数字图像相关
- 格式:ppt
- 大小:982.00 KB
- 文档页数:17
数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。
并且,现代多媒体计算机中又广泛采用了数字图像处理技术。
下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。
(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。
数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。
面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。
经过两年半的教学改革与实践,取得了一定的教学效果。
二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。
数字图像相关方法(DICM)前言数字图像相关法(Digital Image Correlation Method,简称DICM),又称为数字散斑相关法(Digital Speckle Correlation Method,简称DSCM),是应用于计算机视觉技术的一种图像测量方法。
数字图像相关(Digital Image Correlation,i.e. DIC)测量技术是应用计算机视觉技术的一种图像测量方法,是一种非接触的、用于全场形状、变形、运动测量的方法。
它是现代先进光电技术、图像处理与识别技术与计算机技术相结合的产物,是现代光侧力学领域的又一新进展。
它将物体表面随机分布的斑点或伪随机分布的人工散斑场作为变形信息载体,是一种对材料或者结构表面在外载荷或其他因素作用下进行全场位移和应变分析的新的实验力学方法。
在实验固体力学领域中,对于不同载荷下,材料和结构表面的变形测量一直是一个较难的课题。
一般包括接触式和非接触式两种,对于一般使用的电阻应变片接触式测量方法,受其测量手段的限制,不能得到全场数据,且测量范围有限,不能得到物体整体上的变形规律。
而对于全场的非接触式光学测量方法,包括干涉测量技术(例如全息照相干涉法,散斑千涉法)和非干涉技术(例如网格法和数字图像相关测量法)。
由于干涉测量技术要求有相干光源,光路复杂,且测量结果易受外界震动的影响,多在具有隔振台的实验室中进行,应用范围受到了极大的限制。
而非干涉测量技术是通过对比变形前后物体表面的灰度强度来决定表面变形量,对光源和测量环境要求较低。
数字图像相关测量技术可以直接采用自然光源或白光源,通过具有一定分辨率的CCD相机采集图像,并利用相关算法进行图像处理得到变形信息,可以说,DIC是一种基于数字图像处理和数值计算的光学测量方法。
由于该技术的直接处理对象是数字图像,而随着科学技术和数字化技术的不断发展与更新,数字图像的分辨率和清晰程度不断扩大,因此,数字图像处理技术的测量精度也在不断提升。
第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像1 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。
2 图像种类:二值图像(Binary Image): 图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。
灰度图像(Gray Scale Image),也称为灰阶图像: 图像中每个像素可以由0(黑)到255(白)的亮度值表示。
0-255之间表示不同的灰度级。
彩色图像(Color Image):每幅彩色图像是由三幅不同颜色的灰度图像组合而成,一个为红色,一个为绿色,另一个为蓝色。
伪彩色图像(false-color)multi-spectral thematic 立体图像(Stereo Image):立体图像是一物体由不同角度拍摄的一对图像,通常情况下我们可以用立体像计算出图像的深度信息。
三维图像(3D Image):三维图像是由一组堆栈的二位图像组成。
每一幅图像表示该物体的一个横截面。
数字图像也用于表示在一个三维空间分布点的数据,例如计算机断层扫描(:en:tomographic,CT)设备生成的图像,在这种情况下,每个数据都称作一个体素。
3 图像显示目前比较流行的图像格式包括光栅图像格式BMP、GIF、JPEG、PNG等,以及矢量图像格式WMF、SVG等。
大多数浏览器都支持GIF、JPG以及PNG图像的直接显示。
SVG格式作为W3C的标准格式在网络上的应用越来越广。
4 图像校准:数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准。
