初中数学公式大全(1)
- 格式:doc
- 大小:1.32 MB
- 文档页数:6
初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。
初中数学78个公式以下是初中数学常见的78个公式(按照相关的知识点进行分类):1. 平方差公式:$a^2 - b^2 = (a - b)(a + b)$2. 比例相等:$\frac{a}{b} = \frac{c}{d}$3. 二次根式:$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$4. 平方根的开平方:$(\sqrt{a})^2 = a$5. 次方公式:$a^n \cdot a^m = a^{n + m}$6. 分指数:$\frac{a^n}{a^m} = a^{n - m}$7. 平方和分解:$a^2 + b^2 + 2ab = (a + b)^2$8. 平方差分解:$a^2 - b^2 = (a + b)(a - b)$9. 平方差和分解:$a^2 + b^2 - 2ab = (a - b)^2$10. 一元一次方程:$ax + b = 0$11. 一元二次方程:$ax^2 + bx + c = 0$12. 一元三次方程:$ax^3 + bx^2 + cx + d = 0$13. 直线方程:$y = kx + b$14. 平行线的性质:$k_1 = k_2$15. 垂直线的性质:$k_1 \cdot k_2 = -1$16. 直线的截距式:$\frac{x}{a} + \frac{y}{b} = 1$17. 圆的标准方程:$(x - a)^2 + (y - b)^2 = r^2$18. 圆心坐标公式:$(a, b)$19. 圆的半径:$r$20. 弧长:$L = 2\pi r$21. 扇形面积公式:$S = \frac{\theta}{360^\circ} \pi r^2$22. 正方形的周长:$P = 4a$23. 正方形的面积:$S = a^2$24. 长方形的周长:$P = 2(a + b)$25. 长方形的面积:$S = ab$26. 三角形的周长:$P = a + b + c$27. 三角形的面积:$S = \frac{1}{2}bh$28. 直角三角形的勾股定理:$a^2 + b^2 = c^2$29. 等腰三角形的斜边:$2l = b$30. 锐角三角形的高:$h = b\sin A$31. 五边形的内角和:$(n - 2) \cdot 180^\circ$32. 正多边形的内角和:$(n - 2) \cdot 180^\circ$33. 两角之和的三角函数:$\sin(A \pm B) = \sin A \cos B \pm\cos A \sin B$34. 两角之差的三角函数:$\cos(A \pm B) = \cos A \cos B \pm\sin A \sin B$35. 两角之和的正切函数:$\tan(A \pm B) = \frac{\tan A \pm\tan B}{1 \mp \tan A \tan B}$36. 同角三角函数之商:$\tan A = \frac{\sin A}{\cos A}$37. 逆三角函数关系:$\sin^{-1} (\sin A) = A$,$\cos^{-1}(\cos A) = A$,$\tan^{-1} (\tan A) = A$38. 二项式定理:$(a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n - 1}b + \binom{n}{2} a^{n - 2}b^2 + \ldots + \binom{n}{n - 1} ab^{n - 1} + \binom{n}{n} b^n$39. 等比数列通项公式:$a_n = a_1 \cdot q^{n - 1}$40. 等差数列通项公式:$a_n = a_1 + (n - 1)d$41. 等差数列求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$42. 任意项数列求和公式:$S_n = \frac{a_1 + a_n}{2} \cdot n$43. 数列首项:$a_1$44. 数列公差:$d$45. 直角坐标系中两点之间的距离:$d = \sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}$46. 连续整数的和:$S_n=\frac{n}{2}(a_1+a_n)$47. 无穷等差数列的和:$S = \frac{a_1}{1 - q}$48. 平行四边形的周长:$P = 2(a + b)$49. 平行四边形的面积:$S = bh$50. 梯形的面积:$S = \frac{1}{2}(a + b)h$51. 梯形的内角和:$(n - 2) \cdot 180^\circ$52. 三角形内角和定理:$A + B + C = 180^\circ$53. 