2020-2021学年高考总复习数学(理)第一次高考模拟试题及答案解析
- 格式:docx
- 大小:380.45 KB
- 文档页数:21
2020-2021 学年高三物理一轮复习练习卷:静电场一、单选题1.电子是原子的组成部分,一个电子带有()A.1.6⨯10-19 C的正电荷B.1.6⨯10-19 C的负电荷C.9.1⨯10-31C的正电荷D.9.1⨯10-31C的负电荷2.使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,其中正确的是()A.B.C.D.3.关于物体带电的电荷量,以下说法中不正确的是()A.物体所带的电荷量可以为任意实数B.物体所带的电荷量只能是某些特定值C.物体带电荷+1.60×10-9C,这是因为该物体失去了1.0×1010 个电子D.物体带电荷量的最小值为1.6×10-19C4.如图所示,三角形abc 的三个顶点各自固定一个点电荷,A 处点电荷受力如图所示,则B 处点电荷受力可能是A.F1 B.F2 C.F3 D.F45.如图所示是α 粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止.图中所标出的α 粒子在各点处的加速度方向正确的是( )A.M 点B.N 点C.P 点D.Q 点6.如图所示,两个相同的带电小球A、B 分别用2L 和√3L 长的绝缘细线悬挂于绝缘天花板的同一点,当平衡时,小球B 偏离竖直方向30°,小球A 竖直悬挂且与光滑绝缘墙壁接触若两小球的质量均为m,重力加速度为g.则A.AB 的静电力等于√3mg2B.墙壁受的压力等于√3mg2C.A 球受到细线的拉力等于5mg4D.B 球受到细线的拉力等于√3mg47.如图所示,三个点电荷q1、q2、q3 固定在同一直线上,q2 与q 3 间距离为q 1 与q 2 间距离的2 倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电荷量之比为A.(-9)∶4∶(-36)B.9∶4∶36C.(-3)∶2∶(-6)D.3∶2∶68.用绝缘细线悬挂两个大小相同的小球,它们带有同种电荷,质量分别为m1 和m2,带电量分别为q1和q2,因静电力而使两悬线张开,分别与竖直方向成夹角a1和a2,且两球静止时同处一水平线上,若a1=a2,则下述结论正确的是()1 2A .qq 1 一定等于 q . B .一定满足 = q 2m 1 m 2C .m 1 一定等于 m 2D .必然同时满足 q 1=q 2,m 1=m 29.如图所示带正电的金属圆环竖直放置,其中心处有一电子,若电子某一时刻以初速度 v 0 从圆环中心处水平向右运动,则此后电子将( )A .做匀速直线运动B .做匀减速直线运动C .以圆心为平衡位置振动D .以上选项均不对10.如图,边长为a 的立方体 ABCD - A 'B 'C 'D ' 八个顶点上有八个带电质点,其中顶点 A 、C ' 电量分别为q 、Q ,其他顶点电量未知, A 点上的质点仅在静电力作用下处于平衡状态,现将C ' 上质点电量变成-Q ,则顶点 A 上质点受力的合力为(不计重力)( )A.kQqa2B .2kQq3a2C.kQq3a2D.011.在如图所示的四种电场中,分别标记有a、b 两点.其中a、b 两点电场强度大小相等、方向相反的是( )A.甲图中与点电荷等距的a、b 两点B.乙图中两等量异种点电荷连线的中垂线上与连线等距的a、b 两点C.丙图中两等量同种点电荷连线的中垂线上与连线等距的a、b 两点D.丁图中非匀强电场中的a、b 两点12.如图,有一带电荷量为+q 的点电荷与表面均匀带电圆形绝缘介质薄板相距为2d,此点电荷到带电薄板的垂线通过板的圆心.若图中a 点处的电场强度为零,则图中b 点处的电场强度大小是()A.0B.k C.k D.kq9d 2qd 2q9d 2-kqd 2+kqd 213.A、B 是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A 点沿电场线运动到B 点,其速度v 与时间t 的关系图象如图所示则此电场的电场线分布可能是选项图中的A .B .C .D .14.如图所示,M 、N 和 P 是以 MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠MOP = 60︒电荷量相等、符号相反的两个点电荷分别置于 M 、N 两点,这时O 点电场强度的大小为E 1 ;若将N 点的点电荷移至 P 点,则O 点电场强度的大小变为E 2 则 E 1 与 E 2 之比为( )A .1: 2B . 2 :1C . 2 :D . 4 : 15.如图所示,两个等量异种点电荷,关于原点 O 对称放置,下列能正确描述其位于 x 轴上的电场或电势分布随位置 x 变化规律正确的是( )A .B .C .D .16.如图所示,两电荷量分别为-Q 和+2Q 的点电荷固定在直线 MN 上,两者相距为 L ,以+2Q 的3 3L点电荷所在位置为圆心、为半径画圆,a、b、c、d 是圆周上四点,其中a、b 在MN 直线上,c、2d 两点连线垂直于MN,下列说法正确的是A.c、d 两点的电势相同B.a 点的电势高于b 点的电势C.c、d 两点的电场强度相同D.a 点的电场强度小于b 点的电场强度17.一带负电的粒子只在电场力作用下沿x 轴正方向运动,其电势能E P 随位移x 变化的关系如图所示,其中0~x2 段是关于直线x=x1 对称的曲线,x2~x3 段是直线,则下列说法正确的是()A.x1 处电场强度最小,但不为零B.粒子在0~x2 段做匀变速运动,x2~x3 段做匀速直线运动C.在0、x1、x2、x3 处电势φ0、φ1、φ2、φ3 的关系为:φ3>φ2=φ0>φ1D.x2~x3 段的电场强度大小方向均不变18.如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,设M 点和N 点的电势分别为ϕM、ϕN ,粒子在M 和N 时加速度大小分别为a M、a N ,速度大小分别为v M、v N,电势能分别为E P M、E P N .下列判断正确的是A.v M <v N,a M <a N C.ϕM <ϕN,E P M <E P N B.v M <v N,ϕM <ϕN D.a M <a N,E P M <E P N19.如图所示,一圆环上均匀分布着正电荷,x 轴垂直于环面且过圆心O,下列关于x 轴上的电场强度和电势的说法中正确的是()A.O 点的电场强度为零,电势最低B.O 点的电场强度为零,电势最高C.从O 点沿x 轴正方向,电场强度减小,电势升高D.从O 点沿x 轴正方向,电场强度增大,电势降低20.图中虚线为电场中与场强方向垂直的等间距平行直线,两粒子M、N 质量相等,所带电荷的绝对值也相等.现将M、N 从虚线上的O 点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示.点a、b、c 为实线与虚线的交点,已知O 点电势高于c 点.若不计重力,则A.M 带负电荷,N 带正电荷B.N 在a 点的速度与M 在c 点的速度大小相同C.N 在从O 点运动至a 点的过程中克服电场力做功D.M 在从O 点运动至b 点的过程中,电场力对它做的功等于零21.如图所示,A、B、C、D 为匀强电场中一个长方形的四个顶点,E、F 分别为AB、CD 的中点,AD 边长度为10cm,AB 边长度为15cm 已知A、B、D 三点的电势分别为9.0V、3.0V、12.0V,长方形所在平面与电场线平行,则()1A .C 点的电势为零B .电场沿 AF 方向C .电场强度大小为 50V/mD .电场强度大小为 40V/m22.如图所示,半径为 40cm 的圆处在竖直平面内,存在与 OA 方向平行的匀强电场位于圆上的 S点有一放射源向各个方向发射质子( 1H ),质子能够到达圆上任一位置,到达 A 点的质子动能的增量为 120eV ,已知∠OSA =30°,则此匀强电场的场强大小为( )A .100V/mB .100 3 V/mC .200V/mD .200 3 V /m23.下列图中,a 、b 、c 是匀强电场中的三个点,各点电势 φa =10 V ,φb =2 V ,φc =6 V ,a 、b 、c 三点在同一平面上,图中电场强度的方向表示正确的是( )A .B .C .D .24.下列措施中属于静电防范的是 A .静电除尘 B .静电喷涂 C .良好接地 D .保持空气干燥 25.如图所示,左边为一带正电的小球,右边为一金属圆环,外壳接地,电场线的分布如图所示,则下列说法正确的是( )A.a 点的电势高于b 点的电势B.c 点的电场强度大于d 点的电场强度C.若将一负试探电荷由c 点移到d 点,其电势能增大D.若将一正试探电荷沿金属环的外表面移动半圆,电场力不做功26.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示.容器内表面为等势面,A、B 为容器内表面上的两点,下列说法正确的是( )A.A 点的电场强度比B 点的大B.小球表面的电势比容器内表面的低C.B 点的电场强度方向与该处内表面垂直D.将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同27.一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN,如图所示,金属球上感应电荷产生的电场在球内直径上a、b、c 三点的场强大小分别为E a、E b、E c,三者相比()A.E a 最大B.E b 最大C.E c 最大D.E a=E b=E c28.下列公式不是比值定义式的是()A.v =xt B.a =FmC.E =FqD.C =QU29.对电容C=Q,以下说法正确的是( )UA.电容器充电电荷量越多,电容增加越大B.电容器的电容跟它两极板间所加电压成反比C.电容器的电容越大,所带电荷量就越多D.对于确定的电容器,它所带的电荷量跟它两极板间所加电压的比值保持不变30.如图所示,平行板电容器与电源连接,下极板B 接地,开关S 闭合,一带电油滴在电容器中的P点处于静止状态下列说法正确的是()A.保持开关闭合,A 板竖直上移一小段距离,电容器的电容增大B.保持开关闭合,A 板竖直上移一小段距离,P 点的电势将升高C.保持开关闭合,A 板竖直上移一小段距离过程中,电流计中电流方向向右D.开关S 先闭合后断开,A 板竖直上移一小段距离,带电油滴向下运动31.一带电粒子在如图所示的点电荷的电场中,在电场力作用下沿虚线所示轨迹从A 点运动到B 点,电荷的加速度、动能、电势能的变化情况是()A.加速度增大、动能减小、电势能增大B.加速度减小,动能增大、电势能减少C.加速度增大,动能增大,电势能减少D.加速度减小,动能减少,电势能增大二、多选题32.下列说法正确的有( )A.一个物体带负电是因为物体失去了电子B.利用静电感应使金属导体带电的过程叫做感应起电C.同种电荷相互排斥,异种电荷相互吸引D.电荷量是能连续变化的物理量mg sin θ kmg tan θ kmg k tan θ33.如图是表示在同一电场中 a 、b 、c 、d 四点分别引入检验电荷时,测得的检验电荷的电荷量跟它所受电场力的函数关系图象,那么下列叙述正确的是( )A .这个电场是匀强电场B .a 、b 、c 、d 四点的场强大小关系是E d >E a >E b >E cC .a 、b 、c 、d 四点的场强大小关系是E a >E c >E b >E dD .a 、b 、d 三点的场强方向相同34.如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为 θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球 A ,细线与斜面平行.小球 A 的质量为 m 、电量为q .小球 A 的右侧固定放置带等量同种电荷的小球 B ,两球心的高度相同、间距为 d .静电力常量为 k ,重力加速度为 g ,两带电小球可视为点电荷.小球 A 静止在斜面上,则( )A .小球 A 与B 之间库仑力的大小为 kq 2d 2B .当 q= 时,细线上的拉力为 0dC .当 q= 时,细线上的拉力为 0dD .当 q=时,斜面对小球 A 的支持力为 0d35.两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c 时两负电荷连线的中点,d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( )A.a 点的电场强度比b 点的大B.a 点的电势比b 点的高C.c 点的电场强度比d 点的大D.c 点的电势比d 点的低36.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A、B 两点的加速度大小分别为a A 、a B ,电势能分别为E PA 、E PB .下列说法正确的是( )A.电子一定从A 向B 运动B.若a A > a B ,则Q 靠近M 端且为正电荷C.无论Q 为正电荷还是负电荷一定有E PA < E PBD.B 点电势可能高于A 点电势37.在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A、B(均可视为质点)处在同一水平面上.现将两球以相同的水平速度v0 向右抛出,最后落到水平地面上,运动轨迹如图所示,两球之间的静电力和空气阻力均不考虑,则A.A 球带正电,B 球带负电B.A 球比B 球先落地C.在下落过程中,A 球的电势能减少,B 球的电势能增加D.两球从抛出到各自落地的过程中,A 球的动能变化量比B 球的小38.在如图所示的M、N 两点固定两点电荷,两点电荷所带电荷量分别为+Q1、−Q2,O 点为MN 的中点,A 点为虚线上N 点右侧的点,试探电荷放在 A 点时刚好处于静止状态,规定无穷远处的电势为零则下列说法正确的是()A.由于试探电荷在A 点静止,则A 点的电势为零B.试探电荷可能静止在虚线上的另一位置C.φM − φO > φO − φND.正粒子沿虚线由A 点移动到O 点的过程中,电场力先做正功后做负功39.匀强电场中有一条直线,A、B、C 为该直线上的三点,且AB=BC 若A、B 两点的电势分别为5V、11V,则下列叙述正确的是()A.电场线方向由B 指向AB.C 点的电势为17VC.正的检验电荷从A 点运动到B 点的过程,其电势能不一定增大D.将负的检验电荷(不计重力)无初速放入该电场中的A 点,则该检验电荷将沿直线运动40.如图所示,实线为正电荷与接地的很大平板带电体电场的电场线,虚线为一以点电荷为中心的圆,a、b、c 是圆与电场线的交点.