八年级数学竞赛例题专题 :等腰三角形
- 格式:doc
- 大小:499.00 KB
- 文档页数:10
八年级数学经典压轴题:等腰三角形综合一、等腰三角形的概念等腰三角形是一种特殊的三角形,其中两边的边长相等。
它具有一些独特的性质和特点,我们将在接下来的题目中综合运用这些知识。
二、题目一:等腰三角形的边长计算已知一个等腰三角形的底边为10cm,腰边为12cm,请计算其顶角所对的边长。
解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等。
2.因此,顶角所对的边长也为10cm。
三、题目二:等腰三角形的面积计算已知一个等腰三角形的底边为6cm,腰边为8cm,请计算其面积。
解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等,设顶角所对的边长为x。
2.使用海伦公式计算三角形的面积:\[面积 = \sqrt{s(s-a)(s-b)(s-c)}\],其中s为半周长,\[s = \frac{a+b+c}{2}\]。
3.因此,半周长s为 \[s = \frac{6+8+x}{2}\]。
4.将已知条件代入海伦公式,得到 \[面积 =\sqrt{\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\ frac{6+8+x}{2}}\]。
5.根据题目已知条件,求解方程得到x的值,然后代入公式计算面积。
请根据具体题目所给条件,进行类似的求解步骤。
四、题目三:等腰三角形的性质综合已知一个等腰三角形ABC,底边AB为8cm,腰边AC为10cm。
设D为AB边的中点,请计算以下问题:1.证明三角形ACD为等腰三角形;2.计算三角形ACD的顶角所对的边长;3.计算三角形ACD的面积。
解答步骤:1.由条件可知,AC=10cm,AD=4cm(由D为AB边中点可得)。
2.对比可知,AD=DC,所以三角形ACD为等腰三角形。
3.顶角所对的边为AC,所以顶角所对的边长为10cm。
4.根据等腰三角形的面积公式计算面积:\[面积 = \frac{1}{2}\times AC \times AD\]。
初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。
,过C作CE与a)垂直且交8。
延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。
,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。
,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。
= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。
,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。
£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。
= 60。
,/4(78 = 40。
八年级数学竞赛专题训练16 等腰三角形的性质阅读与思考等腰三角形是一类特殊三角形,具有特姝的性质,这些性质为角度的讣算、线段相等、直线位宜关 系的证明等问题提供了新的理论依据.因此,在解与等腰三角形相关的问题时,除了要运用全等三角形 知识方法外,又不能囿于全等三角形,应善于利用等腰三角形的性质探求新的解题途径,应熟悉以下基 本图形、基本结论.(2)图2中,只要下述四个条件:®AB = AC;②Z1 = Z2:③CD = DB ;④AD 丄BC 中任意两个成立,就可以推出英余两个成 立.例题与求解【例1】如图,在8BC 中,D 在AC 上,E 在AB 上,且AB=AC. BC=BD, AD=DE=BE, 则Z 心 .(五城市联赛试题)解题思路:图中有很多相关的角,用ZA 的代数式表示这些角,建立关于ZA 的等式.【例2】如图,在AABC 中,已知ZBAC=90°, AB=AC. D 为AC 中点,AE 丄BD 于E,延长AE 交 BC 于F,求证:ZADB=ZCDF ・(安徽省竞賽试题)解题思路:ZADB 与ZCDF 对应的三角形不全等,因此,需构造全等三角形,而在等腰三角形中, 作顶角的平分线或底边上的髙(中线)是一条常用的辅助线.(1)图 1 中,ZA = 180°-2ZB,ZB=ZC=180(>-ZA2ZDAC = 2ZB = 2ZC ・【例3】如图,在△ABC中,AC=BC, ZACB=90\ D是AC上一点,且A£垂直BD的延长线于& 又AE=-BD,求证:BD是ZABC的角平分线.2(北京市竞赛试题)解题思路:ZABC的角平分线与AE边上的高重合,故应作辅助线补全图形,构造全等三角形、等腰三角形.【例4】如图,在/XABC 中,ZBAC=ZBCA=44°, M、)gABC内一点,使ZMCA=30°, ZA/AC=16°, 求/BMC度数.解题思路:作等腰'ABC的对称轴(如图1),通过计算,证明全等三角形,又44516—60。
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
专题17 等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等; ⑵从角入手,证明一个三角形的两个角相等. 2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明; ⑵当所证的两条线段位于同一个三角形,通过等角对等边证明; ⑶寻找某条线段,证明所证的两条线段都与它相等.善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.ABCABDM FC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .BCA D图2B CA D图1O ABCMD EEA BDCFBCAD能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b ac a c =+-,44422c a b a b =+-,则△ABC ()A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .300 B .300或1500 C .1200或1500 D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)第5题图 第8题图 第9题图ACDBB ′A ′(第2题)AB CDEF (第3题)(第4题)9915BACBCABCADFG E9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)B ACDA BDFE C图1A B D FE C图2A ′E ′D ′C ENMBDB 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 8 7.