
第一章:力学1.1 牛顿第一定律牛顿第一定律是力学的基础,它指出物体在受力作用下,如果没有其他力的干扰,将保持静止或匀速直线运动。
我们将通过具体的实例和简明扼要的说明来解释和运用该定律,帮助学生建立对力学的基本理解。
1.2 牛顿第二定律牛顿第二定律描述了力和物体运动之间的关系,它表明物体的加速度与作用力成正比,与物体的质量成反比。
我们将通过实验和计算题目,帮助学生深入理解和运用该定律。
1.3 牛顿第三定律牛顿第三定律阐述了相互作用力的性质,在任何情况下,两个物体之间的相互作用力总是相等且方向相反。
我们将通过生动的例子和实验,让学生了解和应用这一重要定律。
第二章:热学2.1 温度和热量温度和热量是热学中的基本概念,它们对于理解热现象和热传递具有重要意义。
我们将通过实验和案例分析,让学生明确温度和热量之间的关系,以及它们对物体的影响。
2.2 火力和动力火力和动力是热学领域的重要内容,它们关注热能的转化和利用。
我们将介绍火力和动力的原理和应用,如燃烧和引擎的工作原理等。
第三章:光学3.1 光的传播与反射光的传播和反射是光学中的重要概念,也是理解光学现象和应用的基础。
我们将通过真实的实验和具体的案例,让学生了解光的传播规律和反射定律,并引导学生运用这些知识解决问题。
3.2 光的折射和色散光的折射和色散是光与介质相互作用的重要现象,也是光学研究的重点。
我们将通过实验和生动的图像,让学生建立对光的折射和色散现象的直观认识。
第四章:电学4.1 电流和电阻电流和电阻是电学中的基本概念,对于理解电的运动和电路的工作原理至关重要。
我们将通过实验和简单的电路模型,让学生掌握电流和电阻的概念,并培养学生解决电路问题的能力。
人教A高中数学选修2-3同步训练1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个解析:选B.分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36个无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684解析:选C.(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为:A66-A44×A33=576.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法种数为()A.42 B.30C.20 D.12解析:选A.分两类:①两个新节目相邻的插法有6A22种;②两个新节目不相邻的插法有A26种.故N=6×2+6×5=42.4.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允有空袋,且红口袋中不能装入红球,则有______种不同的放法.解析:先装红球,且每袋一球,所以有A14×A44=96(种).答案:96一、选择题1.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600C.4320 D.5040解析:选B.利用插空法,先将4个音乐节目和1个曲艺节目全排列有A55种,然后从6个空中选出2个空将舞蹈节目全排列有A26种,所以共有A55A26=3600(种).故选B.2.某省有关部门从6人中选4人分别到A、B、C、D四个地区调研十二五规划的开局形势,要求每个地区只有一人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有()A.300种B.240种C.144种D.96种解析:选B.A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有() A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88A210C.A88A27D.A88A26解析:选A.运用插空法,8名学生间共有9个空隙(加上边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88×A29种排法.5.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有()A.48种B.192种C.240种D.288种解析:选B.(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.6.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是() A.36 B.32C.28 D.24解析:选A.分类:①若5在首位或末位,共有2A12×A33=24(个);②若5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题7.5人站成一排,甲必须站在排头或排尾的不同站法有________种.解析:2A44=48.答案:488.3个人坐8个位置,要求每人的左右都有空位,则有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).解析:先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1440种排法.答案:1440三、解答题10.7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步计数原理,共有A23A55=720种分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24 A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).11.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字的比1325大的四位数?解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时,有A35个;第二类:2在个位时,首位从1,3,4,5中选定1个有A14种,十位和百位从余下的数字中选,有A24种,于是有A14×A24(个);第三类:4在个位时,与第二类同理,也有A14×A24(个).由分类加法计数原理得:共有A35+2A14×A24=156(个).(2)为5的倍数的五位数可分为两类:第一类:个位上为0的五位数有A45个;第二类:个位上为5的五位数有A14×A34(个),故满足条件的五位数共有A45+A14×A34=216(个).(3)比1325大的四位数可分为三类:第一类:形如2,3,4,5,共有A14×A35 (个);第二类:形如14,15,共有A12×A24(个);第三类:形如134,135,共有A12×A13(个).由分类加法计数原理可得,比1325大的四位数共有:A14×A35+A12×A24+A12×A13=270(个).12.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)2名女生站在一起有站法A22种,视为一种元素与其余5人全排,有A66种排法,所以有不同站法A22×A66=1440(种).(2)先站老师和女生,有站法A33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A44种,所以共有不同站法A33×A44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A44种,而由高到低有从左到右和从=420(种).右到左的不同,所以共有不同站法2×A77A44(4)中间和两侧是特殊位置,可分类求解如下:①老师站在两侧之一,另一侧由男生站,有A12×A14×A55种站法;②两侧全由男生站,老师站除两侧和正中的另外4个位置之一,有A14×A24×A44种站法,所以共有不同站法A12×A14×A55+A14×A24×A44=960+1152=2112(种).。