下列说法正确的是( )A.虚线为该电场的一条等势线B.a 点的强度大于b 点的强度C.a 点的电势高于b 点的电势D.检验电荷-q 在b 点的电势能比c 点的大41.如图,C 为中间插有电介质的电容器,b 极板与静电计金属球连接,a 极板与静电计金属外壳都接地开始时静电计指针张角为零,在 b 板带电后,静电计指针张开了一定角度以下操作能使静电计指针张角变大的是()A.将b 板也接地B.b 板不动、将a 板向右平移C.将a 板向上移动一小段距离D.取出a、b 两极板间的电介质三、解答题42.如下图所示,有一水平向左的匀强电场,场强为E =1.25⨯104 N / C ,一根长L =1.5m 、与水平方向的夹角为θ=37︒的光滑绝缘细直杆MN 固定在电场中,杆的下端M 固定一个带电小球A,电荷量Q =+4.5⨯10-6 C ;另一带电小球B 穿在杆上可自由滑动,电荷量q =+1.0⨯10-6 C ,质量m =1.0⨯10-2 kg .现将小球B 从杆的上端N 静止释放,小球B 开始运动.(静电力常量k = 9.0⨯109 N ?m2 / C2 ,取g =10m s2 ,sin 37︒= 0.6 ,cos37︒= 0.8 )求:(1)小球B 开始运动时的加速度为多大?(2)小球B 的速度最大时,与M 端的距离r 为多大?43.如图所示,在E=103 V/m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q=10-4 C 的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5 m 的M 处,取g=10 m/s2,求:(1)要使小滑块恰能运动到圆轨道的最高点Q,则小滑块应以多大的初速度v0 向左运动?(2)这样运动的小滑块通过P 点时对轨道的压力是多大?44.如图所示,在水平向右的匀强电场中,一质量为m=0.1kg、电荷量为q=2.0×10-4C 的带电小球用一端固定于O 点的绝缘轻绳连接恰好能静止在图中的P 位置.轻绳OP 与竖直方向成37°角,且轻绳OP 的长度为L=0.2m,重力加速度g 取10m/s2,sin37°=0.6,cos37°=0.8,求:(1)小球的带电性质;(2)该匀强电场的场强大小;(3)若将带电小球从最低点Q 静止释放,则小球到达P 点时的速度.参考答案1.B【详解】电子是原子的组成部分,一个电子带有1.6⨯10-19 C的负电荷,故B 正确,ACD 错误。
年高职招考数学押题卷(二)一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.485.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.6.若sin(π﹣α)=,则tanα的值为()A.B.﹣C.D.7.△ABC中,已知A=90°,=(k,6),=(﹣2,3),则k的值是()A.﹣4 B.﹣3 C.4 D.98.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx11.当函数f(x)=x+,(x>1)取得最小值时,相应的自变量x等于()A.2 B.3 C.4 D.512.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时13.设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数14.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log216的值是.16.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为.17.若不等式x2﹣ax﹣b<0的解集为{x|2<x<3},则a+b= .18.给出下列命题:①“x2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x2﹣3x+2=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题;其中真命题有.(把你认为正确的命题序号都填上)三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n}是的通项公式为a n=e n(e为自然对数的底数);(Ⅰ)证明数列{a n}为等比数列;(Ⅱ)若b n=lna n,求数列{}的前n项和T n.20.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD.21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A等,小于80分者为B等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A等和B等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A等的概率.22.已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.参考答案与试题解析一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}【考点】交集及其运算.【专题】计算题;转化思想;定义法;集合.【分析】先求出集合B,再用交集定义求解.【解答】解:∵全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A}={1,3,5,7,9,11},∴A∩B={1,3,5}.故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.【考点】复数求模.【专题】计算题;规律型;数系的扩充和复数.【分析】化简复数然后求解复数的摸.【解答】解:复数z+2i﹣3=3﹣3i,则|z|=|6﹣5i|==.故选:D.【点评】本题考查复数的摸的求法,考查计算能力.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【考点】收集数据的方法.【专题】应用题;概率与统计.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.48【考点】等差数列的前n项和.【专题】方程思想;转化思想;等差数列与等比数列.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=3,a5=9,∴,解得d=2,a1=1.则其前6项和S6=6+×2=36.故选:C.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.5.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;数形结合法;立体几何.【分析】设圆锥的底面半径为r,根据轴截面的性质求出母线,计算侧面积作出比值.【解答】解:设圆锥的底面半径为r,则母线l=2r,∴S侧=πrl=2πr2,S底=πr2,∴=2.故选:B.【点评】本题考查了圆锥的结构特征和侧面积计算,属于基础题.6.若sin(π﹣α)=,则tanα的值为()A.B.﹣C.D.【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用诱导公式,同角三角函数基本关系式的应用可求sinα=,即可求得cosα=±的值,从而可求tanα=.【解答】解:∵sin(π﹣α)=sinα=,∴cosα=±=±,∴tanα==±.故选:C.【点评】本题主要考查了诱导公式,同角三角函数基本关系式的应用,属于基础题.7.△ABC中,已知A=90°,=(k,6),=(﹣2,3),则k的值是()A.﹣4 B.﹣3 C.4 D.9【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】根据向量垂直,则数量积为0,即可求出k的值.【解答】解:∵△ABC中,A=90°,∴,∴=0,∵=(k,6),=(﹣2,3),∴﹣2k+18=0,解得k=9,故选:D.【点评】本题考查数量积与向量的垂直关系,属基础题.8.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵,∴f(﹣2)=2﹣2=,f(f(﹣2))=f()=1﹣=.故选:C.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【考点】三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】由条件利用诱导公式化简函数的解析式,再根据三角函数的奇偶性和周期性得出结论.【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.【点评】本题主要考查三角函数的奇偶性和周期性,诱导公式的应用,属于基础题.11.当函数f(x)=x+,(x>1)取得最小值时,相应的自变量x等于()A.2 B.3 C.4 D.5【考点】对勾函数.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】函数f(x)=(x﹣1)++1,且x﹣1>0,运用基本不等式可得f(x)的最小值3,由等号成立的条件,可得x=2.【解答】解:函数f(x)=x+,(x>1),可得f(x)=(x﹣1)++1≥2+1=3,当且仅当x﹣1=,即x=2时,取得最小值3.故选:A.【点评】本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.12.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【考点】指数函数的实际应用.【专题】函数的性质及应用.【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.13.设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数【考点】函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.14.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log216的值是 2 .【考点】对数的运算性质.【专题】函数的性质及应用.【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.【点评】本题考查对数的运算法则的应用,考查计算能力.16.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为9 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,得,即A(2,3)此时z的最大值为z=3×2+3=9,故答案为:9【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,要熟练掌握目标函数的几何意义.17.若不等式x2﹣ax﹣b<0的解集为{x|2<x<3},则a+b= ﹣1 .【考点】一元二次不等式的应用.【专题】计算题.【分析】不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,由根与系数的关系求出a,b可得.【解答】解:由题意不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,∴3+2=a,3×2=﹣b∴a=5,b=﹣6∴a+b=5﹣6=﹣1故答案为:﹣1【点评】本题考查一元二次不等式与一元二次方程的关系,解答本题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.注意总结方程,函数,不等式三者之间的联系.18.给出下列命题:①“x2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x2﹣3x+2=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题;其中真命题有③④.(把你认为正确的命题序号都填上)【考点】命题的真假判断与应用.【专题】转化思想;定义法;简易逻辑.【分析】①由x2=1,解得x=±1,即可判断出关系;②由x2﹣3x+2=0,解得x=1,2,即可判断出关系;③利用命题的否定定义即可判断出正误;④利用原命题与其逆否命题等价性即可判断出正误.【解答】解:①由x2=1,解得x=±1,∴“x2=1”是“x=1”的必要不充分条件,不正确;②由x2﹣3x+2=0,解得x=1,2,∴“x=﹣1”是“x2﹣3x+2=0”的既不必要也不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,正确;④命题“若x=y,则sinx=siny”是真命题,其逆否命题也为真命题,正确.其中真命题有③④.故答案为:③④.【点评】本题考查了简易逻辑的判定方法、方程与不等式的性质,考查了推理能力与计算能力,属于中档题.三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n}是的通项公式为a n=e n(e为自然对数的底数);(Ⅰ)证明数列{a n}为等比数列;(Ⅱ)若b n=lna n,求数列{}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(Ⅰ)a n=e n,只要证明=非0常数即可.(Ⅱ)由(Ⅰ)知:b n=lna n=n,可得==,利用“裂项求和”即可得出.【解答】(Ⅰ)证明:∵a n=e n,a1=e,且==e,∴数列{a n}是首项为e,公比为e的等比数列.(Ⅱ)解:由(Ⅰ)知:b n=lna n=lne n=n,∴==,其前n项和T n=++…+=1﹣=.【点评】本题考查了等比数列的通项公式、“裂项求和”方法,考查了变形推理能力与计算能力,属于中档题.20.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD.【考点】解三角形.【专题】数形结合;数形结合法;解三角形.【分析】在△ABC中由正弦定理解出BC,在Rt△BCD中由正切的定义求出CD.【解答】解:在△ABC中,∠BAC=30°,AB=600,∠ABC=180°﹣75°=105°,∴∠ACB=45°,∵,即,解得BC=300.