三角形外角和定理:$A' + B' + C' = 360^\circ$54. 三角形的内心:$(x, y)$55. 三角形的外心:$(x, y)$56. 三角形的重心:$(x, y)$57. 三角形的垂心:$(x, y)$58. 反比例函数:$y = \frac{k}{x}$59. 弧度与角度的转换:$360^\circ = 2\pi \ rad$60. 锐角三角函数的定义:$\sin x = \frac{y}{r}$,$\cos x =\frac{x}{r}$,$\tan x = \frac{y}{x}$61. 负数的平方:$(-a)^2 = a^2$62. 模的性质:$|x| = \begin{cases} x, &x \geq 0\\ -x, &x < 0 \end{cases}$63. 绝对值基本不等式:$|a + b| \leq |a| + |b|$64. 定义域:$x$65. 值域:$y$66. 最大值:$y_\text{max}$67. 最小值:$y_\text{min}$68. 直角三角形的面积:$S = \frac{1}{2}ab$69. 多边形的外角和:$360^\circ$70. 多边形的内角和:$(n - 2) \cdot 180^\circ$71. 渐进线:$y = ax + b$72. 正数的倒数:$\frac{1}{a}$73. 反函数的定义:$f(f^{-1}(x)) = x$,$f^{-1}(f(x)) = x$74. 递增函数:$x_1 < x_2, f(x_1) < f(x_2)$75. 递减函数:$x_1 < x_2, f(x_1) > f(x_2)$76. 弧长的比例:$\frac{S}{L} = \frac{\theta}{360^\circ}$77. 圆周角的比例:$\frac{\theta}{360^\circ} = \frac{L}{2\pi r}$78. 英寸与厘米的换算:$1 \text{ inch} = 2.54 \text{ cm}$这些公式在初中数学中是最常见和最基础的公式,希望对你的学习有所帮助。
初中数学公式大全初中必背1. 一元二次方程:ax^2 + bx + c = 0解的公式:x = (-b±√(b^2-4ac))/(2a)。
2.平方差公式:(a+b)(a-b)=a^2-b^23. 乘法分配律:a(b+c) = ab + ac。
4.加法交换律:a+b=b+a。
5. 乘法交换律:ab = ba。
6.加法结合律:(a+b)+c=a+(b+c)。
7. 乘法结合律:(ab)c = a(bc)。
8.分数的四则运算:相加:a/b + c/d = (ad + bc)/bd。
相减:a/b - c/d = (ad - bc)/bd。
相乘:a/b * c/d = ac/bd。
相除:(a/b) / (c/d) = ad/bc。
9.百分数与小数的转换:小数转百分数:小数×100%。
百分数转小数:百分数÷100。
10.平均数的计算:平均数=总和÷数量。
11.长方形的周长:周长=2(长+宽)。
12.长方形的面积:面积=长×宽。
13.圆的周长:周长=2πr,其中r为半径。
14.圆的面积:面积=πr^215.三角形的周长:周长=边1+边2+边316.三角形的面积:面积=底×高÷217.直角三角形勾股定理:a^2+b^2=c^218. 三角形的正弦定理:a/sinA = b/sinB = c/sinC。
19. 三角形的余弦定理:a^2 = b^2 + c^2 - 2bc × cosA。
20. 三角形的正切定理:tanA = 边长垂直于A的边长/边长邻接A的边长。
21.等腰三角形的性质:两边相等,两角相等。
底角相等(与底边对应的角)。
底边的中线同时也是高。
22.等边三角形的性质:三边相等。
三个内角都是60度。
23.正多边形的内角和公式:(n-2)×180°,其中n为边数。
24.切线与弦的关系:弦长×弦长=切线长×弦长。
初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。
初中数学必背重要公式1. 一次函数的标准方程:y = kx + b2. 二次函数的标准方程:y = ax^2 + bx + c3. 平方差公式:(a+b)^2 = a^2 + 2ab + b^24. 二次差分公式:若数列an的二次差数列为bn,则bn = an+2 - 2an+1 + an5.等差数列通项公式:an = a1 + (n-1)d6.等差数列前n项和公式:Sn = (a1 + an)n/27.等比数列通项公式:an = a1 * q^(n-1)8.等比数列前n项和公式:Sn=a1*(1-q^n)/(1-q)(当q≠1时)Sn=a1*n(当q=1时)9. 乘法公式:(a+b)(c+d) = ac + ad + bc + bd10.因式分解公式:a^2-b^2=(a+b)(a-b)ab + ac = a(b+c)ab - ac = a(b-c)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)11.