图像的基本属性亮度:也称为灰度,它是颜色的明暗变化,常用0 %~100 %( 由黑到白) 表示。
对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。
比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。
直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。
图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。
2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像相关方法及其应用研究一、本文概述随着信息技术的快速发展,数字图像处理技术已经广泛应用于各个领域,如医学影像、安全监控、卫星遥感、自动驾驶等。
其中,数字图像相关方法作为一种重要的图像处理技术,其在图像匹配、目标跟踪、三维重建等方面发挥着关键作用。
本文旨在深入探讨数字图像相关方法的理论基础、算法实现以及其在各个领域的实际应用,以期能为相关领域的研究人员提供有益的参考和启示。
本文将概述数字图像相关方法的基本概念、发展历程以及主要特点。
本文将详细介绍数字图像相关方法的算法原理,包括基于灰度的方法、基于特征的方法和深度学习方法等,并分析各自的优缺点。
本文还将探讨数字图像相关方法在医学影像处理、安全监控、卫星遥感、自动驾驶等领域的应用案例,并分析其在实际应用中的效果和挑战。
本文将总结数字图像相关方法的研究现状和发展趋势,并提出一些可能的研究方向和建议。
本文希望通过系统介绍数字图像相关方法及其应用研究,为相关领域的研究人员提供全面的理论支持和实践指导,推动数字图像处理技术的进一步发展和应用。
二、数字图像相关方法的基本理论数字图像相关方法(Digital Image Correlation, DIC)是一种通过分析和比较图像序列中像素灰度值的变化来测量物体表面位移和形变的非接触式光学测量技术。
其基本理论主要建立在灰度不变性假设和变形函数的基础上。
灰度不变性假设是数字图像相关方法的核心前提。
它假设物体表面在发生形变时,像素的灰度值保持不变。
这意味着,通过比较不同时刻或不同状态下的图像,我们可以确定像素之间的对应关系,从而计算出物体的位移和形变。
变形函数用于描述物体表面的形变。
在数字图像相关方法中,通常假设物体的形变是连续的,并且可以用一个光滑的变形函数来描述。
这个变形函数可以是线性的,也可以是非线性的,具体取决于物体形变的复杂程度。
通过求解变形函数,我们可以得到物体表面各点的位移和形变信息。
数字图像相关方法的基本流程包括图像预处理、图像匹配和位移场计算等步骤。
DIC是一种非接触式的高精度位移、用于全场形状、变形、运动测量的方法,也是现代光测量力学领域内最有应用前景的测量方法。
其应用研究方向,正朝着从常规材料到新型材料的测量,从弹性问题测量到强塑性问题的测量,从常温到高温的测量,从宏观测量到微观测量的趋势发展。
DIC方法在上世纪80年代初被提出,经过30多年众多学者的研究,DIC 技术上已经非常成熟。
这种方法又被称为数字散斑相关法,它直接处理的对象是具有一定灰度分布的数字图像(散斑图),通过对比材料或者结构表面在变形前后的散斑图运用相关算法得到全场位移和应变。
该方法对实验环境要求极为宽松,并且具有全场测量、抗干扰能力强、测量精度高等优点。
其基本测量原理如下图:用于固体材料和结构表面位移、变形和形貌测量的数字图像相关方法(Digital image correlation, DIC)是一种基于数字图像处理和数值计算的非干涉变形测量方法,与其它基于相干光波干涉原理的光测方法(如电子散斑干涉、云纹干涉法)相比,数字图像相关方法具有其明显和独特的优势:1)仅需要一个(2D DIC)或两个数字相机(3D DIC)拍摄变形前后被测物体表面的数字图像,其光路布置、测量过程和试样准备简单;2)无需激光照明和隔振,对测量环境要求较低;3)可与不同时间分辨率和空间分辨率的数字成像设备(如高速摄像机、光学显微镜、扫描电子显微镜)直接结合,因此适用测量范围广泛。
可以说,数字图像相关方法是当前实验力学领域最活跃也最受关注的光测力学方法之一,作为一种灵活、有效和功能强大的变形测量手段,数字图像相关方法在各种材料和结构表面变形测量、力学和物理参数表征以及验证力学理论和有限元分析的正确性等方面获得了无数令人影响深刻的成功应用。
以上就是关于关于DIC数字图像相关法的介绍,如果想了解更多关于DIC的资料,欢迎咨询武汉中创联达科技有限公司。
数字图像的基本原理
数字图像的基本原理包括图像的采集、表示和处理。
图像的采集是指通过光学传感器或其他设备将物体的光信息转化为数字信号。