又在Rt△BCD中,∠CBD=30°,∴CD=BC•tan∠CBD=300×=100,即山高CD为100m.【点评】本题考查了正弦定理在解三角形中的应用,属于基础题.21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A等,小于80分者为B等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A等和B等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A等的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)由茎叶图可得女生成绩的中位数为75.5,男生的平均成绩为81;(Ⅱ)用分层抽样可得A、B分别抽取到的人数为2人、3人,分别记为a、b,和1、2、3,列举可得总的基本事件共10个,其中至少有1人是A等有7个,由概率公式可得.【解答】解:(Ⅰ)由茎叶图可知,女生共14人,中间两个的成绩为75和76,故女生成绩的中位数为75.5,男生的平均成绩为=(69+76+78+85+87+91)=81;(Ⅱ)用分层抽样的方法从A等和B等中共抽取5人,每个人被抽到的概率为=,由茎叶图可知A等有8人,B等有12人,故A、B分别抽取到的人数为2人、3人,记A等的两人为a、b,B等的3人为1、2、3,则从中抽取2人所有可能的结果为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(1,2),(1,3),(2,3)共10个,其中至少有1人是A等的为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7个,∴所求概率为P=.【点评】本题考查列举法计算基本事件数及事件发生的概率,涉及茎叶图和数字特征,属基础题.22.已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】方程思想;转化法;导数的综合应用.【分析】(Ⅰ)求出函数f(x)的导数f′(x),根据题意列出方程组,解方程组求出a、b的值;(Ⅱ)利用导数判断函数f(x)的单调性,求出f(x)在定义域上的最小值f(x)min.【解答】解:(Ⅰ)∵函数f(x)=ax2﹣blnx,∴x>0,f′(x)=2ax﹣;又∵函数f(x)在点(1,f(1))处的切线方程为y=1,∴,即,解得;(Ⅱ)由(Ⅰ)知,f(x)=x2﹣2lnx,f′(x)=2x﹣,由f′(x)=2x﹣=2•=0,解得x=±1(负值舍去),∴当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)min=f(1)=1.【点评】本题考查了利用导数研究函数的单调性以及求函数的最值问题,也考查了导数的几何意义与应用问题,是综合性题目.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】综合题;空间位置关系与距离.【分析】(Ⅰ)证明BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即可得出结论;(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V1==.由(Ⅰ)知,DE是鳖臑D﹣BCE的高,BC⊥CE,所以V2==.即可求的值.【解答】(Ⅰ)证明:因为PD⊥底面ABCD,所以PD⊥BC,因为ABCD为正方形,所以BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为PC∩BC=C,所以DE⊥平面PBC,由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB;(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V1==.由(Ⅰ)知,DE是鳖臑D﹣BCE的高,BC⊥CE,所以V2==.因为PD=CD,点E是PC的中点,所以DE=CE=CD,所以===4【点评】本题考查线面垂直的判定与性质,考查体积的计算,考查学生分析解决问题的能力,属于中档题.24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.。
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第一章集合与简单逻辑1.1 集合高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.题型一.集合中元素的个数1.(2020•新课标Ⅲ)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5【答案】B.【解析】解:∵集合A={1,2,3,5,7,11},B={x|3<x<15),∴A∩B={5,7,11},∴A∩B中元素的个数为3.故选:B.2.(2015•新课标Ⅲ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2【答案】D.【解析】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.3.(2020•新课标Ⅲ)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【答案】C .【解析】解:∵集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},∴A ∩B ={(x ,y )|{y ≥xx +y =8,x ,y ∈N ∗}={(1,7),(2,6),(3,5),(4,4)}.∴A ∩B 中元素的个数为4.故选:C .4.(2018•新课标Ⅲ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4【答案】A .【解析】解:当x =﹣1时,y 2≤2,得y =﹣1,0,1,当x =0时,y 2≤3,得y =﹣1,0,1,当x =1时,y 2≤2,得y =﹣1,0,1,即集合A 中元素有9个,故选:A .5.(2017•新课标Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为()A .3B .2C .1D .0【答案】B .【解析】解:法一:由{x 2+y 2=1y =x ,解得:{x =√22y =√22或{x =−√22y =−√22,∴A ∩B 的元素的个数是2个,法二:画出圆和直线的图象,如图示:,结合图象,圆和直线有2个交点,故A ∩B 中元素的个数为2个,故选:B .题型二.集合与集合之间的关系1.(2015•重庆)已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A ⫋BD .B ⫋A 【答案】D .【解析】解:集合A ={1,2,3},B ={2,3},可得A ≠B ,A ∩B ={2,3},B ≠⊂A ,所以D 正确.故选:D .2.(2015•港澳台)设集合A ⊆{1,2,3,4},若A 至少有3个元素,则这样的A 共有( )A .2个B .4个C .5个D .7个 【答案】C .【解析】解:∵集合A ⊆{1,2,3,4},A 至少有3个元素,∴满足条件的集合A 有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},∴这样的A 共有5个.故选:C .3.(2012•新课标)已知集合A ={x |x 2﹣x ﹣2<0},B ={x |﹣1<x <1},则( )A .A ⫋BB .B ⫋AC .A =BD .A ∩B =∅【答案】B .【解析】解:由题意可得,A ={x |﹣1<x <2},∵B ={x |﹣1<x <1},在集合B 中的元素都属于集合A ,但是在集合A 中的元素不一定在集合B 中,例如x =32∴B ⫋A .故选:B.4.(2012•湖北)已知集合A={x|x2﹣3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4【答案】D.【解析】解:由题意可得,A={1,2},B={1,2,3,4},∵A⊆C⊆B,∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选:D.5.(2021•上海)已知集合A={x|x>﹣1,x∈R},B={x|x2﹣x﹣2≥0,x∈R},则下列关系中,正确的是()A.A⊆B B.∁R A⊆∁R B C.A∩B=∅D.A∪B=R【答案】D.【解析】解:已知集合A={x|x>﹣1,x∈R},B={x|x2﹣x﹣2≥0,x∈R},解得B={x|x≥2或x≤﹣1,x∈R},∁R A={x|x≤﹣1,x∈R},∁R B={x|﹣1<x<2};则A∪B=R,A∩B={x|x≥2},故选:D.题型三.集合的基本运算1.(2021•北京)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【答案】B.【解析】解:∵A={x|﹣1<x<1},B={x|0≤x≤2},∴A∪B={x|﹣1<x<1}∪{x|0≤x≤2}={x|﹣1<x≤2}.故选:B.2.(2021•新高考Ⅲ)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁U B=()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B.【解析】解:因为全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},所以∁U B={1,5,6},故A∩∁U B={1,6}.故选:B.3.(2019•新课标Ⅲ)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3}【答案】C.【解析】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.4.(2016•天津)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【答案】D.【解析】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故选:D.5.(2021•乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z【答案】C.【解析】解:当n是偶数时,设n=2k,则s=2n+1=4k+1,当n是奇数时,设n=2k+1,则s=2n+1=4k+3,k∈Z,则T⊊S,则S∩T=T,故选:C.6.(2017•山东)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)【答案】C.【解析】解:集合M={x||x﹣1|<1}=(0,2),N={x|x<2}=(﹣∞,2),∴M∩N=(0,2),故选:C.7.(2017•新课标Ⅲ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【答案】A.【解析】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.8.(2013•辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]【答案】D.【解析】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.题型四.集合中的含参问题1.(2013•江西)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4【答案】A.【解析】解:当a=0时,方程为1=0不成立,不满足条件当a≠0时,△=a2﹣4a=0,解得a=4故选:A.2.(2020•新课标Ⅲ)设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.4【答案】B.【解析】解:集合A={x|x2﹣4≤0}={x|﹣2≤x≤2},B={x|2x+a≤0}={x|x≤−12a},由A∩B={x|﹣2≤x≤1},可得−12a=1,则a=﹣2.故选:B.3.(2017•新课标Ⅲ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【答案】C.【解析】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.4.(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【答案】B.【解析】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选:B.5.(2020•海南)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【答案】C.【解析】解:设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,由题意,可得x+z=60,x+y+z=96,y+z=82,解得z=46.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C.一.单选题(共8小题)1.已知集合A={﹣1,0,m},B={1,2},若A∪B={﹣1,0,1,2},则实数m的值为()A.﹣1或0B.0或1C.﹣1或2D.1或2【答案】D.【解析】解:集合A={﹣1,0,m},B={1,2},A∪B={﹣1,0,1,2},因为A,B本身含有元素﹣1,0,1,2,所以根据元素的互异性,m≠﹣1,0即可,故m=1或2,故选:D.2.设全集U=R,集合A={x|xx+3<0},B={x|x≤−1},则集合A∩(∁U B)=()A.{x|x>0}B.{x|x<﹣3}C.{x|﹣3<x≤﹣1}D.{x|﹣1<x<0}【答案】D.【解析】解:由xx+3<0,即x(x+3)<0,解得﹣3<x<0,则A={x|﹣3<x<0},∵B={x|x≤﹣1},∴∁U B={x|x>﹣1},∴A∩(∁U B)={x|﹣1<x<0},故选:D.3.若集合A={x|x2﹣2x﹣3≤0},B={x|2x≥√2},则A∩B=()A.[12,3]B.[12,1]C.