工程力学 达朗贝尔原理
- 格式:ppt
- 大小:1.87 MB
- 文档页数:65
第7章 达朗贝尔原理达朗贝尔原理是法国科学家达朗贝尔于1743年提出的,是分析力学的两个基本原理之一。
该原理揭示,对动力系统加入惯性力后,惯性力与外力构成平衡,因而提供一种用静力平衡方法处理动力学问题的普遍方法——动静法。
§7.1 质点系的达朗贝尔原理7.1.1 惯性力与质点的达朗贝尔原理1、质点达朗贝尔原理如图7.1所示,质量为m 的质点沿曲线轨道运动,受主动力F 和约束力N F 作用,由牛顿第二定律有N m +=F F a即0N m +-=F Fa 引入惯性力I m =-F a (7-1)则有0N I ++=F F F (7-2)这就是质点的达朗贝尔原理:作用在质点上的所有主动力、约束力和惯性力组成平衡力系。
这样,我们完全可以采用静力学的方法和技巧,求解动力学问题。
顺便指出,达朗贝尔原理作为分析力学的基本原理之一是不需要推导证明的。
这里由牛顿第二定律导出,可以说明它与牛顿力学在数学上的等价性。
问题7-1 如图所示,重为G 的小球用细绳悬挂,试求AC 绳断瞬时AB 绳的张力。
答 研究小球,加惯性力I F ,受力如图所示,由质点达朗贝尔原理,有0I T ++=F G F由力三角形有cos T F G =θ可见,加上惯性力,采用静力学中三力平衡的几何法求解决,直观简便。
2、惯性力的概念质点的惯性力I F 可以想象为:当质点加速运动时外部物质世界作用在质点上的一个场图7.1 质点达朗贝尔原理IF 问题7-1图力,其大小等于质点的质量与其加速度的乘积,方向与质点加速度方向相反。
惯性力与万有引力是完全等效的。
惯性力与参考系相关,如图7.2(a)所示,小球在旋转水平圆台上沿光滑直槽运动。
在地面惯性参考系观察,小球运动的绝对轨迹为螺旋线,见图7.2(b),在水平面内受滑槽侧壁对它的作用力N F 作用,加速度如图所示;从转动圆台非惯性参考系观察,小球的运动轨迹沿槽直线,在半径方向,受牵连法向惯性力2()nnIe Ie F mr ω=F 作用,小球沿直槽加速向外运动。
达朗贝尔定理
达朗贝尔(Jean le Rond d'Alembert)定理或称达朗贝尔原理是指,在刚体静力学中,一个刚体在平衡状态下,其任一点的受力与其对该点的矩(即力乘以距离)相等。
换句话说,如果一个刚体处于平衡状态,那么作用在这个刚体上的所有力的矩之和为零。
这个定理是由法国数学家达朗贝尔在他的著作《静力学原理》中提出的。
它是刚体静力学的基本原理之一,对于分析刚体的平衡状态和设计刚体结构具有重要意义。
达朗贝尔定理的数学表达式为:对于一个刚体,如果它处于平衡状态,则对于任一点,作用在该点的所有力的矢量和为零。
用数学语言表达,如果M是刚体上所有力矩的矢量和,则对于任一向量v,有M·v = 0。
这个原理可以应用于分析和设计各种刚体结构,例如桥梁、建筑、机械零件等。
通过应用达朗贝尔定理,工程师可以确保他们的设计符合刚体静力学原理,从而确保结构的稳定性和安全性。
第12章 达朗贝尔原理12.1 主要内容12.1.1 质点的达朗贝尔原理设一质量为m 的质点M ,在主动力F 、约束力F N 的作用下运动,根据牛顿第二定律m a =F +F N移项后整理得F +F N +F I =0其中F I = –ma 称为惯性力,它可表述为:质点在作非惯性运动的任意瞬时,对于施力于它的物体会作用一个惯性力,这个力的方向与其加速度的方向相反,大小等于其质量与加速度的乘积。
此式表明:在质点运动的任意瞬时,如果在其质点上假想地加上一惯性力F I ,则此惯性力与主动力、约束力在形式上组成一平衡力系。
这就是质点的达朗贝尔原理。