三角恒等式:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)12.除法公式:sinA/sinB = 2RcosA/cosB = 2RtanA/tanB = 1/2R其中R为三角形外接圆的半径13. 余弦定理:c^2 = a^2 + b^2 - 2abcosC14. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (R为三角形外接圆的半径)15. 牛顿莱布尼茨公式:F(x) = ∫[a,b]f'(x)dx16. 已知函数在点a处的导数值,可根据导数的定义公式求出函数在a附近的近似值:f'(a) = lim(h->0)(f(a+h) - f(a))/h17.反比例函数的标准方程:y=k/x18.等腰三角形的性质:等腰三角形的底边中点到顶角的距离等于底边一半的高19.平行四边形的性质:两对对边分别平行且相等对角线互相平分对角线互相垂直20.鹤嘴锁公式:两条直线的倾角之和等于180°21.三角形的内角和公式:三角形的内角和为180°22.余角公式:互补角的和为90°,补角的和为180°23.同位角公式:同位角互相相等24.同旁内角公式:同旁内角互相相等25.圆的面积公式:S=πr^226.圆的周长公式:C=2πr27.直角三角形的勾股定理:a^2+b^2=c^228.斜率公式:若直线过两点P(x1,y1)和Q(x2,y2),则直线的斜率为m=(y2-y1)/(x2-x1)29.泰勒展开公式:函数f(x)在x=a处的n阶泰勒展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!30. 立方和公式:(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3这些公式在初中数学中非常重要,掌握后能帮助你更好地理解和解决各种数学问题。
初中数学所有公式初中数学公式:一、代数公式1. 二元一次方程:ax + by = c。
2. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)²= a² - 2ab + b²。
3. 平方根公式:√(a² + b²) = √a² + √b²。
4. 求根公式:x = (-b ± √(b² - 4ac)) / 2a。
5. 一次函数:y = kx + b。
6. 二次函数:y = ax² + bx + c。
二、几何公式1. 周长公式:正方形的周长=4a,长方形的周长=2(a+b)。
2. 面积公式:正方形的面积=a²,长方形的面积=a*b,三角形的面积=1/2*底*高。
3. 圆的周长公式:C=2πr,其中π为3.14。
4. 圆的面积公式:S=πr²。
三、比例与百分数公式1. 比例公式:a:b = c:d。
2. 百分数公式:百分数 = (部分 / 全体) * 100%。
3. 增长量与增长率:增长量 = 原值 * 增长率,增长率 = (增长量 / 原值) * 100%。
四、三角函数公式1. 正弦公式:sinA = 对边 / 斜边。
2. 余弦公式:cosA = 临边 / 斜边。
3. 正切公式:tanA = 对边 / 临边。
4. 正负角公式:sin(-A) = -sinA,cos(-A) = cosA。
五、概率与统计公式1. 概率公式:P(A) = 事件A发生的次数 / 总次数。
2. 组合公式:C(n, m) = n! / (m! * (n - m)!),其中n表示总数,m表示选取的个数。
3. 平均数公式:平均数 = (数据之和) / (数据个数)。
六、等价变换公式1. 分配律:a(b + c) = ab + ac。
2. 结合律:(a + b) + c = a + (b + c)。
初中数学所有公式大全一、代数部分。
1. 有理数。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数,即a - b=a+(-b)。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数,即a÷ b =a×(1)/(b)(b≠0)。
2. 整式。
- 同底数幂相乘:a^m· a^n=a^m + n(m,n为正整数)。
- 同底数幂相除:a^m÷ a^n=a^m - n(a≠0,m,n为正整数且m>n)。
- 幂的乘方:(a^m)^n=a^mn(m,n为正整数)。
- 积的乘方:(ab)^n=a^nb^n(n为正整数)。
- 单项式乘以单项式:系数相乘,相同字母的幂分别相乘,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 单项式乘以多项式:m(a + b)=ma+mb。
- 多项式乘以多项式:(a + b)(c + d)=ac+ad+bc+bd。
- 平方差公式:(a + b)(a - b)=a^2-b^2。