[−3,12]D.[2,3]【答案】A.【解析】解:∵A={x|−1≤x≤3},B={x|x≥12},∴A∩B=[12,3].故选:A.4.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B的子集个数为()A.2B.4C.8D.16【答案】B.【解析】解:∵A={x∈N|﹣2≤x≤2}={0,1,2},B={y|y≤1},∴A∩B={0,1},∴A∩B的子集个数为22=4个.故选:B.5.集合A={x|y=lg(x﹣1)},集合B={y|y=√x2+2x+5},则A∩∁R B=()A.[1,2)B.[1,2]C.(1,2)D.(1,2]【答案】C.【解析】解:∵y=√x2+2x+5=√(x+1)2+4≥2,∴B=[2,+∞),∴∁R B=(﹣∞,2).∵x﹣1>0,∴x>1,∴A=(1,+∞).∴A∩∁R B=(1,+∞)∩((﹣∞,2)=(1,2).故选:C.6.若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N)D.(∁U M)∩(∁U N)【答案】D.【解析】解:∵5∉M,5∉N,故5∈∁U M,且5∈∁U N.同理可得,6∈∁U M,且6∈∁U N,∴{5,6}=(∁U M)∩(∁U N),故选:D.7.集合A={﹣1,2},B={x|ax﹣2=0},若B⊆A,则由实数a组成的集合为()A.{﹣2}B.{1}C.{﹣2,1}D.{﹣2,1,0}【答案】D.【解析】解:∵集合A={﹣1,2},B={x|ax﹣2=0},B⊆A,∴B=∅或B={﹣1}或B={2} ∴a=0,1,﹣2.∴由实数a组成的集合为:{﹣2,1,0}.故选:D.8.已知集合A ={x |a ﹣2<x <a +3},B ={x |(x ﹣1)(x ﹣4)>0},若A ∪B =R ,则a 的取值范围是( )A .(﹣∞,1]B .(1,3)C .[1,3]D .[3,+∞)【答案】B .【解析】解:B ={x |x <1,或x >4};∵A ∪B =R ;∴{a −2<1a +3>4;∴1<a <3; ∴a 的取值范围是(1,3).故选:B .二.多选题(共4小题)9.若集合P ={x |y =x 2,x ∈R },集合T ={y |y =x 2,x ∈R },则( )A .0∈PB .﹣1∉TC .P ∩T =∅D .P =T 【解答】解:集合P ={x |y =x 2,x ∈R }={x |x ∈R },集合T ={y |y =x 2,x ∈R }={y |y ≥0},故0∈P ,选项A 正确,故﹣1∉T ,选项B 正确,故P ∩T =[0,+∞),选项C 错误,P =R ,T =[0,+∞),选项D 错误.故选:AB .10.设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则( )A .A ∩B ={0,1}B .∁U B ={4}C .A ∪B ={0,1,3,4}D .集合A 的真子集个数为8【解答】解:∵全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},∴A ∩B ={0,1},故A 正确,∁U B ={2,4},故B 错误,A ∪B ={0,1,3,4},故C 正确,集合A 的真子集个数为23﹣1=7,故D 错误故选:AC .11.已知集合A =(﹣2,5),集合B ={x |x ≤m },使A ∩B ≠∅的实数m 的值可以是( )A .0B .﹣2C .4D .6【解答】解:因为集合A =(﹣2,5),集合B ={x |x ≤m },且A ∩B ≠∅,则m >﹣2.故选:ACD .12.我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S,且x∉A}.类似地,对于集合A、B,我们把集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A﹣B.例如,A={1,2,3,4,5},B={4,5,6,7,8},则有A﹣B={1,2,3},B﹣A={6,7,8},下列说法正确的是()A.若A={x|x>2},B={x|x2>4},则B﹣A={x|x<﹣2}B.若A﹣B=∅,则B⊆AC.若S是高一(1)班全体同学的集合,A是高一(1)班全体女同学的集合,则S﹣A=∁S AD.若A∩B={2},则2一定是集合A﹣B的元素【解答】解:对于A:B={x|x2>4}={x|x<﹣2或x>2},则B﹣A={x|x<﹣2},故A正确;对于B:如A={3,4,5},B={3,4,5,6,7,8},则有A﹣B=∅,但B⊈A,所以B错误;对于C:A是高一(1)班全体女同学的集合,∁S A是高一(1)班全体男同学的集合,S﹣A是高一(1)班全体男同学的集合,所以C正确;对于D:若A∩B={2},则2∈A且2∈B,所以2∉A﹣B,故D错误;故选:AC.。
理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知单元素集合(){}2|210A x x a x =-++=,则a =( ) A . 0 B . -4 C . -4或1 D .-4或02. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A .6种B . 12种C .18种D .24种3. 已知函数()sin f x x x =+,若()()()23,2,log 6a f b f c f ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .b a c << D .b c a <<4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设,AB a AD b ==u u u r u u u r ,则向量BF =u u u r( ) A .1233a b+B .1233a b -- C. 1233a b -+ D .1233a b - 5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标原点,若0OA OB <u u u r u u u rg,则a 的取值范围是 ( )A .(),0-∞B .()0,1 C. ()1,+∞ D .{}16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )A .25πB . 50π C. 100π D .200π7. 若,x y 满足约束条件44030y x x y x y ≤⎧⎪+-≥⎨⎪+-≤⎩,则1x y +的取值范围是( )A .5,113⎡⎤⎢⎥⎣⎦B .13,115⎡⎤⎢⎥⎣⎦ C. 3,115⎡⎤⎢⎥⎣⎦ D .15,113⎡⎤⎢⎥⎣⎦8. 执行如图所示的程序框图,如果输入的n 是10,则与输出结果S 的值最接近的是( )A . 28eB . 36e C. 45e D .55e9.在ABC ∆中,点D 为边AB 上一点,若3,32,3,sin 3BC CD AC AD ABC ⊥==∠=,则ABC ∆的面积是( ) A .922 B .1522C. 62 D .122 10.某市1路公交车每日清晨6:30于始发站A 站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A 站搭乘该公交车上班,甲在6:35-6:55内随机到达A 站候车,乙在6:50-7:05内随机到达A 站候车,则他们能搭乘同一班公交车的概率是 ( ) A .16 B . 14 C. 13 D .51211.如图,Rt ABC ∆中,,6,2AB BC AB BC ⊥==,若其顶点A 在x 轴上运动,顶点B 在y 轴的非负半轴上运动.设顶点C 的横坐标非负,纵坐标为y ,且直线AB 的倾斜角为θ,则函数()y f θ=的图象大致是 ( )A .B .C. D .12. 定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A . -1 B .12-C. 13- D .13二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.在复平面内,复数()228z m m m i =+--对应的点位于第三象限,则实数m 的取值范围是. 14.已知tan 24πα⎛⎫+=-⎪⎝⎭,则1sin 2cos 2αα-=.15.过双曲线()2222:10,0x y E a b a b-=>>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是.16.一个正方体的三视图如图所示,若俯视图中正六边形的边长为1,则该正方体的体积是.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等比数列{}n a 中,*11211120,,,64n n n n a a n N a a a ++>=-=∈. (1)求{}n a 的通项公式;(2)设()()221log nn n b a =-g ,求数列{}n b 的前2n 项和2n T .18.某快递公司收取快递费用的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,除1kg 收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下: 包裹重量(单位:kg )1234 5包裹件数43 30 15 8 4包裹件数范围 0100: 101200: 201300: 301400: 401500:包裹件数(近似处理)50 150 250 350 450 天数6630126(1)计算该公司未来3天内恰有2天揽件数在101400:之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?19.如图,在多面体ABCDEF 中,四边形ABCD 为菱形,//,AF DE AF AD ⊥,且平面BED ⊥平面ABCD .(1)求证:AF CD ⊥; (2)若0160,2BAD AF AD ED ∠===,求二面角A FB E --的余弦值.20.已知椭圆()2222:10x y E a b a b +=>>过点⎛ ⎝⎭,且两个焦点的坐标分别为()()1,0,1,0-. (1)求E 的方程;(2)若,,A B P 为E 上的三个不同的点,O 为坐标原点,且OP OA OB =+u u u r u u u r u u u r,求证:四边形OAPB 的面积为定值.21. 已知函数()()()221ln f x x m x x m R =-++∈. (1)当12m =-时,若函数()()()1ln g x f x a x =+-恰有一个零点,求a 的取值范围; (2)当1x >时,()()21f x m x <-恒成立,求m 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈),将曲线1C 经过伸缩变换:x xy '=⎧⎪⎨'=⎪⎩得到曲线2C .(1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程;(2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与12,C C 相交于,A B两点,且1AB ,求α的值.23. 【选修4-5:不等式选讲】 已知函数()()1f x x a a R =--∈.(1)若()f x 的最小值不小于3,求a 的最大值;(2)若()()2g x f x x a a =+++的最小值为3,求a 的值.试卷答案一、选择题1-5: DBDCB 6-10: BABCA 11、12:AC 二、填空题13. ()2,0- 14. 12-15. (16.三、解答题17.解:(1)设等比数列{}n a 的公比为q ,则0q >, 因为12112n n n a a a ++-=,所以11111112n n n a q a q a q -+-=, 因为0q >,解得2q =, 所以17*122,64n n n a n N --=⨯=∈; (2)()()()()()()2227221log 1log 217nnnn n n b a n -=-=-=--g g g ,设7n c n =-,则()()21nn n b c =-g ,()()()()()()222222212342121234212n n n n n T b b b b b b c c c c c c --⎡⎤⎡⎤=++++++=-++-+++-+⎣⎦⎣⎦L L()()()()()()12123434212212n n n n c c c c c c c c c c c c --=-+++-++++-++L ()()2123421226272132132n n n n c c c c c c n n n n --+-⎡⎤⎣⎦=++++++==-=-L .18.解:(1)样本中包裹件数在101400:之间的天数为48,频率484605f ==, 故可估计概率为45, 显然未来3天中,包裹件数在101400:之间的天数X 服从二项分布,即43,5X B ⎛⎫ ⎪⎝⎭:,故所求概率为223414855125C ⎛⎫⨯⨯=⎪⎝⎭; (2)①样本中快递费用及包裹件数如下表:故样本中每件快递收取的费用的平均值为1530201525830415100+⨯+⨯+⨯+⨯=(元), 故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,可使前台工资和公司利润增加11553⨯=(元), 将题目中的天数转化为频率,得若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:EY500.11500.12500.53000.23000.1235⨯+⨯+⨯+⨯+⨯=因9751000<,故公司将前台工作人员裁员1人对提高公司利润不利.19.