模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。
人教A版高中数学选修2-3全册知能训练目录第1章1.1知能优化训练第1章1.2.1第一课时知能优化训练第1章1.2.1第二课时知能优化训练第1章1.2.2第一课时知能优化训练第1章1.2.2第二课时知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.2.3知能优化训练第2章2.3.1知能优化训练第2章2.3.2知能优化训练第2章2.4知能优化训练第3章3.1知能优化训练第3章3.2知能优化训练1.从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地到B 地有4条路,则从A 地到B 地不同走法的种数是( )A .3+2+4=9B .1C .3×2×4=24D .1+1+1=3解析:选C.由题意从A 地到B 地需过C 、D 两地,实际就是分三步完成任务,用乘法原理.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A .3种B .6种C .7种D .9种解析:选C.分3类:买1本书,买2本书和买3本书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).3.(2011年高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13. 4.将3封信投入6个信箱内,不同的投法有________种.解析:第1封信有6种投法,第2、第3封信也分别有6种投法,因此共有6×6×6=216种投法.答案:216一、选择题1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .81解析:选B.要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.2.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为( )A .1+1+1=3B .3+4+2=9C .3×4×2=24D .以上都不对答案:B3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线( )A .24种B .16种C .12种D .10种解析:选C.完成该任务可分为四类,从每一个方向入口都可作为一类,如图:从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C.第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据乘法计数原理,共有6×6=36种方法.5.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条B.20条C.25条D.10条解析:选A.第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).6.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A.36个B.18个C.9个D.6个解析:选B.分3步完成,1,2,3这三个数中必有某一个数字被使用2次.第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.二、填空题7.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5、6、4,由分步乘法计数原理知,选法总数为N=5×6×4=120.答案:1208.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的4种颜色中任选1种着色.根据分步乘法计数原理,共有6×5×4×4=480种着色方案.答案:4809.从1,2,3,4,7,9六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为________.解析:(1)当取1时,1只能为真数,此时对数的值为0.(2)不取1时,分两步:①取底数,5种;②取真数,4种.其中log23=log49,log32=log94,log24=log39,log42=log93,∴N=1+5×4-4=17.答案:17三、解答题10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种选法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理,共可以组成7×7×6=294个不同的三位数.11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法?解:若黄瓜种在第一块土地上,则有3×2×1=6种不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2×1=6(种).故不同的种植方法共有6×3=18(种).12.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类加法计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步乘法计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类加法计数原理,共有30+20+24=74种选法.1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个解析:选B.分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36个无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684解析:选C.