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题)ABC(第1题)(第2题)ABD E CA BPACBB ′图1图2A BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)ABQCABD CFE11.如图,在平面直角坐标系中,O为坐标原点,直线l:12y x m=-+与x轴、y轴的正半轴分别相交于点A、B,过点C(-4,-4)作平行于y轴的直线交AB于点D,CD=10.⑴求直线l的解析式;⑵求证:△ABC是等腰直角三角形;⑶将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形,请直接写出所有符合条件的点P的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).⑴求B点坐标;⑵如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=900,连接OD,求∠AOD度数;⑶如图3,过点A作y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连接FM,等式AM FMOF-=1是否成立?若成立,请证明;若不成立,说明理由.图1 图2 图3。
1.已知等腰三角形的两边长是4cm 和9cm ,则此三角形的周长是()A .17cm B .13cmC .22cmD .17cm 或22cm 2.等腰三角形一腰上的高与另一腰的夹角为60°,则等腰三角形的底角度数为()A .15°B .30°C .15°或75°D .30°或150°3.如图,在Rt △ABC中,∠C =90°,AB =10,BC =6.点F 是边BC 上一动点,过点F 作FD∥AB 交AC 于点D ,E 为线段DF 的中点,当BE 平分∠ABC 时,AD 的长度为.4.如图,在△ABC 中,∠ACB =90°,点D 、E 、F 分别是AB 、BC 、CA 的中点.若CD =2,则线段EF 的长是.八年级数学等腰三角形与直角三角形专项习题(含答案)5.(有难度)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.6.如图所示,△ABC中,AB=BC,DF⊥BC于点D,交AC于F,DE⊥AB于点E.⑴若∠AFD=155°,求∠EDF的度数;⑵若点F是AC的中点,求证:∠CFD=1∠B.1.解:①4cm 是腰长时,三角形的三边分别为4cm 、4cm 、9cm ,∵4+4=8<9,∴不能组成三角形;②4cm 是底边时,三角形的三边分别为4cm 、9cm 、9cm ,能够组成三角形,周长=4+9+9=22cm ,综上所述,三角形的周长22cm .故选:C .2.解:在等腰△ABC 中,AB =AC ,BD 为腰AC 上的高,∠ABD =60°,当BD 在△ABC 内部时,如图1,∵BD 为高,∴∠ADB =90°,∴∠BAD =90°-60°=30°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-30°)=75°;当BD 在△ABC 外部时,如图2,∵BD 为高,∴∠ADB =90°,∴∠BAD =90°-60°=30°,∵AB =AC ,∴∠ABC =∠ACB ,而∠BAD =∠ABC +∠ACB ,∴∠ACB =12∠BAD =15°,综上所述,这个等腰三角形底角的度数为75°或15°.故选:C .3.解:设AD =x ,∵∠C =90°,AB =10,BC =6,∴AC ==8,∴CD =8-x ,∵DF ∥AB ,∴AD :AC =BF :BC ,∴x :8=BF :6,∴BF =34x ,∵BF 平分∠ABC ,∴∠FBE =∠ABE ,∵FD ∥AB ,∴∠FEB =∠ABE,∴∠FBE =∠FEB,∴FE =BF,∵E 是FD 中点,∴DF =2EF ,答案解析4.解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,即CD是直角三角形斜边上的中线,∴AB=2CD=2×2=4,又∵E、F分别是BC、CA的中点,即EF是△ABC的中位线,∴EF=12AB=12×2=2,故答案为:2.5.解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠APC=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形,∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.6.解:⑴∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△FDC中,∴∠C=90°-25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°-65°-155°-90°=50°.⑵连接BF,∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=12∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=12∠ABC.。
一、选择题(每题5分,共50分)1. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm2. 已知a、b、c是等差数列,且a+b+c=15,b+c+a=21,则a的值为()A. 3B. 6C. 9D. 123. 在平面直角坐标系中,点A(2,3)关于直线y=x的对称点为()A. (3,2)B. (-3,-2)C. (-2,-3)D. (-3,3)4. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=|x|D. y=x^45. 已知一元二次方程x^2-3x+2=0,则它的两个根的乘积为()A. 1B. 2C. 3D. 46. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为()A. 105°B. 120°C. 135°D. 150°7. 下列等式中,正确的是()A. a^2+b^2=(a+b)^2B. (a+b)^2=a^2+2ab+b^2C. a^2-b^2=(a+b)(a-b)D.a^2+2ab+b^2=(a-b)^28. 若等比数列的首项为2,公比为1/2,则第5项的值为()A. 1/32B. 1/16C. 1/8D. 1/49. 在平面直角坐标系中,点P(-2,3)关于原点的对称点为()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)10. 下列数中,是勾股数的是()A. 3,4,5B. 5,12,13C. 6,8,10D. 7,24,25二、填空题(每题5分,共50分)11. 若等差数列的首项为3,公差为2,则第10项的值为______。