(1)证明:连接AC,由四边形ABCD为菱形可知AC BD⊥,∵平面BED⊥平面ABCD,且交线为BD,∴AC⊥平面BED,∴AC ED⊥,又//AF DE,∴AF AC⊥,∵,AC AD AAF AD⊥=I,∴AF⊥平面ABCD,∵CD⊂平面ABCD,∴AF CD⊥;(2)解:设AC BD O=I,过点O作DE的平行线OG,由(1)可知,,OA OB OG两两互相垂直,则可建立如图所示的空间直角坐标系O xyz-,设()1202AF AD ED a a===>,则)()()()3,0,0,0,,0,3,0,2,0,,4A aB a F a a E a a-,所以()()()()3,,0,0,0,2,0,2,4,3,,2 AB a a AF a BE a a BF a a a=-==-=-u u u r u u u r u u u r u u u r,设平面ABF的法向量为(),,m x y z=u r,则m ABm AF⎧=⎪⎨=⎪⎩u r u u u rgu r u u u rg,即3020x yz⎧+=⎪⎨=⎪⎩,取3y=()3,0m=u r为平面ABF的一个法向量,同理可得()0,2,1n=r为平面FBE的一个法向量.则2315cos,525m n==⨯,又二面角A FB E--的平面角为钝角,则其余弦值为1520.解:(1)由已知得1,2c a ===∴1a b ==,则E 的方程为2212x y +=; (2)当直线AB 的斜率不为零时,可设:AB x my t =+代入2212x y +=得: ()2222220my mty t +++-=,设()()1122,,,A x y B x y ,则212122222,22mt t y y y y m m -+=-=++,()2282m t ∆=+-,设(),P x y ,由OP OA OB =+u u u r u u u r u u u r,得()121212122224,222mt ty y y x x x my t my t m y y t m m =+=-=+=+++=++=++, ∵点P 在椭圆E 上,∴()()22222221641222t m t m m+=++,即()()22224212t m m+=+,∴2242t m =+,AB ===原点到直线x my t =+的距离为d =∴四边形OAPB的面积:22122242OABS S AB d t ∆==⨯⨯===. 当AB的斜率为零时,四边形OAPB的面积112222S =⨯⨯=,∴四边形OAPB 21.解:(1)函数()g x 的定义域为()0,+∞,当12m =-时,()2ln g x a x x =+,所以()222a x a g x x x x +'=+=,①当0a =时,()2,0g x x x =>时无零点,②当0a >时,()0g x '>,所以()g x 在()0,+∞上单调递增, 取10ax e-=,则21110aa g e e --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,因为()11g =,所以()()010g x g <g ,此时函数()g x 恰有一个零点,③当0a <时,令()0g x '=,解得x =当0x <<()0g x '<,所以()g x 在⎛ ⎝上单调递减;当x >()0g x '>,所以()g x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则ln 02ag a ==即2a e =-,综上所述,若函数()g x 恰有一个零点,则2a e =-或0a >;(2)令()()()()22121ln h x f x m x mx m x x =--=-++,根据题意,当()1,x ∈+∞时,()0h x <恒成立,又()()()()1211221x mx h x mx m x x--'=-++=, ①若102m <<,则1,2x m ⎛⎫∈+∞⎪⎝⎭时,()0h x '>恒成立,所以()h x 在1,2m ⎛⎫+∞ ⎪⎝⎭上是增函数,且()1,2h x h m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,所以不符题意. ②若12m ≥,则()1,x ∈+∞时,()0h x '>恒成立,所以()h x 在()1,+∞上是增函数,且()()()1,h x h ∈+∞,所以不符题意.③若0m ≤,则()1,x ∈+∞时,恒有()0h x '<,故()h x 在()1,+∞上是减函数,于是“()0h x <对任意()1,x ∈+∞,都成立”的充要条件是()10h ≤,即()210m m -+≤,解得1m ≥-,故10m -≤≤.综上,m 的取值范围是[]1,0-.22.解:(1)1C 的普通方程为()2210x y y +=≥,把,3x x y y ''==代入上述方程得,()22103y x y '''+=≥, ∴2C 的方程为()22103y x y +=≥, 令cos ,sin x y ρθρθ==, 所以2C 的极坐标方程为[]()2222230,3cos sin 2cos 1ρθπθθθ==∈++;(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩,得1A ρ=, 由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩,得B ρ=,11=,∴1cos 2α=±, 而[]0,απ∈,∴3πα=或23π. 23.解:(1)因为()()min 1f x f a ==-,所以3a -≥,解得3a ≤-,即max 3a =-;(2)()()212g x f x x a a x x a =+++=-++,当1a =-时,()310,03g x x =-≥≠,所以1a =-不符合题意,当1a <-时,()()()()()()()12,12,112,1x x a x a g x x x a x a x x a x -++≥-⎧⎪=--+≤<-⎨⎪---+<⎩,即()312,12,1312,1x a x a g x x a x a x a x -+≥-⎧⎪=---≤<-⎨⎪-+-<⎩, 所以()()min 13g x g a a =-=--=,解得4a =-,当1a >-时,同法可知()()min 13g x g a a =-=+=,解得2a =,综上,2a =或-4.。
最新东北三省四市教研联合体高考数学三模试卷(理科)一、选择题1.若集合A={1,2},B={1,3},则集合A∪B的真子集的个数为()A.7 B.8 C.15 D.162.设复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2+i,则=()A.﹣4+3i B.4﹣3i C.﹣3﹣4i D.3﹣4i3.已知函数f(x)=,则f(a)的值不可能为()A.2016 B.0 C.﹣2 D.4.设等比数列{a n}的公比q=,前n项和为S n,则=()A.5 B.7 C.8 D.155.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列四个命题:其中正确命题的个数是()(1)若m∥α,α⊥β,则m⊥β;(2)若n⊥α,m⊥β,且n⊥m,则α⊥β;(3)若α⊥β,m⊄α,m⊥β,则m∥α;(4)若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β.A.1 B.2 C.3 D.46.在边长为2的等边三角形△ABC中,点M在边AB上,且满足=3,则•=()A.B.C.D.47.见如图程序框图,若输入a=110011,则输出结果是()A.51 B.49 C.47 D.458.已知抛物线y2=2px(p>0)的焦点为F,直线y=﹣3与抛物线交于点M,|MF|=5,则抛物线的标准方程是()A.y2=2x B.y2=18xC.y2=x D.y2=2x或y2=18x9.已知长方体ABCD﹣A1B1C1D1中,AB=2,BC=BB1=,在四边形ABC1D1内随机取一点M,则满足∠AMB≥135°的概率为()A.B.C.D.10.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.211.△ABC中,D为BC的中点,满足∠BAD+∠C=90°,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形12.已知函数f(x)=|ln|x﹣1||+x2与g(x)=2x有n个交点,它们的横坐标之和为()A.0 B.2 C.4 D.8二.填空题13.设a为非零常数,已知(x+)(1﹣ax)4的展开式中各项系数和为3,展开式中x2项的系数是______.14.在椭圆=1上有两个动点M,N,K(3,0)为定点,•=0,则•最小值为______.15.已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为8π,则三棱锥的高为______.16.已知数列{2n•a n}的前n项和为,若存在n∈N*,使得a n≥m成立,则m的取值范围是______.三.解答题17.函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.18.如表为甲、乙两位同学在最近五次模拟考试中的数学成绩(单位:分)甲102 126 131 118 127乙96 117 120 119 135(1)试判断甲、乙两位同学哪位同学的数学考试成绩更稳定?(不用计算,给出结论即可)(2)若从甲、乙两位同学的数学考试成绩中各随机抽取2次成绩进行分析,设抽到的成绩中130分以上的次数为X,求随机变量X的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,底面四边形ABCD是正方形,PA=PD,且PA⊥CD.(1)求证:平面PAD⊥底面ABCD;(2)设=λ,当λ为何值时直线PA与平面PBC所成角的余弦值为?20.已知A(﹣2a,0),B(2a,0)(a>0),||=2a,D为线段BP的中点.(1)求点D的轨迹E的方程;(2)抛物线C以坐标原点为顶点,以轨迹E与x轴正半轴的交点F为焦点,过点B的直线与抛物线C交于M,N两点,试判断坐标原点与以MN为直径的圆的位置关系.21.已知函数f(x)=ln(x+1)﹣ax,x=0是极值点.(1)求实数a的值;(2)设g(x)=,试比较g(4)+g(9)+…+g(n2)与(n ∈Z,n≥2)的大小.选做题[选修4-1几何证明选讲]22.如图所示,AB是⊙O的直径,点C在⊙O上,CD为⊙O的切线,过A作CD的垂线,垂足为D,交⊙O于F.(1)求证:AC为∠DAB的角平分线;(2)过C作AB的垂线,垂足为M,若⊙O的直径为8,且OM:MB=3:1,求DF•AD的值.[选修4-4坐标系与参数方程]23.经过抛物线C:y2=2px(p>0)外的点A(﹣2,﹣4),且倾斜角为的直线l与抛物线C交于M,N两点,且|AM|、|MN|、|AN|成等比数列.(1)求抛物线C的方程;(2)E,F为抛物线C上的两点,且OE⊥OF(O为坐标原点),求△OEF的面积的最小值.[选修4-5不等式选讲]24.已知函数f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值为1.(1)试求实数m的值;(2)求证:log2(2a+2b)﹣m≥.参考答案与试题解析一、选择题1.若集合A={1,2},B={1,3},则集合A∪B的真子集的个数为()A.7 B.8 C.15 D.16【考点】子集与真子集.【分析】由根据集合的定义得到:集合A∪B={1,2,3},由此能求出集合A∪B的真子集个数.【解答】解:∵A={1,2},B={1,3},∴集合A∪B={1,2,3},∴集合A∪B的真子集个数为23﹣1=7.故选:A.2.设复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2+i,则=()A.﹣4+3i B.4﹣3i C.﹣3﹣4i D.3﹣4i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则与共轭复数的定义、几何意义即可得出.【解答】解:依题z2=﹣2+i,从而,于是=﹣3﹣4i,故选:C.3.已知函数f(x)=,则f(a)的值不可能为()A.2016 B.0 C.﹣2 D.【考点】函数的值.【分析】由分段函数分类讨论以确定函数的值域,从而确定答案.【解答】解:①当x>0时,f(x)=x(x+4)>0,②当x≤0时,f(x)=x(x﹣4)≥0,故f(x)≥0,故f(a)的值不可能为﹣2,故选C.4.设等比数列{a n}的公比q=,前n项和为S n,则=()A.5 B.7 C.8 D.15【考点】等比数列的通项公式.【分析】利用等比数列的通项公式与前n项和公式即可得出.【解答】解:S3==,a3==,∴=7.故选:B.5.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列四个命题:其中正确命题的个数是()(1)若m∥α,α⊥β,则m⊥β;(2)若n⊥α,m⊥β,且n⊥m,则α⊥β;(3)若α⊥β,m⊄α,m⊥β,则m∥α;(4)若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β.A.1 B.2 C.3 D.4【考点】空间中直线与平面之间的位置关系.【分析】根据线面位置关系的性质和判定定理进行分析或举出反例,属于中档题.【解答】解:对于(1),设α∩β=l,则当m∥l,m⊂β时,结论不成立,故(1)错误.对于(2),设m,n的方向向量分别是,则分别为平面β,α的法向量,∵m⊥n,∴的夹角为90°,∴平面α与β所成二面角为直角,即α⊥β.故(2)正确.对于(3),∵α⊥β,m⊥β,∴m∥α,或m⊂α.又m⊄α,∴m∥α.故(3)正确.对于(4),假设α,β不平行,则α,β相交,设交线为l,∵m⊂α,m∥β,α∩β=l,∴m∥l,同理:n∥l,∴m∥n,与m,n是异面直线矛盾.∴假设错误,即α∥β.故(4)正确.故选:C.6.在边长为2的等边三角形△ABC中,点M在边AB上,且满足=3,则•=()A.B.C.D.4【考点】平面向量数量积的运算.【分析】用表示出,再计算•.【解答】解:∵=3,∴==,∴==+,∴则•=(+)=+=+=.故选:A.7.见如图程序框图,若输入a=110011,则输出结果是()A.51 B.49 C.47 D.45【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,t=1,b=1,i=2,不满足退出循环的条件,第二次执行循环体后,t=1,b=3,i=3,不满足退出循环的条件,第三次执行循环体后,t=0,b=3,i=4,不满足退出循环的条件,第四次执行循环体后,t=0,b=3,i=5,不满足退出循环的条件,第五次执行循环体后,t=1,b=19,i=6,不满足退出循环的条件,第六次执行循环体后,t=1,b=51,i=7,满足退出循环的条件,故输出b值为51,故选:A.8.