(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为:A66-A44×A33=576.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法种数为()A.42 B.30C.20 D.12解析:选A.分两类:①两个新节目相邻的插法有6A22种;②两个新节目不相邻的插法有A26种.故N=6×2+6×5=42.4.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允有空袋,且红口袋中不能装入红球,则有______种不同的放法.解析:先装红球,且每袋一球,所以有A14×A44=96(种).答案:96一、选择题1.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600C.4320 D.5040解析:选B.利用插空法,先将4个音乐节目和1个曲艺节目全排列有A55种,然后从6个空中选出2个空将舞蹈节目全排列有A26种,所以共有A55A26=3600(种).故选B.2.某省有关部门从6人中选4人分别到A、B、C、D四个地区调研十二五规划的开局形势,要求每个地区只有一人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有()A.300种B.240种C.144种D.96种解析:选B.A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有() A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88A210C.A88A27D.A88A26解析:选A.运用插空法,8名学生间共有9个空隙(加上边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88×A29种排法.5.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有()A.48种B.192种C.240种D.288种解析:选B.(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.6.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是() A.36 B.32C.28 D.24解析:选A.分类:①若5在首位或末位,共有2A12×A33=24(个);②若5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题7.5人站成一排,甲必须站在排头或排尾的不同站法有________种.解析:2A44=48.答案:488.3个人坐8个位置,要求每人的左右都有空位,则有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).解析:先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1440种排法.答案:1440三、解答题10.7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步计数原理,共有A23A55=720种分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24 A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).11.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字的比1325大的四位数?解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 14种,十位和百位从余下的数字中选,有A 24种,于是有A 14×A 24(个);第三类:4在个位时,与第二类同理,也有A 14×A 24(个).由分类加法计数原理得:共有A 35+2A 14×A 24=156(个).(2)为5的倍数的五位数可分为两类:第一类:个位上为0的五位数有A 45个;第二类:个位上为5的五位数有A 14×A 34(个),故满足条件的五位数共有A 45+A 14×A 34=216(个).(3)比1325大的四位数可分为三类:第一类:形如2,3 ,4 ,5 ,共有A 14×A 35(个);第二类:形如14 ,15 ,共有A 12×A 24(个); 第三类:形如134 ,135 ,共有A 12×A 13(个).由分类加法计数原理可得,比1325大的四位数共有:A 14×A 35+A 12×A 24+A 12×A 13=270(个).12.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22×A 66=1440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33×A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2×A 77A 44=420(种). (4)中间和两侧是特殊位置,可分类求解如下:①老师站在两侧之一,另一侧由男生站,有A 12×A 14×A 55种站法;②两侧全由男生站,老师站除两侧和正中的另外4个位置之一,有A 14×A 24×A 44种站法,所以共有不同站法A 12×A 14×A 55+A 14×A 24×A 44=960+1152=2112(种).1.5A35+4A24=()A.107B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.4×5×6×…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n解析:选D.原式可写成n·(n-1)·…×6×5×4,故选D.3.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240解析:选C.排法种数为A66=720.4.下列问题属于排列问题的是________.①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.解析:①选出的2人有不同的劳动内容,相当于有顺序.②选出的2人劳动内容相同,无顺序.③5人一组无顺序.④选出的两个数作为底数或指数其结果不同,有顺序.答案:①④一、选择题1.甲、乙、丙三地客运站,需要准备在甲、乙、丙三地之间运行的车票种数是() A.1 B.2C.3 D.6解析:选D.A23=6.2.已知A2n+1-A2n=10,则n的值为()A.4 B.5C.6 D.7解析:选B.由A2n+1-A2n=10,得(n+1)n-n(n-1)=10,解得n=5.