- 完全平方公式:(a± b)^2=a^2±2ab + b^2。
3. 一元一次方程。
- 一元一次方程的标准形式:ax + b = 0(a≠0),其解为x=-(b)/(a)。
4. 二元一次方程组。
- 代入消元法:将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
- 加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
5. 一元二次方程。
- 一元二次方程的一般形式:ax^2+bx + c = 0(a≠0)。
【导语】以下是⽆忧考为您整理的初中七年级数学公式,供⼤家学习参考。
⼀、数学图形计算公式1.正⽅形 C:周长S:⾯积a:边长周长=边长×4C=4a⾯积=边长×边长S=a×a2.正⽅体 V:体积a:棱长 表⾯积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3.长⽅形 C周长S⾯积a边长 周长=(长+宽)×2C=2(a+b)⾯积=长×宽S=ab4.长⽅体 V:体积s:⾯积a:长b:宽h:⾼表⾯积(长×宽+长×⾼+宽×⾼)×2S=2(ab+ah+bh) 体积=长×宽×⾼V=abh5.三⾓形 S:⾯积a:底h:⾼⾯积=底×⾼÷2s=ah÷2三⾓形⾼=⾯积×2÷底三⾓形底=⾯积×2÷⾼6.平⾏四边形 S:⾯积a:底h:⾼⾯积=底×⾼s=ah7.梯形 S:⾯积a:上底b:下底h:⾼⾯积=(上底+下底)×⾼÷2s=(a+b)×h÷28.圆 S:⾯积C:周长d:直径r:半径周长=直径×π=2×π×半径C=πd=2πr⾯积=半径×半径×πS=πr2 9圆柱体 V:体积h:⾼s:底⾯积r:底⾯半径c:底⾯周长侧⾯积=底⾯周长×⾼表⾯积=侧⾯积+底⾯积×2体积=底⾯积×⾼=侧⾯积÷2×半径10.圆锥体 V:体积h:⾼s:底⾯积 r:底⾯半径体积=底⾯积×⾼÷3⼆、和差倍商关系计算公式1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2.1倍数×倍数=⼏倍数⼏倍数÷1倍数=倍数⼏倍数÷倍数=1倍数3.加数+加数=和 和-⼀个加数=另⼀个加数4.被减数-减数=差被减数-差=减数差+减数=被减数5.因数×因数=积 积÷⼀个因数=另⼀个因数6.被除数÷除数=商被除数÷商=除数商×除数=被除数7.总数÷总份数=平均数8.和差问题的公式(和+差)÷2=⼤数(和-差)÷2=⼩数9.和倍问题 和÷(倍数-1)=⼩数 ⼩数×倍数=⼤数(或者和-⼩数=⼤数)10.差倍问题 差÷(倍数-1)=⼩数 ⼩数×倍数=⼤数(或⼩数+差=⼤数)三、植树问题 1.⾮封闭线路上的植树问题主要可分为以下三种情形:⑴在⾮封闭线路的两端都要植树 株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1) ⑵在⾮封闭线路的⼀端要植树,另⼀端不要植树 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数 ⑶在⾮封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1) 株距=全长÷(株数+1) 2.封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数四、盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数(⼤盈-⼩盈)÷两次分配量之差=参加分配的份数(⼤亏-⼩亏)÷两次分配量之差=参加分配的份数五、⾏程问题 1.基本公式:速度×时间=路程 路程÷速度=时间路程÷时间=速度 2.相遇问题 相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间3.追及问题 追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间4.列车过桥问题公式】 (桥长+列车长)÷速度=过桥时间(桥长+列车长)÷过桥时间=速度速度×过桥时间=桥、车长度之和5.流⽔问题 顺流速度=静⽔速度+⽔流速度逆流速度=静⽔速度-⽔流速度静⽔速度=(顺流速度+逆流速度)÷2⽔流速度=(顺流速度-逆流速度)÷2六、浓度问题 溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量七、营销问题 1.基本公式:单价×数量=总价 总价÷单价=数量总价÷数量=单价 2.利润问题 利润=售价-成本 利润率=利润÷成本×100%=(售价÷成本-1)×100% 售价=成本×(1+利润率)缴纳税款=营业额×税率利息=本⾦×利率×时间涨跌⾦额=本⾦×涨跌百分⽐3.折扣问题 折扣=实际售价÷原售价×100%(折扣<1)现价=原价×折数少⽤的钱=原价×(100%-折数)4.降价率问题 实际售价=原价×(1-降价率) 降价率=(原价-实际售价)÷原价或降价率=1-实际售价÷原价⼋、⼯程问题1.基本公式 ⼯作效率×⼯作时间=⼯作总量⼯作总量÷⼯作效率=⼯作时间 ⼯作总量÷⼯作时间=⼯作效率 2.⽤假设⼯作总量为“1”的⽅法解⼯程问题的公式: 1÷⼯作时间=单位时间内完成⼯作总量的⼏分之⼏(⼯作效率)1÷单位时间能完成的⼏分之⼏(⼯作效率)=⼯作时间。
