传感器原理及应用-第6章 - 压电式传感器剖析
- 格式:ppt
- 大小:5.85 MB
- 文档页数:5
压电式传感器原理
压电式传感器是一种常见的传感器类型,它利用压电效应来检测和转换压力、应变、加速度和力的变化。
压电效应指的是当一些特定的晶体或陶瓷材料受到压力或应变时,会产生电荷的聚集或分离,从而形成电压信号。
这种材料被称为压电材料。
常见的压电材料包括石英、压电陶瓷和聚偏二氟乙烯等。
压电式传感器的工作原理是将压电材料作为传感器的感应元件,当外界施加压力或应变时,材料会发生弹性变形,从而产生电荷的分布变化。
这个变化可以通过电极连接在压电材料上的方式来测量。
为了测量这一电荷信号,压电式传感器通常由压电材料、电极和信号调理电路组成。
当外部压力或应变作用于传感器时,压电材料产生电荷,在电极中产生电压。
信号调理电路会将这个电压信号放大、过滤和转换成可读取的信号,比如电流或电压。
压电式传感器具有许多优势,如高精度、快速响应、宽频率范围和良好的耐用性。
这些特点使得压电式传感器广泛应用于工业控制、机械测量、医疗设备和汽车工程等领域。
值得注意的是,压电式传感器的输出信号与外部压力或应变之间存在一定的非线性关系,因此在实际应用中需要进行校准和补偿。
另外,在选择和使用压电式传感器时,还需考虑适当的电极设计、尺寸选取以及工作环境对传感器性能的影响。
[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。
这种现象称为逆压电tt效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型()的含意。
yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。
这种现象称为逆压电效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。
6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
压电式传感器的原理与应用1. 压电式传感器的工作原理压电式传感器是一种将机械变形转化为电信号的传感器。
其工作原理基于压电效应,即某些晶体材料在受到机械应力作用后能够产生电荷分布的不对称性,进而产生电压差。
压电材料通常采用多晶形式的陶瓷材料,如氢化铅锆钛(PZT)等。
当外部施加机械应力时,压电材料中的晶格结构发生变形,导致晶体表面的正负电荷分布不均匀。
这样,就可以通过测量材料表面的电荷分布情况,间接获得机械应力的信息。
压电式传感器通常由压电材料、电极、输出电路等组成。
当受到机械应力作用时,压电材料上的电荷分布不均匀,导致电极上产生电压信号。
该电压信号可以通过输出电路进行放大和处理,最终输出与机械应力相关的电信号。
2. 压电式传感器的优点•高灵敏度:压电式传感器可以将微小的机械变形转化为电信号,具有高灵敏度。
•快速响应:由于压电材料具有快速的机械响应特性,压电式传感器的响应速度较快。
•宽频响特性:压电材料具有宽频带特性,能够在广泛的频率范围内进行测量。
•耐高温性:压电材料可以在高温环境中工作,适用于一些特殊的工业场合。
3. 压电式传感器的应用领域3.1 声学领域压电式传感器在声学领域应用广泛。
由于其高灵敏度和宽频响特性,可以用于声波的检测和测量。
常见的应用包括:•声波传感:压电式传感器可以转化声波的机械振动为电信号,用于声音的采集和分析。
•声压级测量:通过测量压电式传感器的输出信号,可以准确测量声波的压力级别。
3.2 力学领域压电式传感器在力学领域也有重要的应用。
由于其快速响应和高灵敏度,可以用于力学量的测量和控制。
常见的应用包括:•机械振动检测:通过测量压电式传感器的输出信号,可以判断机械系统的运动状态和振动频率。
•力的测量:将压电式传感器安装在受力部位,可以测量受力大小和方向。
3.3 气象领域压电式传感器在气象领域也有应用。
由于其高灵敏度和宽频响特性,可以用于气象参数的测量和监测。
常见的应用包括:•风速测量:通过测量压电式传感器受到的气流压强,可以准确测量风速。
压电式压力传感器的工作原理压电式压力传感器是一种常见的压力测量设备,它利用压电效应将压力信号转换为电信号。
其工作原理主要基于压电材料的特性和压力作用下的变形效应。
压电效应是指某些晶体在受力或变形时会产生电荷。
压电材料是一种具有这种特性的材料,如石英、锆钛酸铅等。
当外力作用于压电材料时,材料的晶格结构会发生微小的变形,从而引发电荷的分离和聚集,产生电势差,即压电效应。
这种效应的典型代表是压电晶体的晶须,它们在受到压力时会产生电荷的分离。
压电式压力传感器利用压电材料的压电效应来测量压力。
传感器通常由一块薄片状的压电材料和电极构成。
当外界施加压力时,压电材料会发生微小的形变,导致电荷的分离和聚集。
电极会收集这些电荷,并将其转换为电信号输出。
具体而言,压电式压力传感器的工作过程可以分为以下几个步骤:1. 压力施加:传感器的压电材料暴露在待测压力下,压力会导致材料发生微小的形变。
2. 形变产生电荷:压力作用下,压电材料的晶格结构发生微小的变化,导致电荷的分离和聚集。
3. 电荷收集和转换:电极将产生的电荷收集起来,并将其转换为电信号。
4. 电信号输出:电信号经过放大和处理后,输出为与压力成比例的电压或电流信号。
压电式压力传感器具有许多优点,例如高灵敏度、快速响应、宽工作范围、高可靠性等。
它们广泛应用于工业自动化、汽车工程、医疗设备等领域,用于测量各种流体和气体的压力。
压电式压力传感器利用压电材料的压电效应将压力信号转换为电信号。
通过压力施加、形变产生电荷、电荷收集和转换以及电信号输出等步骤,传感器能够准确测量压力值,并将其转化为可读的电信号。
这种传感器在各个领域中都有广泛的应用,为我们提供了重要的压力测量手段。