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送法种数是() A.5 B.10C.20 D.60解析:选C.A25=20.4.将3张不同的电影票分给10人中的3人,每人一张,则不同的分法种数是() A.2160 B.720C.240 D.120解析:选B.A310=10×9×8=720.5.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是()A.8 B.12C.16 D.24解析:选B.设车站数为n,则A2n=132,n(n-1)=132,∴n =12.6.S =1!+2!+3!+…+99!,则S 的个位数字为( )A .0B .3C .5D .7解析:选B.∵1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,…∴S =1!+2!+3!+…+99!的个位数字是3.二、填空题7.若A m 10=10×9×…×5,则m =________.解析:10-m +1=5,得m =6.答案:68.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧ n +3≤2n ,n +1≤4,n ∈N *,得n =3, ∴A n +32n +A n +14=6!+4!=744. 答案:7449.甲、乙、丙、丁四人轮读同一本书,则甲首先读的安排方法有________种. 解析:甲在首位,相当于乙、丙、丁全排,即3!=3×2×1=6.答案:6三、解答题10.解不等式:A x 9>6A x -29.解:原不等式可化为9!(9-x )!>6·9!(9-x +2)!, 其中2≤x ≤9,x ∈N *,∴(11-x )(10-x )>6,即x 2-21x +104>0,∴(x -8)(x -13)>0,∴x <8或x >13.又∵2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.11.解方程3A x 8=4A x -19.解:由3A x 8=4A x -19得3×8!(8-x )!=4×9!(10-x )!. ∴3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!. 化简得:x 2-19x +78=0,解得x 1=6,x 2=13.∵x ≤8,且x -1≤9,∴原方程的解是x =6.12.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题.1.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空档中放入3盏亮灯,即C 35=10.2.某中学要从4名男生和3名女生中选4人参加公益劳动,若男生甲和女生乙不能同时参加,则不同的选派方案共有( )A .25种B .35种C .820种D .840种解析:选A.分3类完成:男生甲参加,女生乙不参加,有C 35种选法;男生甲不参加,女生乙参加,有C 35种选法;两人都不参加,有C 45种选法.所以共有2C 35+C 45=25(种)不同的选派方案.3.(2010年高考大纲全国卷Ⅰ)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种解析:选A.法一:可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 24+C 23C 14=18+12=30种选法.法二:总共有C 37=35种选法,减去只选A 类的C 33=1(种),再减去只选B 类的C 34=4(种),故有30种选法.4.(2011年高考江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:从1,2,3,4中任取两个数的组合个数为C 24=6,满足一个数是另一个数两倍的组合为{1,2},{2,4},故P =26=13.答案:13一、选择题1.9名会员分成三组讨论问题,每组3人,共有不同的分组方法种数为( )A .C 39C 36B .A 39A 36C.C 39C 36A 33 D .A 39A 36A 33 解析:选C.此为平均分组问题,要在分组后除以三组的排列数A 33.2.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( ) A .480 B .240 C .120 D .96 解析:选B.先把5本书中两本捆起来,再分成4份即可,∴分法数为C 25A 44=240.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48解析:选A.6人中选4人的方案有C 46=15(种),没有女生的方案只有一种,所以满足要求的方案总数有14种.4.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有( ) A .36个 B .72个 C .63个 D .126个解析:选D.此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C 49=126(个).5.(2010年高考大纲全国卷Ⅱ)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B.先将1,2捆绑后放入信封中,有C 13种方法,再将剩余的4张卡片放入另外两个信封中,有C 24C 22种方法,所以共有C 13C 24C 22=18种方法.6.如图所示的四棱锥中,顶点为P ,从其他的顶点和各棱中点中取3个,使它们和点P 在同一平面内,不同的取法种数为( )A .40B .48C .56D .62解析:选C.满足要求的点的取法可分为3类:第1类,在四棱锥的每个侧面上除点P 外任取3点,有4C 35种取法; 第2类,在两个对角面上除点P 外任取3点,有2C 34种取法;第3类,过点P 的四条棱中,每一条棱上的两点和与这条棱异面的两条棱的中点也共面,有4C 12种取法.所以,满足题意的不同取法共有4C 35+2C 34+4C 12=56(种). 二、填空题7.在50件产品中有4件是次品,从中任意抽出5件,至少有三件是次品的抽法共有________种.解析:分两类,有4件次品的抽法为C 44C 146(种);有三件次品的抽法有C 34C 246(种),所以共有C 44C 146+C 34C 246=4186种不同的抽法.答案:41868.某运动队有5对老搭档运动员,现抽派4个运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.解析:先抽取4对老搭档运动员,再从每对老搭档运动员中各抽1人,故有C 45C 12C 12C 12C 12=80(种). 答案:809.2011年3月10日是第六届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有________种.