12.1.2 质点系的达朗贝尔原理设某质点系由n 个质点组成。
如果在某质点i m 上假想地加上一惯性力F I i =–m i a i则对于整个质点系来说,在运动的任意瞬时,虚加于质点系上各质点的惯性力与作用于该质点系上的主动力、约束力将组成一平衡力系,即0I N =∑+∑+∑i i i F F F()()()0I N =∑+∑+∑i O i O i O F M F M F M这就是质点系的达朗贝尔原理。
12.1.3 刚体惯性力系的简化(1)、刚体平移平移刚体的惯性力系可简化为一合力F I = –m a c它的作用线通过刚体的质心,方向与平移加速度的方向相反,大小等于刚体质量与加速度的乘积。
(2)、定轴转动惯性力系简化的主矢为c M a F -=RI惯性力系对简化中心O 的主矩为:()()kj i k j i M z y x z xz yz yz xz o M M M I I I I I I I I 22I ++=-++-=εωωε 绕定轴转动刚体的惯性力系向转轴上任意点O 简化时,惯性力主矢、主矩由上式计算。
但应注意,惯性力系的简化结果,主矢和主矩必须作用在同一个简化中心上。
(3)、平面运动随同质心平移而虚加的惯性力系将合成为一合力F I ,合力作用线通过质心,方向与a c 的方向相反,大小等于刚体的质量与质心加速度的乘积,即F I =–M a c相对质心转动而虚加的惯性力系的主矢等于零(质心在转轴上),主矩为一惯性力偶,且作用于质心C 处,它的转向与角加速度ε的转向相反,大小等于角加速度与刚体对于质心的转动惯量的乘积,即M I = –I c ε12.1.4 定轴转动刚体的轴承动约束力设刚体上的惯性力系向O 点简化的主矢和主矩为ji ji y x c c c c F F x y M y x M F I I 22I )()(+=-++=εωεω ()()k j i kj i z y x z xz yz yz xz o M M M I I I I I M I I I 22I ++=-++-=εωεωε 根据达朗贝尔原理求解可知,轴承动约束力由两部分组成:一是由主动力引起的,与运动无关,为静约束力;二是由惯性力主矢、主矩引起的,为附加动约束力。
14—1、轮轴质心位于O 处,对轴O 的转动惯量为
O J 。
在轮
轴上系两个质量各为1m 和2m 的物体,若此轮轴以顺时针转
动,求轮轴的角加速度 和轴承O 的动约束力。
14—2、图示长方形均质平板,质量为27kg ,由两个
销子A 和B 悬挂。
如果突然撤去B ,求在撤去销子B
的瞬时平板的角加速度和销子A 的约束力。
14—3、如图所示,质量为1m 的物体A 下落时,带动质量为2
m 的均质圆盘B 转动,不计支架和绳子的质量及轴B 处的摩擦,
BC b =,盘B 的半径为R 。
求固定端C 处的约束力。
14—4、图示曲柄OA 质量为
1m ,长为r ,以等角速度ω绕水
平轴O 逆时针方向转动。
曲柄的A 端推动水平板B ,使质量为
2m 的滑杆C 沿铅直方向运动。
忽略摩擦,求当曲柄与水平方
向夹角为030θ=时的力偶矩M 及轴承O 的约束力。
14—5 图示均质板质量为m,放在两个均质圆柱滚子
上,滚子质量皆为0.5m。
其半径均为r。
如在板上作用一水平力F,并设滚子无滑动,求板的加速度。
达朗贝尔原理—搜狗百科达朗贝尔原理d'Alembert principle研究有约束的质点系动力学问题的一个原理。
由J.le R.达朗贝尔于1743年提出而得名。
对于质点系内任一个质点,此原理的表达式为F +N-ma=0,式中F为作用于质量为m的某一质点上的主动力,N 为质点系作用于质点的约束力,a为该质点的加速度。