光信息首先被分为像素,每个像素包含有关该位置的亮度和颜色信息。
图像的表示是指将图像数据转化为计算机可理解的数字形式。
最常见的表示方法是使用二维矩阵或数组,每个元素表示一个像素的属性。
常见的属性包括灰度值、RGB值或其他颜色模型的数值。
图像的处理指对图像数据进行操作以改变图像的外观或提取有用信息。
常见的图像处理操作包括图像滤波、增强、颜色空间转换、几何变换、图像分割和特征提取等。
通过这些操作,可以改善图像的质量、减少噪声、增强边缘和纹理等细节。
此外,数字图像的基本原理还包括图像的压缩和存储。
图像压缩是指通过编码技术减少图像数据的存储空间和传输带宽,如JPEG、PNG等压缩算法。
图像存储是将图像数据保存在计算机存储介质中,如硬盘、光盘或闪存等。
总之,数字图像的基本原理涉及图像的采集、表示、处理、压缩和存储。
这些原理在计算机视觉、图像处理和计算机图形学等领域起着重要作用。
第2章数字图像的基础知识和基本概念一、数字图像数字图像是以二进制数字组形式表示的二维图像。
利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。
在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。
通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。
图2-1 计算机图形的主要分类1.关于位图图像(1)概念位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。
每个像素都分配有特定的位置和颜色值。
在处理位图图像时,人们所编辑的是像素。
位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。
(2)分辨率位图图像与分辨率有关,也就是说它们包含固定数量的像素。
因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。
图2-2 不同放大级别的位图图像示例(3)特点①位图图像有时需要占用大量的存储空间。
对于高分辨率的彩色图像,由于像素之间独立,所以占用的硬盘空间、内存和显存比矢量图都大。
②位图放大到一定倍数后会产生锯齿。
位图的清晰度与像素点的多少有关。
③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。
④位图的格式有bmp、jpg、gif、psd、tif、png等。
⑤处理软件:Photoshop、ACDSee、画图等。
2.关于矢量图形(1)概念矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。
矢量根据图像的几何特征对图像进行描述。
(2)分辨率矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。
数字图像相关法(DIC)是一种非接触式的高精度位移、用于全场形状、变形、运动测量的方法,也是现代光测量力学领域内最有应用前景的测量方法。
其应用研究方向,正朝着从常规材料到新型材料的测量,从弹性问题测量到强塑性问题的测量,从常温到高温的测量,从宏观测量到微观测量的趋势发展。
DIC方法在上世纪80年代初被提出,经过30多年众多学者的研究,技术上已经非常成熟。
这种方法又被称为数字散斑相关法,它直接处理的对象是具有一定灰度分布的数字图像(散斑图),通过对比材料或者结构表面在变形前后的散斑图运用相关算法得到全场位移和应变。
该方法对实验环境要求极为宽松,并且具有全场测量、抗干扰能力强、测量精度高等优点。
其基本测量原理如下图:Seika公司(中文名:西华数码影像公司)作为一家专业从事智能影像分析系统设计的高科技公司,在DIC系统的研发设计上已有多年经验,并被全球众多的科研单位及院校所认可(中国独家代理商:武汉中创联达科技有限公司)。
我们可以为您提供运用数字图像关联法开发的应变解析软件系统。
通过比较分析样本变形前后的图像,可以对变形和弯曲的量、方向、分布等进行解析。
通过使用本系统,能够以非接触的方式获取物体变形弯曲的数据并将其分布可视化。
对于高速测量、微米单位测量等特殊环境下的测量需要,我们可以在包括软件、相机、照明、专用光学仪器等各个方面提供综合性的解决方案。
产品特点:●能够测量坐标,位移,速度,应变,形状和变形 ●能够显示矢量图,轮廓图 ●支持的图像格式:FIFF 等 ●易于使用的直观界面 ●进程树结构●丰富的后处理功能●支持各种高速相机和高分辨率相机 ●系统支持日/英双语●对应各种情况(离线/在线分析,3D 分析等) 应用:计算精度更多有关DIC测量的相关信息可咨询/。