(用数字作答)解析:分配方案有C 25C 23C 11A 22×A 33=10×3×62=90(种). 答案:90三、解答题 10.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种? 解:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2,实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有C 14C 13C 22A 22(种),然后将这三组再加上一个空盒进行全排列,即共有C 14C 13C 22A 22·A 44=144(种). 11.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?解:法一:共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).法二:将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个位置放入隔板,将其分为七部分),有C 69=84种放法.故共有84种不同的选法.12.如图,在以AB 为直径的半圆周上,有异于A 、B 的六个点C 1、C 2、C 3、C 4、C 5、C 6,直径AB 上有异于A 、B 的四个点D 1、D 2、D 3、D 4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C 1点的有多少个? (2)以图中的12个点(包括A 、B )中的4个点为顶点,可作出多少个四边形?解:(1)可分三种情况处理:①C 1、C 2、…、C 6这六个点任取三点可构成一个三角形;②C 1、C 2、…、C 6中任取一点,D 1、D 2、D 3、D 4中任取两点可构成一个三角形; ③C 1、C 2、…、C 6中任取两点,D 1、D 2、D 3、D 4中任取一点可构成一个三角形.∴C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个). (2)构成一个四边形,需要四个点,且无三点共线,∴共有C 46+C 36C 16+C 26C 26=360(个).1.计算C 28+C 38+C 29等于() A .120 B .240C .60D .480解析:选A.原式=C 39+C 29=C 310=120.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15解析:选C.C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14. 3.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .C 25+C 28+C 23B .C 25C 28C 23C .A 25+A 28+A 23 D .C 216解析:选A.分三类:一年级比赛的场数是C 25,二年级比赛的场数是C 28,三年级比赛的场数是C 23,再由分类加法计数原理可求.4.把8名同学分成两组,一组5人学习电脑,一组3人做生物实验,则不同的安排方法有________种.解析:C 38=56. 答案:56一、选择题1.下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④ 答案:C2.已知平面内A 、B 、C 、D 这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )A .3B .4C .12D .24解析:选B.C 34=4.3.C 03+C 14+C 25+C 36+…+C 1720的值为( ) A .C 321 B .C 320C .C 420 D .C 421 解析:选D.原式=()C 04+C 14+C 25+C 36+…+C 1720 =()C 15+C 25+C 36+…+C 1720=(C 26+C 36)+…+C 1720=C 1721=C 21-1721=C 421. 4.若A 3n =12C 2n ,则n 等于( ) A .8 B .5或6 C .3或4 D .4解析:选A.A 3n =n (n -1)(n -2),C 2n =12n (n -1),∴n (n -1)(n -2)=6n (n -1),又n ∈N *,且n ≥3.解得n =8.5.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15解析:选A.法一:直接法:分两类,第一类张、王两人都不参加,有C 44=1种选法;第二类张、王两人只有1人参加,有C 12C 34=8种选法.故共有C 44+C 12×C 34=9种选法.法二:间接法:C 46-C 24=9(种).6.把三张游园票分给10个人中的3人,分法有( ) A .A 310种 B .C 310种C .C 310A 310种D .30种 解析:选B.三张票没区别,从10人中选3人即可,即C 310. 二、填空题7.若C 13n =C 7n ,则C 18n =________.解析:∵C 13n =C 7n ,∴13=n -7,∴n =20, ∴C 1820=C 220=190. 答案:1908.C 22+C 23+C 24+…+C 210=________. 解析:原式=C 33+C 23+C 24+…+C 210=C 34+C 24+…+C 210=C 35+C 25+…+C 210=C 311=165. 答案:1659.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________________________________________________________________________种.解析:(间接法)共有C 47-C 44=34种不同的选法. 答案:34 三、解答题10.若C 4n >C 6n ,求n 的取值集合. 解:∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n n ≥6⇒⎩⎨⎧n !4!(n -4)!>n !6!(n -6)!n ≥6⇒⎩⎨⎧ n 2-9n -10<0n ≥6⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6、7、8、9,∴n 的集合为{6,7,8,9}.11.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至少有1女且至多有3男当选.解:(1)甲当选且乙不当选,∴只需从余下的8人中任选4人,有C 48=70种选法.(2)至少有1女且至多有3男时,应分三类:第一类是3男2女,有C 36C 24种选法; 第二类是2男3女,有C 26C 34种选法; 第三类是1男4女,有C 16C 44种选法.由分类计数原理知,共有C 36C 24+C 26C 34+C 16C 44=186种选法. 12.