已知抛物线y2=2px(p>0)的焦点为F,直线y=﹣3与抛物线交于点M,|MF|=5,则抛物线的标准方程是()A.y2=2x B.y2=18xC.y2=x D.y2=2x或y2=18x【考点】抛物线的简单性质.【分析】由题意可得|MF|=5=x M+,解得x M=5﹣>0,把M代入抛物线方程解出即可得出.【解答】解:由题意可得|MF|=5=x M+,解得x M=5﹣>0,∴M代入抛物线方程可得:(﹣3)2=2p,化为:p2﹣10p+9=0,解得p=1或9.∴抛物线的标准方程是y2=2x或y2=18x.故选:D.9.已知长方体ABCD﹣A1B1C1D1中,AB=2,BC=BB1=,在四边形ABC1D1内随机取一点M,则满足∠AMB≥135°的概率为()A.B.C.D.【考点】几何概型.【分析】由题意通过圆和三角形的知识确定满足条件的图形,分别找出满足条件的点集对应的图形面积,及图形的总面积,作比值即可.【解答】解:长方体ABCD﹣A1B1C1D1中,AB=2,BC=BB1=,∴B1C1=2,∴四边形ABC1D1为正方形,其面积为2×2=4,以AB为底边,向正方形外作顶角为90°的等腰三角形,以等腰三角形的顶点O为圆心,OA 为半径作圆,根据圆周角相关定理,弧AB所对的圆周角为135°.即当M取圆O与ABC1D1的公共部分(弓形),∠AMB必大于135°其中AB=2,OA=,S阴影=π()2﹣××=﹣1,故所求的概率为=,故选:B.10.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【分析】设F(c,0),渐近线方程为y=x,运用点到直线的距离公式可得焦点到渐近线的距离为b,即为圆F的半径,再由MF垂直于x轴,可得a=b,运用a,b,c的关系和离心率公式,即可得到所求值.【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.11.△ABC中,D为BC的中点,满足∠BAD+∠C=90°,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【考点】三角形的形状判断.【分析】由∠BAD+∠C=90°,根据三角形的内角和定理得到剩下的两角相加也为90°,设∠BAD=α,∠B=β,可得∠C=90°﹣α,∠CAD=90°﹣β,在三角形ABD和三角形ADC中,分别根据正弦定理表示出BD:AD及CD:AD,由D为BC中点,得到BD=CD,从而得到两比值相等,列出关于α和β的关系式,利用诱导公式及二倍角的正弦函数公式化简后,得到sin2α=sin2β,由α和β的范围,可得出α=β或α+β=90°,由α=β根据等角对等边可得AD=BD=CD,根据三角形一边上的中线等于这边的一半可得三角形ABC为直角三角形;由α+β=90°,可得AD与BC垂直,又D为BC中点,故AD垂直平分BC,故AB=AC,此时三角形ABC为等腰三角形.【解答】解:∵∠BAD+∠C=90°,∴∠CAD+∠B=180°﹣(∠BAD+∠C)=90°,设∠BAD=α,∠B=β,则∠C=90°﹣α,∠CAD=90°﹣β,在△ABD和△ACD中,根据正弦定理得:sinα:sinβ=BD:AD,sin(90°﹣β):sin(90°﹣α)=CD:AD,又D为BC中点,∴BD=CD,∴sinα:sinβ=sin(90°﹣β):sin(90°﹣α)=cosβ:cosα,∴sinαcosα=sinβcosβ,即sin2α=sin2β,∴2α=2β或2α+2β=180°,∴α=β或α+β=90°,∴BD=AD=CD或AD⊥CD,∴∠BAC=90°或AB=AC,∴△ABC为直角三角形或等腰三角形.故选D12.已知函数f(x)=|ln|x﹣1||+x2与g(x)=2x有n个交点,它们的横坐标之和为()A.0 B.2 C.4 D.8【考点】函数的图象.【分析】令f(x)=g(x)得出|ln|x﹣1||=﹣x2+2x,作出y=|ln|x﹣1||和y=﹣x2+2x的函数图象,根据函数图象的对称性得出零点的和.【解答】解:令f(x)=g(x),即|ln|x﹣1||+x2=2x,∴|ln|x﹣1||=﹣x2+2x,分别作出y=|ln|x﹣1||和y=﹣x2+2x的函数图象,如图所示:显然函数图象有4个交点,设横坐标依次为x1,x2,x3,x4,∵y=|ln|x﹣1||的图象关于直线x=1对称,y=﹣x2+2x的图象关于直线x=1对称,∴x1+x4=2,x2+x3=2,∴x1+x2+x3+x4=4.故选C.二.填空题13.设a为非零常数,已知(x+)(1﹣ax)4的展开式中各项系数和为3,展开式中x2项的系数是﹣72 .【考点】二项式系数的性质.【分析】在已知二项式中取x=1,结合展开式中各项系数和为3求得a值,然后求出(1﹣2x)4的展开式中含x项与含x3的项,与(x+)中对应的项作积得答案.【解答】解:∵(x+)(1﹣ax)4的展开式中各项系数和为3,∴(1+2)(1﹣a)4=3,解得a=2(a≠0).∴(x+)(1﹣ax)4 =(x+)(1﹣2x)4,(1﹣2x)4的展开式中所含x项为,含x3的项为.∴(x+)(1﹣2x)4的展开式中x2项的系数是1×(﹣8)+2×(﹣32)=﹣72.故答案为:﹣72.14.在椭圆=1上有两个动点M,N,K(3,0)为定点,•=0,则•最小值为9 .【考点】椭圆的简单性质.【分析】M在椭圆=1上,可设M(6cosα,3sinα)(0≤α<2π),可得•=•=﹣=(6cosα﹣3)2+(3sinα)2=9(cosα﹣2)2,利用三角函数的单调性值域与二次函数的单调性即可得出.【解答】解:M在椭圆=1上,可设M(6cosα,3sinα)(0≤α<2π),则•=•=﹣==(6cosα﹣3)2+(3sinα)2=36cos2α﹣36cosα+9+27sin2α=9cos2α﹣36cosα+36=9(cosα﹣2)2,令cosα=t∈[﹣1,1],则f(t)=9(t﹣2)2﹣9∈[9,18].∴当cosα=1,sinα=0时,即取M(6,0),•最小值为0.故答案为:9.15.已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为8π,则三棱锥的高为 2 .【考点】由三视图求面积、体积.【分析】确定三视图直观图的现状,求出底面外接圆的半径,三棱锥的外接球的半径,即可求出三棱锥的高.【解答】解:由三视图可知该几何体是底面是边长为的等边三角形,有一侧棱垂直于底面,底面外接圆的半径为1,∵三棱锥的外接球表面积为8π,∴三棱锥的外接球的半径为设三棱锥的高为h,则∴h=2.故答案为:2.16.已知数列{2n•a n}的前n项和为,若存在n∈N*,使得a n≥m成立,则m的取值范围是.【考点】数列的求和.【分析】由+…+2n a n=,利用递推关系可得:n≥2时,;n=1时,a1=﹣1.通过作差可得数列的单调性.【解答】解:∵+…+2n a n=,∴n≥2时,+…+2n﹣1a n﹣1=,可得:2n a n=﹣=n﹣2,∴,n=1时,a1=﹣1.∴a n=.∵n=1时,a1=﹣1,a2=0.n≥2时,a n+1﹣a n=﹣=,∴n=2时,a2<a3;n=3时,a3=a4;n≥4时,a n+1<a n,因此:a1<a2<a3=a4>a5>…,∴当n=3或4时,a n取得最大值,a3=a4=.∵存在n∈N*,使得a n≥m成立,则m.故答案为:.三.解答题17.函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【分析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.(2)由条件利用正弦函数的最值以及周期性,求得|x1﹣x2|的最小值.【解答】解:(1)由题意A=1,将点(0,)代入解得,,再根据,结合0<ϖ<4,所以ϖ=2,.将函数f(x)的图象向右平移个单位得到函数的图象.(2)函数h(x)=f(x)+g(x)+2cos2x﹣1=2sin(2x+),故函数的周期T=π.对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),故|x1﹣x2|的最小值为.18.如表为甲、乙两位同学在最近五次模拟考试中的数学成绩(单位:分)甲102 126 131 118 127乙96 117 120 119 135(1)试判断甲、乙两位同学哪位同学的数学考试成绩更稳定?(不用计算,给出结论即可)(2)若从甲、乙两位同学的数学考试成绩中各随机抽取2次成绩进行分析,设抽到的成绩中130分以上的次数为X,求随机变量X的分布列及数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)由甲、乙两位同学在最近五次模拟考试中的数学成绩统计表得甲同学的数学考试成绩更稳定.(II)X的取值为0.1.2,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(I)由甲、乙两位同学在最近五次模拟考试中的数学成绩统计表得到甲的成绩较集中,∴甲同学的数学考试成绩更稳定.…(II)X的取值为0.1.2,…,,,…X的分布列如下:X 0 1 2P…∴EX=++=.…19.如图,在四棱锥P﹣ABCD中,底面四边形ABCD是正方形,PA=PD,且PA⊥CD.(1)求证:平面PAD⊥底面ABCD;(2)设=λ,当λ为何值时直线PA与平面PBC所成角的余弦值为?【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)由CD⊥AD,CD⊥PA得出CD⊥平面PAD,故而平面PAD⊥平面ABCD;(2)取AD的中点O,BC中点E,连接PO,OE.设OP=h,AB=1,以O为原点建立空间坐标系求出和平面PBC的法向量,令|cos<,>|=解出h,即可得出λ=的值.【解答】证明:(1)∵四边形ABCD是正方形,∴CD⊥AD,又CD⊥PA,PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴CD⊥平面PAD,又CD⊂平面ABCD,∴平面PAD⊥平面ABCD.(2)取AD的中点O,BC中点E,连接PO,OE.则OE⊥AD.∵PA=AD,∴PO⊥AD.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD∴PO⊥平面ABCD.以O为坐标原点,以OA,DE,OP为坐标轴,建立空间直角坐标系如图所示:设PO=h,AB=1.则A(,0,0),P(0,0,h),B(,1,0),C(﹣,1,0).∴=(,0,﹣h),=(﹣1,0,0),=(﹣,﹣1,h).设平面PBC的法向量为=(x,y,z),则.∴,令z=1得=(0,h,1).∴cos<>==.∵直线PA与平面PBC所成角的余弦值为,∴直线PA与平面PBC所成角的正弦值为.∴=,解得,∴PA==,∴λ==.20.已知A(﹣2a,0),B(2a,0)(a>0),||=2a,D为线段BP的中点.(1)求点D的轨迹E的方程;(2)抛物线C以坐标原点为顶点,以轨迹E与x轴正半轴的交点F为焦点,过点B的直线与抛物线C交于M,N两点,试判断坐标原点与以MN为直径的圆的位置关系.【考点】抛物线的简单性质.【分析】(1)利用代入法求点D的轨迹E的方程;(2)设直线MN的方程为x=ty+2a联立得y2﹣4aty﹣8a2=0,利用韦达定理,证明<0,即可得出结论.【解答】解:(1))设D(x,y),P(m,n)…所以…又(m+2a)2+n2=4a2…所以所求方程为x2+y2=a2…(2)轨迹E与x轴正半轴的交点F(a,0)…抛物线C的方程为y2=4ax…设,,设直线MN的方程为x=ty+2a联立得y2﹣4aty﹣8a2=0,则…所以…所以坐标原点在以MN为直径的圆内…21.已知函数f(x)=ln(x+1)﹣ax,x=0是极值点.(1)求实数a的值;(2)设g(x)=,试比较g(4)+g(9)+…+g(n2)与(n∈Z,n≥2)的大小.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求出函数的导数,计算f′(0),求出a的值即可;(2)求出g(x)的表达式,根据放缩法比较大小即可.【解答】解:(1)…由题意因为f'(0)=1﹣a=0…(所以a=1…(2).…先证当x>1时,lnx<x﹣1令h(x)=lnx﹣x+1.…所以h(x)在(1,+∞)上单调递减所以h(x)<h(1)=0所以当x>1时.…∴=…选做题[选修4-1几何证明选讲]22.如图所示,AB是⊙O的直径,点C在⊙O上,CD为⊙O的切线,过A作CD的垂线,垂足为D,交⊙O于F.(1)求证:AC为∠DAB的角平分线;(2)过C作AB的垂线,垂足为M,若⊙O的直径为8,且OM:MB=3:1,求DF•AD的值.【考点】与圆有关的比例线段;相似三角形的性质.【分析】(1)连接OC,运用圆的切线的性质和两直线平行的判定和性质,由内角平分线的定义,即可得证;(2)由AC⊥BC,CM为斜边AB上的高,运用直角三角形的射影定理,结合圆的切割线定理,即可得到所求值.【解答】解:(1)证明:连接OC,CD为⊙O的切线,可得OC⊥CD,又AD⊥CD,可得OC∥AD,所以∠CAD=∠ACO,又OC=OA,所以∠CAO=∠ACO,所以∠CAO=∠CAD所以AC为∠DAB的角平分线.(2)由题意⊙O的直径为8,OM:MB=3:1,可得OM=3,MB=1,由AC⊥BC,CM为斜边AB上的高,可得CM2=AM•MB=7,又AC=AC,∠CAO=∠CAD,所以Rt△ACB≌Rt△ACD,所以CD=CM,又CD2=DF•DA,而CD2=7.所以DF•DA=7.[选修4-4坐标系与参数方程]23.经过抛物线C:y2=2px(p>0)外的点A(﹣2,﹣4),且倾斜角为的直线l与抛物线C交于M,N两点,且|AM|、|MN|、|AN|成等比数列.(1)求抛物线C的方程;(2)E,F为抛物线C上的两点,且OE⊥OF(O为坐标原点),求△OEF的面积的最小值.【考点】抛物线的简单性质.【分析】(1)直线MN的参数方程是(t为参数),代入抛物线方程求抛物线C的方程,利用参数的几何意义,结合|AM|、|MN|、|AN|成等比数列,建立方程求出p,即可求抛物线C的方程;(2)利用抛物线的极坐标方程,确定S,即可求△OEF的面积的最小值.【解答】解:(1)直线MN的参数方程是(t为参数)…代入抛物线方程得所以|AM|•|AN|=32+8p……解得p=1所以抛物线方程为y2=2x…(2)抛物线的极坐标方程为ρsin2θ=2cosθ,…设,……所以…当时,即所求面积取得最小值4…[选修4-5不等式选讲]24.已知函数f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值为1.(1)试求实数m的值;(2)求证:log2(2a+2b)﹣m≥.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值不等式,结合f(x)的最小值为1.求实数m的值;(2)利用基本不等式,即可证明结论.【解答】解:(1)f(x)=|x+2|+|x+m|≥|2﹣m|,当且仅当(x+2)(x﹣m)≤0时取等号…所以|2﹣m|=1,…因为m<2,所以解得m=1…证明:(2)∵2a>0,2b>0,∴2a+2b≥,∴log2(2a+2b)﹣m≥log2()﹣1=.…2016年9月28日。