初中数学公式大全 17三角形内角和定理三角形三个内角 de 和等于 180°1过两点有且只有一条直线 2两点之间线段最短 18推论 1直角三角形de 两个锐角互余 19推论 2三角形de 一个外角等于和它 不相邻de 两个内角de 和3同角或等角de 补角相等 4同角或等角de 余角相等 5过一点有且只有一条直线和已知直线 垂直 20推论 3三角形de 一个外角大于任何 一个和它不相邻de 内角6直线外一点与直线上各点连接de 所有 线段中,垂线段最短 21全等三角形de 对应边、对应角相等 22边角边公理(SAS)有两边和它们de 夹 角对应相等de 两个三角形全等23角边角公理( ASA)有两角和它们de 夹 边对应相等de 两个三角形全等24推论(AAS)有两角和其中一角de 对 边对应相等de 两个三角形全等25边边边公理(SSS)有三边对应相等de 两个三角形全等7平行公理经过直线外一点,有且只有 一条直线与这条直线平行 8如果两条直线都和第三条直线平行, 这两条直线也互相平行 9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15 定理三角形两边de 和大于第三边 16 推论三角形两边de 差小于第三边 26斜边、直角边公理(HL)有斜边和一 条直角边对应相等de 两个直角三角形全 等27定理 1在角de 平分线上de 点到这个 角de 两边de 距离相等奕之晨教育官网:28定理 2到一个角de 两边de 距离相同 de 点,在这个角de 平分线上 38直角三角形斜边上de 中线等于斜边 上de 一半29角de 平分线是到角de 两边距离相等 de 所有点de 集合 39 定理线段垂直平分线上de 点和这条 线段两个端点de 距离相等30等腰三角形de 性质定理等腰三角形 de 两个底角相等 (即等边对等角) 31推论 1等腰三角形顶角de 平分线平 分底边并且垂直于底边 40逆定理和一条线段两个端点距离相 等de 点,在这条线段de 垂直平分线上 41线段de 垂直平分线可看作和线段两 端点距离相等de 所有点de 集合42定理 1关于某条直线对称de 两个图 形是全等形32等腰三角形de 顶角平分线、底边上de 中线和底边上de 高互相重合 33推论 3等边三角形de 各角都相等,并 且每一个角都等于 60° 43定理 2如果两个图形关于某直线对 称,那么对称轴是对应点连线de 垂直平 分线34等腰三角形de 判定定理如果一个三 角形有两个角相等,那么这两个角所对 de 边也相等(等角对等边) 44定理 3两个图形关于某直线对称,如 果它们de 对应线段或延长线相交,那么 交点在对称轴上35推论 1三个角都相等de 三角形是等 边三角形 45逆定理如果两个图形de 对应点连线 被同一条直线垂直平分,那么这两个图 形关于这条直线对称36推论 2有一个角等于 60°de 等腰三 角形是等边三角形 37在直角三角形中,如果一个锐角等于 30°那么它所对de 直角边等于斜边de 一半 46勾股定理直角三角形两直角边 a 、b de 平方和、等于斜边 c de 平方,即奕之晨教育官网:a^2+b^2=c^2 58平行四边形判定定理3对角线互相平分de四边形是平行四边形47勾股定理de逆定理如果三角形de三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形de内角和等于360°49四边形de外角和等于360°50多边形内角和定理n边形de内角de和等于(n-2)×180°59平行四边形判定定理4一组对边平行相等de四边形是平行四边形60矩形性质定理1矩形de四个角都是直角61矩形性质定理2矩形de对角线相等62矩形判定定理1有三个角是直角de四边形是矩形51推论任意多边de外角和等于360°52平行四边形性质定理1平行四边形de 对角相等63矩形判定定理2对角线相等de平行四边形是矩形53平行四边形性质定理2平行四边形de 对边相等64菱形性质定理1菱形de四条边都相等65菱形性质定理2菱形de对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积de一半,即 S= (a×b)÷254推论夹在两条平行线间de平行线段相等55平行四边形性质定理3平行四边形de对角线互相平分67菱形判定定理1四边都相等de四边形是菱形56平行四边形判定定理1两组对角分别相等de四边形是平行四边形57平行四边形判定定理2两组对边分别相等de四边形是平行四边形68菱形判定定理2对角线互相垂直de平行四边形是菱形69正方形性质定理1正方形de四个角都奕之晨教育官网:。