现有10件产品,其中有2件次品,任意抽出3件检查. (1)正品A 被抽到有多少种不同的抽法? (2)恰有一件是次品的抽法有多少种? (3)至少一件是次品的抽法有多少种?解:(1)C 29=9×82=36(种).(2)从2件次品中任取1件有C 12种方法,从8件正品中取2件有C 28种方法,由分步乘法计数原理,不同的抽法共有C 12×C 28=2×8×72=56(种). (3)法一:含1件次品的抽法有C 12C 28种,含2件次品的抽法有C 22×C 18种,由分类加法计数原理,不同的抽法共有C 12×C 28+C 22×C 18=56+8=64(种).法二:从10件产品中任取3件的抽法为C 310种,不含次品的抽法有C 38种,所以至少1件次品的抽法为C 310-C 38=64(种).1.(x +2)6的展开式中x 3的系数是( ) A .20 B .40 C .80 D .160解析:选D.法一:设含x 3的为第r +1项,则T r +1=C r n x6-r ·2r,令6-r =3,得r =3,故展开式中x 3的系数为C 36×23=160.法二:根据二项展开式的通项公式的特点:二项展开式每一项中所含的x 与2分得的次数和为6,则根据条件满足条件x 3的项按3与3分配即可,则展开式中x 3的系数为C 36×23=160.2.(2x -12x)6的展开式的常数项是( )A .20B .-20C .40D .-40解析:选B.由题知(2x -12x )6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3,故常数项为(-1)3C 36=-20.3.1.056的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33 D .1.34解析:选 D.1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.0375+0.0025+…≈1.34.4.(2011年高考浙江卷)设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数是A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4, 由B =4A 知,4C 26(-a )2=C 46(-a )4,解得a =±2. 又∵a >0,∴a =2. 答案:2一、选择题1.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( ) A .-5 B .5 C .-10 D .10解析:选D.(1-x )5中x 3的系数-C 35=-10,-(1-x )6中x 3的系数为-C 36·(-1)3=20,故(1-x )5-(1-x )6的展开式中x 3的系数为10.2.(x -2y )10的展开式中x 6y 4项的系数是( ) A .840 B .-840 C .210 D .-210解析:选A.在通项公式T r +1=C r 10(-2y )r x10-r 中,令r =4,即得(x -2y )10的展开式中x 6y 4项的系数为C 410·(-2)4=840.3.(2010年高考陕西卷)⎝⎛⎭⎫x +ax 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1 B.12 C .1D .2解析:选D.由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,∴5-2r =3,∴r =1,∴C 15·a =10,∴a =2.4.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =4,n =3 B .x =4,n =4 C .x =5,n =4 D .x =6,n =5解析:选C.由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1,分别将选项A 、B 、C 、D 代入检验知,仅有C 适合.5.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数指数幂的项数是( ) A .0 B .2 C .4 D .6解析:选B.T r +1=C r 10x 10-r 2·⎝⎛⎭⎫-13r ·x -r =C r 10⎝⎛⎭⎫-13r ·x 10-3r2.若是正整数指数幂,则有10-3r2为正整数,∴r 可以取0,2,∴项数为2.6.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4解析:选C.(1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)·(1-5x 13+10x 23-10x +5x 43-x 53),x的系数是-10+12=2.二、填空题 7.⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝⎛⎭⎪⎫-13x 3=-160x .答案:-160x8.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3. ∴10xa 3=10a 2(a >0),∴x =1a.答案:1a9.(2010年高考辽宁卷)(1+x +x 2)⎝⎛⎭⎫x -1x 6的展开式中的常数项为__________. 解析:(1+x +x 2)⎝⎛⎭⎫x -1x 6=(1+x +x 2)[ C 06x 6⎝⎛⎭⎫-1x 0+C 16x 5⎝⎛⎭⎫-1x 1+C 26x 4⎝⎛⎭⎫-1x 2+C 36x 3⎝⎛⎭⎫-1x 3。
全品学练考测评卷高中数学选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第一课时加法原理与乘法原理(一)基础检验:1.某班有男生26名,女生23名,现在要从中派选1人参加演讲比赛,则有不同的选派方法有()种 A.26 B.23 C.49 D.512.从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以乘飞机。
一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘这些交通工具从甲地到乙地的不同走法有() A.10 B.12 C.4 D.73.小王家的书柜里有8本不一样的语文书,10本不一样的数学书,先从中取出一本语文书和一本数学书,则不同的取法有()A.2 B .18 C.40 D.804.由三个数码组成的号码锁,每个数码可取0,1,2,……,9中的任意一个数字,不同的开锁号码设计共有________个。
5. 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法有____种。
6.人们习惯把最后一位是6的多位数叫做“吉祥数”,则无重复数字的4位吉祥数(首位不能是0)共有____个。