12. 在平面直角坐标系中,点A(-3,4)关于直线y=-x的对称点为______。
13. 若函数y=2x-3的图象与x轴、y轴分别交于点A、B,则OA的长度为______。
第二章等腰三角形专题5 等腰三角形的边角关系知识解读讨论等腰三角形的三边,只有腰和底边长两个未知数,当告知三角形两边长时,需要分情况讨论,哪个数据是腰长,哪个数据是底边长。
等腰三角形有三个角,要求出三个角的度数,需要三个相等关系,三角形内角和提供了一个相等关系,等腰三角形两个底角相等提供了一个相等关系,因此题日中一般提供一个相等关系即可。
培优学案典例示范一、等腰三角形的边长常需要分情况讨论例1根据下列条件求等腰三角形的周长.(1)两条边长分别为2和5;(2)两条边长分别为3和5.【提示】本题没有说明两条边为腰和底时,只有通过讨论可能存在的两种情况来求解,所得的答案要满足三角形三边的条件.【解答】【技巧点评】(1)没有指明腰和底时,一定要分类讨论,不要丢了解;(2)所得三角形三边的长一定要满足三角形三边的条件。
没有用三边关系定理来检验的答案可能是错误的。
跟踪训练1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cmB.22cmC.17cm或22cmD.18cm二、利用两底角相等,求等腰三角形的角的度数例2 填空题.(1)在ABC∠=︒,求BA=,若50∆中,AB AC∠的度数;(2)在ABC∠=︒,求AB∆中,AB AC=,若50∠的度数;(3)若等腰三角形的一个角为80︒,求顶角的度数;(4)若等腰三角形的一个角为100︒,求顶角的度数。
【提示】本题的各小题中都有三个未知教,除了三个角的和为180︒这个条件外,题目应该还有两个条件才能求出这三个角的度数,准确找出这两个条件,是解决此类问题的关键.【解答】【技巧点评】求角时,一定要看给出的角是否定为顶角或底角,在没有指出所给的角为顶角或底角时,要分两种情况讨论,并看是否符合三角形内角和定理,避免漏解或多解。
跟踪训练2.如图2-5-1,在ABC∠=︒,则BDAC==,80∆中,AC AD BD∠的度数是()图2-5-1A.40︒B.35︒C.25︒D.20︒三、角平分线+平行线=等腰三角形例3如图2-5-2.AD是ABC∆的角平分线,点E在AB上,且AE AC=,EF BC交AC于点F.求证:EC平分DEF∠.【提示】要证明EC平分DEF∆是等腰三角形。
八年级数学竞赛例题专题等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等;⑵从角入手,证明一个三角形的两个角相等.2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明;⑵当所证的两条线段位于同一个三角形,通过等角对等边证明;⑶寻找某条线段,证明所证的两条线段都与它相等.善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )A .AC >2AB B .AC =2ABC .AC ≤2ABD .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键. AA BD M FC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .B CA D 图2B CA D 图1 O AB CMDE EAB DC F B C A D能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b a c a c =+-,44422c a b a b =+-,则△ABC ( )A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )A .300B .300或1500C .1200或1500D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)AC DBB ′ A ′(第2题) A B C D E F (第3题) (第4题)9 9 1 5B AC D EB C A B CA D F G E9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)AC D A B DFEC图1 A B D F E C 图2 A ′ E ′ D ′ AC E NMBDB 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300 B .450 C .600 D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 87.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题) A B C D (第1题) (第2题) AB D E CA B P A CB B ′图1 图2 ABD CEF P QS (第4题) A B C E D第5题 A A 1 N M A 2 A 3 (第6题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)AB P QCAB D MFE11.如图,在平面直角坐标系中,O为坐标原点,直线l:12y x m=-+与x轴、y轴的正半轴分别相交于点A、B,过点C(-4,-4)作平行于y轴的直线交AB于点D,CD=10.⑴求直线l的解析式;⑵求证:△ABC是等腰直角三角形;⑶将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形,请直接写出所有符合条件的点P的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).⑴求B点坐标;⑵如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=900,连接OD,求∠AOD度数;⑶如图3,过点A作y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连接FM,等式AM FMOF-=1是否成立?若成立,请证明;若不成立,说明理由.图1 图2 图3。