从形式上看,上式与从牛顿运动方程F+N=ma中把ma移项所得结果相同。
于是,后人把-ma 看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。
利用达朗贝尔原理,可将质点系动力学问题化为静力学问题来解决,这种动静法的观点对力学的发展产生了积极的影响。
d'Alembert principle作用于一个物体的外力与动力的反作用之和等于零。
即F+(-Ma)+N=0 (1)其中M,a为物体质量和加速度,F为物体受到的直接外力,N为物体受到的约束反作用力(也是外力)。
在没有约束时,相应的N=0,(1)式成为F-Ma=0 (2)与牛顿的运动第二定律一致,只是进行了移项。
但这是概念上的变化,有下列重要意义:①用(2)式表达的是平衡关系,可以把动力学问题转化为静力学问题来处理。
②在有约束情况下,用(1)式非常有利;它与虚功原理结合后,可列出动力学的普遍方程。
③用于刚体的平面运动时,可利用平面静力学方法,使问题简化。
实际上,达朗贝尔原理还为不久后创立的分析力学打下了基础。
研究有约束的质点系动力学问题的一个原理。
由J.le R.达朗贝尔于1743年提出而得名。
对于质点系内任一个质点,此原理的表达式为F+N-ma=0,式中F为作用于质量为m的某一质点上的主动力,N 为质点系作用于质点的约束力,a为该质点的加速度。
从形式上看,上式与从牛顿运动方程F+N=ma中把ma移项所得结果相同。
于是,后人把-ma 看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。
第十一章 达朗贝尔原理一. 重点概括1 质点系的达朗贝尔原理在质点系运动的任一瞬时,作用于每一质点上的主动力、约束力和该质点的惯性力在形式上构成一平衡力系。
上式表明,作用在质点系上的外力系和虚加的惯性力系组成平衡力系——质点系的达朗贝尔原理。
用达朗贝尔原理求解非自由质点系动力学问题(已知运动求力或已知力求运动)的方法称为质点系的动静法。
对于空间力系,由这两个矢量式总共可写出6个投影方程;对于平面力系,由这两个矢量式总共可写出3个投影方程。
2 刚体惯性力简化(1) 惯性力系的主矢(2) 惯性力系的主矩I Ni =++i i F F F Ci i i m a m a F F -=-==∑∑)(I IR )(I I i O O F M M ∑=0I e =+∑∑iiF F 0)()(I e=+∑∑iOiOF M FM惯性力系的主矢与刚体的运动形式无关;惯性力系的主矩与刚体的运动形式有关。
3 几种刚体的惯性力(1)平移刚体主矢主矩刚体平移时,惯性力系简化为通过刚体质心的合力。
(2)定轴转动刚体主矢主矢等于刚体质量与质心加速度大小的乘积,方向与质心加速度方向相反。
对转轴的主矩主矩等于刚体对转动轴的转动惯量与角加速度的乘积,方向与角加速度方向相反。
(3)平面运动刚体(具有质量对称面的情形)IR ()i i m ∑F a =- () i C Cm m ∑a a =-=-I 0C M =)(n t R R IR C C C m m F a a a +=-=-αz z J M -=I主矢主矢大小等于刚体质量与质心加速度大小的乘积,方向与质心加速度方向相反。
主矩主矩小等于刚体对通过质心的转动轴的转动惯量与角加速度的乘积,方向与角加速度方向相反。
二. 常见问题和对策常见问题:1.惯性力系出错,表现在方向或大小出错,尤其主矩出错较多;2.质点系运动时,主动力系、约束反力系和惯性力系组成了形式上的平衡力系,切记不含质点之间的内力系(也不要画出内力系);3.质点系的运动参数之间联系出错。