能力提升7.[2013⋅济南模拟]如图1-1-1所示,使电路接通,开关不同的开闭方式有()种A.11B.20C.21D.128.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系内位于第一、二象限的不同点的个数是()A.18B.16C.14D.109.某公司员工义务献血,在体检合格的人中,O型血的人有10人,A型血的人有5人,B型血的人有8人,AB 型血的人有3人。
从四种血型的人中各选一人去献血,不同的选法种数为() A.1200 B.600 C.300 D.2610.四位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,答对甲题得100分,答错得-100分,答对乙题得90分,答错得-90分。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
高中物理选修3-2 新课标全品学练考引言高中物理选修3-2属于新课标要求的内容,是学生在高中物理学习中的重要部分。
本文将为大家介绍高中物理选修3-2的全品学练考,以帮助学生更好地理解和掌握相关知识和技能。
1. 考试内容高中物理选修3-2主要包括以下几个方面的内容:1.1 力学的基本概念和基本定律这部分内容包括力、速度、加速度、质量等基本概念的定义和理解,以及力学定律如牛顿三定律的掌握。
1.2 质点运动的描述和研究这部分内容涉及质点运动的描述、运动的基本量的计算和研究方法,包括位移、速度、加速度、运动方程等。
1.3 力的合成与分解这部分内容主要介绍力的合成与分解的原理和计算方法,帮助学生理解和应用这一概念。
1.4 牛顿运动定律的应用这部分内容主要涉及如何应用牛顿运动定律解决相关问题,包括力的分析、平衡条件的确定等。
1.5 力的工作与功的计算这部分内容介绍如何计算力的工作和功的大小以及功和能量的转换关系。
1.6 动能定理与机械能守恒定律这部分内容涉及动能定理和机械能守恒定律的原理和应用,帮助学生理解和运用这些定律。
1.7 弹性力和渐开线运动这部分内容主要介绍弹性力和渐开线运动的原理和计算方法,帮助学生理解和应用这些概念。
2. 学习方法和技巧要想在高中物理选修3-2的学习中取得好成绩,学生需要采取一些有效的学习方法和技巧。
以下是一些值得注意的地方:2.1 理解基本概念和定律的意义在学习物理过程中,理解基本概念和定律的意义是非常重要的。
学生需要通过实际例子和实验来深入理解这些概念和定律。
2.2 多做习题和实验通过多做习题和实验,可以提高对物理知识的理解和应用能力。
学生可以选择一些经典习题和实验进行练习,或者组织小组讨论来加深对内容的理解。
2.3 创造性思维和应用能力的培养物理学习需要培养学生的创造性思维和应用能力。
学生可以通过思考和讨论来培养这方面的能力,例如在解决实际问题时提出自己的解决方案。
2.4 形成概念图和思维导图形成概念图和思维导图有助于整理和系统化知识。
全品学练考测评卷高中数学选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第一课时加法原理与乘法原理(一)基础检验:1.某班有男生26名,女生23名,现在要从中派选1人参加演讲比赛,则有不同的选派方法有()种 A.26 B.23 C.49 D.512.从甲地到乙地,可以乘火车,可以乘汽车,也可以乘轮船,还可以乘飞机。
一天中,火车有4班,汽车有2班,轮船有3班,飞机有1班,那么一天中乘这些交通工具从甲地到乙地的不同走法有() A.10 B.12 C.4 D.73.小王家的书柜里有8本不一样的语文书,10本不一样的数学书,先从中取出一本语文书和一本数学书,则不同的取法有()A.2 B .18 C.40 D.804.由三个数码组成的锁,每个数码可取0,1,2,……,9中的任意一个数字,不同的开锁设计共有________个。
5. 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法有____种。
6.人们习惯把最后一位是6的多位数叫做“吉祥数”,则无重复数字的4位吉祥数(首位不能是0)共有____个。
能力提升7.[2013 模拟]如图1-1-1所示,使电路接通,开关不同的开闭方式有()种A.11B.20C.21D.128.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系位于第一、二象限的不同点的个数是()A.18B.16C.14D.109.某公司员工义务献血,在体检合格的人中,O型血的人有10人,A型血的人有5人,B型血的人有8人,AB 型血的人有3人。
从四种血型的人中各选一人去献血,不同的选法种数为() A.1200 B.600 C.300 D.2610.四位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,答对甲题得100分,答错得-100分,答对乙题得90分,答错得-90分。
若四位同学的总分我0分,则这四位同学不同的得分情况的总数是()A.48B.36C.24D.1811.十字路口来往的车辆,如果不允许回头,共有_____种行车路线。
12.市的出租车车牌号规定为“川A•T××××”的格式,其中后四位为数字,那么市最多可以有____辆出租车。
13.某校学生会有高一年级5人,高二年级6人,高三年级4人组成。
(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每个年级选一人为学生会常委,有多少种不同的选法?14.学校举行运动会,会有同学参加三项不同的比赛。
(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项比赛只许一人参加,有多少种不同的结果?15.如图1-1-2所示,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块地里种1种花,且相邻的两块种不同的花,则不同的种法总数为多少?第2课时加法原理与乘法原理(二)基础检验:1.已知x∈{2,3,7},y∈{-31,-24,4},则xy可以表示不同值的个数是()。
A.1+1=2B.1+1+1=3C.2×3=6D.3×3=92.已知集合A={1,2,3,4},B={5,6,7},C={8,9},现在从这三个集合中取出两个集合,再从两个集合中各取出一个元素,组成一个含有两个元素的集合,则可以组成的集合共()个。
A.24 B.36 C.26 D.273.由1,2,3这三个数字组成的没有重复数字的自然数共有()个A.6B.8C.12D.154.某城市的由七位升为八位(首位数字均不为0),则该城市可增加的部数是()A.9×8×7×6×5×4×3B.8×96C.9×106D.81×1065.甲、乙、丙三同学,各自写出三个不同的实数,然后,从甲的三个数中任意取出一个作为横坐标,从乙的三个数字中任意取出一个作为纵坐标,从丙的三个数字中任意取出一个作为竖坐标,则一共可以在空间直角坐标系中得到______个点。