第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
2021年黄高预录考试数学模拟试题(一)考试时间:120分钟,满分:120分一、选择题(每小题3分,共30分)1.若2|1|816x x x ---+化简的结果为25x -,则x 的取值范围是( ) A .x 为任意实数 B .14x ≤≤C .1x ≥D .4x ≤2.边长为的正六边形的面积等于( ) A .243a B .2a C .2233a D .233a3.已知三角形的三边长分别是3,8,x ;若x 的值为偶数, 则x 的值有( )A.6个 B.5个 C.4个 D.3个4.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)5.在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN =2NC ,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )A.3 B.103C.4 D.1336.⊙O 的半径为r ,其外切直角梯形ABCD 的两底AB =a ,DC =b ,则r ,a ,b 之间的关系是( )A .r a b =-B . 2212r a b =- C . 12r ab = D . 111r a b=+ 7.已知x ,y ,z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) A.8 B.7 C.6 D.58.已知关于x 的不等式组230bx a x -≥⎧⎨<⎩的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(,)a b 的个数有 ( )A 2 对B 4对C 6对D 8对9.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)10、已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( )A 、a >0或a =-2B 、a =-2C 、 a ≥0D 、a =0二、填空题(每小题3分,共18分)11.从-2,-1,2这三个数中任取两个不同的数作为点的坐标, 该点在第四象限的概率是 .12.如图,AC =BC ,AC ⊥BC 于点C ,AB =AD =BD ,CD =CE =DE ,若AB =2,则BE = 。
普通高中最新联考 理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}2.在复平面内,复数Z 满足()i i z 311+=+,则Z 的共轭复数对应的点位于 ( )A .第一象限B . 第二象限C . 第三象限D . 第四象限 3. 等差数列}{n a 的前n 项和为30,1191=++a a a S n 若,那么13S 值的是( ) A .65 B .70 C .130 D .2604.给出下列四个结论,其中正确的是 ( ) A .若11a b>,则a <b B .“a =3"是“直线l 1:2310a x y +-=与直线l 2:320x y -+=垂直”的充要条件C .在区间[0,1]上随机取一个数x ,sin2x π的值介于0到12之间的概率是13D .对于命题P :x ∃∈R 使得21x x ++<0,则P ⌝:x ∀∈R 均有21x x ++>05.定义行列式运算:12142334a a a a a a a a =-.若将函数-sin cos ()1 -3x x f x =的图象向左平移m (0)m >个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .32π B .3πC .π65 D .6π6.在△ABC 中,若(2)0AB ABAC ?=u u u r u u u ru u u r,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形7.设x,y 满足约束条件36020,0,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则32a b+=( ) A.4 B.83 C.113D.2568. 设()f x 是定义在R 上的恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y ⋅=+,若()()11,2n a a f n n N *==∈,则数列{}n a 的前n 项和n S 的取值范围是( )A.1,22⎡⎫⎪⎢⎣⎭ B. 1,22⎡⎤⎢⎥⎣⎦ C. 1,12⎡⎫⎪⎢⎣⎭ D. 1,12⎡⎤⎢⎥⎣⎦9.已知a 为如图所示的程序框图输出的结果,则二项式6a x x ⎛- ⎪⎝⎭的展开式中常数项是( )A. -20B. 52C. -192D. -16010.已知三棱锥O —ABC ,A 、B 、C 三点均在球心为O 的球表面上,∠ABC=120°,AB=BC=1,俯视图正视图三棱锥O —ABC 的体则球O 的表面积是( )A .64πB .16πC .323π D .544π11.定义在R 上的函数()f x 满足f (1)=1,且对任意x ∈R 都有1()2f x '<,则不等式221()2x f x +>的解集为( )A .(1,2)B .(-∞,1)C .(1,+∞)D .(-1,1)12.过椭圆14922=+y x 上一点H 作圆222=+y x 的两条切线,点B A ,为切点.过B A ,的直线l 与x 轴, y 轴分别交于点,P Q 两点, 则POQ ∆的面积的最小值为( )A .21B . 32C . 1 D . 34 二.填空题:本大题共4小题,每小题5分,共20分。
江苏省南通、徐州、宿迁、淮安、泰州、镇江六市联考2021届高三第一次调研测试数 学2021.02注意事项:1. 答卷前,考生务必将自己的姓名、考生号,考场号、座位号填写在答题卡上。
2.回答选择题时, 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题 5分,共 40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={}26x N x ∈<<,B ={}2log (1)2x x -<,则A B =A .{}35x x ≤<B .{}25x x <<C .{3,4}D .{3,4,5} 2.已知2+i 是关于x 的方程250x ax ++=的根,则实数a =A .2-iB .-4C .2D .4 3.哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为A .11B .13C .15D .174.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述,在该模型中,人体内药物含量x (单位:mg )与给药时间t (单位:h )近似满足函数关系式0(1e )kt k x k-=-,其中0k ,k 分别称为给药速率和药物消除速率(单位:mg /h ).经测试发现,当t =23时,02k x k=,则该药物的消除速率k 的值约为(ln2≈0.69) A .3100 B .310 C .103 D .10035.(12)n x -的二项展开式中,奇数项的系数和为 A .2nB .12n - C .(1)32n n -+ D .(1)32n n--6.函数sin 21xy x π=-的图象大致为A BC D 7.已知点P 是△ABC 所在平面内一点,有下列四个等式: 甲:PA PB PC ++=0; 乙:()()PA PA PB PC PA PB ⋅-=⋅-; 丙:PA PB PC ==; 丁:PA PB PB PC PC PA ⋅=⋅=⋅. 如果只有一个等式不成立,则该等式为A .甲B .乙C .丙D .丁8.已知曲线ln y x =在A (1x ,1y ),B (2x ,2y )两点处的切线分别与曲线e x y =相切于C (3x ,3y ),D (4x ,4y ),则1234x x y y +的值为A .1B .2C .52D .174二、 选择题:本大题共4小题,每小题5分, 共计20分.在每小题给出的选项中,有多项符合题目要求。
【高中数学】数学《计数原理与概率统计》复习知识点(1)一、选择题1.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.13B.14C.15D.12【答案】A【解析】【分析】根据条件概率的公式与排列组合的方法求解即可.【详解】由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率113333155C C A9A20P==,其中学生丙第一个出场的概率1333255C A3A20P==,所以所求概率为2113PPP==.故选:A【点睛】本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型.2.甲、乙两类水果的质量(单位:kg)分别服从正态分布()()221122,,,N Nμδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是()A.甲类水果的平均质量10.4kgμ=B.甲类水果的质量比乙类水果的质量更集中于平均值左右C.甲类水果的平均质量比乙类水果的平均质量小D.乙类水果的质量服从正态分布的参数21.99δ=【答案】D【解析】由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故A,B,C,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D.3.设某中学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数(),i ix y()1,2,3,,i n=L L,用最小二乘法建立的线性回归直线方程为ˆ0.8585.71yx =-,给出下列结论,则错误的是( ) A .y 与x 具有正的线性相关关系B .若该中学某女生身高增加1cm ,则其体重约增加0.85kgC .回归直线至少经过样本数据(),i i x y ()1,2,3,,i n =L L 中的一个D .回归直线一定过样本点的中心点(),x y 【答案】C 【解析】 【分析】根据回归直线方程的性质和相关概念,对选项进行逐一分析即可. 【详解】因为0.850k =>,所以y 与x 具有正的线性相关关系,故A 正确; 该中学某女生身高增加1cm ,则其体重约增加0.85kg ,故B 正确; 回归直线一定过样本点的中心点(),x y ,回归直线有可能不经过样本数据, 故D 正确;C 错误. 故选:C . 【点睛】本题考查线性回归直线方程的定义,相关性质,属基础题.4.若1()nx x+的展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为( ) A .252 B .70C .256xD .256x -【答案】B 【解析】由题意可得26n n C C =,所以8n =,则展开式中二项式系数最大的项为第五项,即44445881()70T C x C x===,故选B.5.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种. A .2267A A B .3247A AC .322367A A AD .362467A A A【答案】D 【解析】 【分析】采用捆绑法和插空法,将3个男生看成一个整体方法数是34A 种,再排列6个女生,最后让所有男生插孔即可. 【详解】采用捆绑法和插空法;从4名男生中选择3名,进而将3个相邻的男生捆在一起,看成1个男生,方法数是34A 种,这样与第4个男生看成是2个男生;然后6个女生任意排的方法数是66A 种;最后在6个女生形成的7个空隙中,插入2个男生,方法数是27A 种.综上所述,不同的排法共有362467A A A 种. 故选D. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.6.已知59290129(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则7a =( )A .9B .36C .84D .243【答案】B 【解析】 【分析】()()59x 1x 2++-等价变形为[()][()()]59x 12x 11-++-+-,然后利用二项式定理将其拆开,求出含有7(1)x -的项,便可得到7a .【详解】解:55(1)[(1)2]x x +=-+展开式中不含7(1)x -;()[()()]99x 2x 11-=-+-展开式中含7(1)x -的系数为()729C 136-=所以,7a 36=,故选B 【点睛】本题考查二项式定理,解题的关键是要将原来因式的形式转化为目标因式的形式,然后再进行解题.7.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为三角形ABC 的BC ,AB 和AC .若10BC =,8AB =,6AC =,ABC V 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅱ的概率为( )A .92524ππ+B .162524π+C .252425ππ+D .484825π+【答案】D 【解析】 【分析】根据题意,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到结论. 【详解】由题意,如图:Ⅰ所对应的面积为1186242S =⨯⨯=, Ⅱ所对应的面积29252482422S πππ=++-=, 整个图形所对应的面积9252482422S πππ=++=+, 所以,此点取自Ⅱ的概率为484825P π=+.故选:D. 