能力提升:6.一位同学希望在自己的暑假期间给他的4位好友每人发一条短信问候,为省下时间学习,他准备从手机草稿箱已有信息中直接选出信息发出,已知他的手机草稿箱中只有3条适合的信息,则该同学不同的发短信的方式共有()种。
A.81 B.24 C.64 D.127.某一电子元件串联电路中,共有6个焊点,则因焊点脱落而电路不通的可能性的种数是()种。
A.6 B.36 C.63 D.648.已知A,B是两个非空集合,定义A⊕B={x x=a+b,a∈A,b∈B}为集合A,B的“合集”。
若A={0,1,2},B={1,2,3,4},则A⊕B中元素的个数是()A.4B.5C.6D.169.某班举办元旦文艺晚会,准备的节目表中有6个节目。
为了增进师生友谊,如果保持这些节目的相对顺序不变,在他们中间插入两个老师表演的节目,则不同的插入方法有__种。
10.从1到10的所有自然数中任意取出两个相加,所得的和为奇数的不同情形有__种。
11.如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有多少对?12.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,会有多少种不同的选法?13.用0,1,2,3,4五个数字,可以组成多少个能被3整除的无重复数字的三位数?14.[2014⋅一模]对于任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都为正偶数或者正奇数时,m *n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m *n =m n 。
在此定义下,求集合M ={(b a b a *,=12,*∈N a ,*∈N b }中的元素。
1.2 排列与组合1.2.1 排列基础检验1.从四个人中选出三个人的排列有( )种。
A.43B.34C.A 34 D.162.89×90×91×……×100可表示为( )。
A.A 10100B.A 11100C.A 12100D.A 13100 3.从5本不同的书中选两本送给2名同学,每人1本,不同的给法种数为( )4.e d c b a ,,,,共五个人,从中选1名组长和1名副组长,但a 不能当副组长,不同的选法种数是( ) A.20 B.16 C.10 D.65.用0,1,2,3,4这5个数字组成没有重复的三位数,其中偶数有____个。
6.【2014⋅高三一诊】世界华商大会的某分会场有C B A ,,三个分展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的分配方法有( )种。
7.【2014⋅适应性考试】航天员在进行一项太空实验时,先后要实施6个程序,其中程序B 和C 都不与程序D 相邻,则实验顺序的编排方法共有( )。
8.【2014⋅七中月考】某教师一天上3个班级的课,每班一节课,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节课不算连上),那么这位教师一天的课的排法有( )。
9,.七人并排站成一行,如果甲、乙两人不相邻,那么不同的排法有( )。
10.E D C B A ,,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,那么不同的排法有( )。
11.若3x A 8=419-x A ,则x =___________。
12.从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程0=++C By Ax 中的C B A ,,,所得的经过坐标原点的直线有_____条。
13.取1,2,3,4,5这五个数字中的两个分别作为一个对数的底数和真数,则所得的不同的值有_____个。
14.七个人排成一排,在下列情况之下,各有多少种不同的排法:(1).甲排头; (2)甲不排头,也不排尾;(3)甲、乙、丙三人必须在一起; (4)甲、乙之间有且仅有两人;(5)甲、乙、丙三人两两不相邻; (6)甲在乙的左边(不一定相邻);(7)甲不排头,乙不排正当中15.某高校从某系的10名优秀毕业生中选出4人分别到西部的四座城市参加中国西部的经济开发建设,其中甲同学不到,乙同学不到,共有多少种不同的派遣方案?16.用1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按照由小到大的顺序排列成一个数列。
(1)43251是这个数列的第几项? (2)这个数列的第96项是多少?(3)求所有五位数的个位上的数字之和; (4)求这个数列的各项和。
1.2.2 组合基础检验:1.从2,3,5,7,11,13,17,19这八个数字中,任取两个,则在下列各种问题中是组合问题的为( )A.相加可以得到多少个不同的和B.相乘可以得到多少个不同的积C.相减可以得到多少个不同的差D.相除可以得到多少个不同的商2.如果2n C =28,则n 为( )。
3. 7名志愿者中安排6人在周六、周日两天参加社区公益活动。
若每天安排3人,则不同的安排方案有( )种。
4.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中至少选一门,则不同的选法有( )。
5.对于所有满足1≤m ≤n ≤5的自然数n m ,。
方程2x +m n C 2y =1所表示的不同的椭圆个个数为( )个。
6.《新课程标准》规定,那些希望在人文、社会科学等方面发展的学生,除了修完必修容和选修系列一的全部容外,基本要还要在系列三的6个专题中选修2个专题,高中阶段共获得16个学分。
则一位同学的不同选课方案有( )种。
T7.设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则S 的值为()。
8.【2013⋅二模】甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有一门相同的选法种数为()9.【2014⋅石室中学月考】为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训的项目及其人数分别为:乐器1人,舞蹈2人,演唱2人,若每人只参加一个项目部,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为()。
10. 5名乒乓球队员中,有2名老队员和3名新队员。
现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有_____种。
11.某校开设9门课供学生选修,其中3门课程由于上课时间相同,只多选1门,学校规定每位同学选修4门,则共有_____种不同的选修方案。
12. 4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有_____种。