【点睛】本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.8.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元【答案】B 【解析】 【分析】 【详解】试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a ,∴ˆa=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程9.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是()A.18B.35C.58D.78【答案】C【解析】【分析】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,利用几何概型即可得到结果.【详解】设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|0≤x≤10且0≤y≤20},这是一个长方形区域,面积为S=10×20=200A表示某生等车时间不超过5分钟,所构成的区域为a={(x,y)|0≤x≤5或0≤y≤5},即图中的阴影部分,面积为S′=125,代入几何概型概率公式,可得P(A)'12552008 SS===故选C【点睛】解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.10.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3C .0.58D .0.958【答案】D 【解析】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.11.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125【答案】B 【解析】 【分析】利用二项式系数对应的杨辉上三角形的第1n +行,令1x =,得到二项展开式的二项式系数的和,再结合等差、等比数列的求和公式,即可求解. 【详解】由题意,n 次二项式系数对应的杨辉三角形的第1n +行,令1x =,可得二项展开式的二项式系数的和2n ,其中第1行为02,第2行为12,第3行为22,L L 以此类推, 即每一行的数字之和构成首项为1,公比为2的对边数列,则杨辉三角形中前n 行的数字之和为122112nn n S -==--,若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,L可以看成构成一个首项为1,公差为2的等差数列,则(1)2n n n T +=, 令(1)152n n +=,解得5n =, 所以前15项的和表示前7行的数列之和,减去所有的1,即()72113114--=, 即前15项的数字之和为114,故选B. 【点睛】本题主要考查了借助杨辉三角形的系数与二项式系数的关系考查等差、等比数列的前n 项和公式的应用,其中解答中认真审题,结合二项式系数,利用等差等比数列的求和公式,准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( ) A .18 B .28C .38D .42【答案】B 【解析】 【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案. 【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球, 则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题, 将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2887282C ⨯==种不同的放法, 即有28个不同的符合题意的放法; 故选B . 【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.13.2020(1)(1)i i +--的值为( ) A .0 B .1024C .1024-D .10241-【答案】A 【解析】 【分析】利用二项式定理展开再化简即得解. 【详解】 由题得原式=11223319192011223319192020202020202020201++i )1i )C i C i C i C i C i C i C i C i ++++--+-+-+L L (( =1133551919202020202()C i C i C i C i ++++L=1133555331132020202020202(++)C i C i C i C i C i C i ++++L =113355553312020202020202(C )C i C i C i i C i C i +++---L =0. 故选:A 【点睛】本题主要考查二项式定理,意在考查学生对该知识的理解掌握水平和分析推理能力.14.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118【答案】C 【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.15.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A .23B .12C .13D .14【答案】B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC , 则PB PC +u u u r u u u r =PD u u u r , ∵20PB PC PA ++=u u u r u u u r u u u r r ,∴2PB PC PA +=-u u u r u u u r u u u r , ∴2PD PA =-u u u r u u u r,∴P 是△ABC 边BC 上的中线AO 的中点,∴点P 到BC 的距离等于A 到BC 的距离的12. ∴S △PBC =12S △ABC . ∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为:P=PBC ABC S S V V =12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.16.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱【答案】A 【解析】【分析】由散点图可知,去掉(3,10)D 后,y 与x 的线性相关性加强,由相关系数r ,相关指数2R 及残差平方和与相关性的关系得出选项. 【详解】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选A. 【点睛】该题考查的是有关三点图的问题,涉及到的知识点有利用散点图分析数据,判断相关系数,相关指数,残差的平方和的变化情况,属于简单题目.17.二项式51(2)x x-的展开式中含3x 项的系数是 A .80 B .48 C .−40 D .−80【答案】D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r rr r T x x x ---+⎛⎫=-=- ⎪⎝⎭n n n n , 令523r -=,1r =,所求系数为145C 280-=-n ,故选D .18.概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是( ) A .甲48枚,乙48枚 B .甲64枚,乙32枚 C .甲72枚,乙24枚 D .甲80枚,乙16枚【答案】C 【解析】 【分析】根据题意,计算甲乙两人获得96枚金币的概率,据此分析可得答案.【详解】根据题意,甲、乙两人每局获胜的概率均为12, 假设两人继续进行比赛,甲获取96枚金币的概率111132224P =+⨯=, 乙获取96枚金币的概率2111224P =⨯=, 则甲应该获得396724⨯=枚金币;乙应该获得196244⨯=枚金币; 故选:C . 【点睛】本题主要考查概率在实际问题中的应用,涉及到独立事件的概率,考查学生的逻辑推理能力、数学运算能力,是一道中档题.19.某公司在2014~2018年的收入与支出情况如下表所示:根据表中数据可得回归直线方程为$$0.7y x a=+,依此估计如果2019年该公司收入为8亿元时的支出为( ) A .4.502亿元 B .4.404亿元 C .4.358亿元 D .4.856亿元【答案】D 【解析】 【分析】先求 3.92x =,2y =,根据$0.7ay x =-,求解$0.744a =-,将8x =代入回归直线方程为$$0.7y x a=+,求解即可. 【详解】 2.2 2.4 3.8 5.2 6.03.925x ++++==,0.2 1.5 2.0 2.5 3.825y ++++==$0.720.7 3.920.744a y x =-=-⨯=-即$0.70.744y x =-令8x =,则$0.780.744 4.856y =⨯-= 故选:D 【点睛】本题考查回归分析,样本中心点(),x y 满足回归直线方程,是解决本题的关键.属于中档题.20.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为()A.35B.13C.415D.15【答案】C【解析】【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案.【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615CpC==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115CpC==;故124 15p p p=+=.故选:C.【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.。
最新高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.= .2.设集合A={x|x2﹣2x>0,x∈R},,则A∩B= .3.若函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),则a= .4.已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是.5.在正方体ABCD﹣A1B1C1D1中,M为棱A1B1的中点,则异面直线AM与B1C所成的角的大小为(结果用反三角函数值表示).6.若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为.7.已知,则cos(30°+2α)= .8.某程序框图如图所示,则该程序运行后输出的S值是.9.过点P(1,2)的直线与圆x2+y2=4相切,且与直线ax﹣y+1=0垂直,则实数a的值为.10.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是.11.已知直角梯形ABCD,AD∥BC,∠BAD=90°.AD=2,BC=1,P是腰AB上的动点,则的最小值为.12.已知n∈N*,若,则n= .13.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若,n∈N*,S n为数列{a n}的前n项和,则= .14.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“函数y=sin(x+φ)为偶函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是()A.1 B.2 C.3 D.417.已知圆M过定点(2,0),圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦为AB,则|AB|等于()A.4 B.3 C.2 D.118.已知数列{a n}的通项公式为,则数列{a n}()A.有最大项,没有最小项B.有最小项,没有最大项C.既有最大项又有最小项D.既没有最大项也没有最小项三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.20.已知x∈R,设,,记函数.(1)求函数f(x)取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,求△ABC的面积S 的最大值.21.设函数f(x)=k•a x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.22.在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.23.设复数z n=x n+i•y n,其中x n y n∈R,n∈N*,i为虚数单位,z n+1=(1+i)•z n,z1=3+4i,复数z n在复平面上对应的点为Z n.(1)求复数z2,z3,z4的值;(2)是否存在正整数n使得∥?若存在,求出所有满足条件的n;若不存在,请说明理由;(3)求数列{x n•y n}的前102项之和.参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.= .【考点】极限及其运算.【专题】计算题;转化思想;综合法;导数的概念及应用.【分析】分式的分子分母同时除以n2,利用极限的性质能求出结果.【解答】解:==.故答案为:.【点评】本题考查极限的求法,是基础题,解题时要认真审题,注意极限性质的合理运用.2.设集合A={x|x2﹣2x>0,x∈R},,则A∩B= {x|﹣1≤x<0,x∈R}(或[﹣1,0)).【考点】交集及其运算.【专题】对应思想;转化法;不等式的解法及应用;集合.【分析】化简集合A、B,再计算A∩B.【解答】解:集合A={x|x2﹣2x>0,x∈R}={x|x<0或x>2,x∈R},={x|﹣1≤x<1,x∈R},∴A∩B={x|﹣1≤x<0,x∈R}(或[﹣1,0)).故答案为:{x|﹣1≤x<0,x∈R}(或[﹣1,0)).【点评】本题考查了不等式的解法与应用问题,也考查了集合的化简与运算问题,是基础题目.3.若函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),则a= .【考点】反函数.【专题】方程思想;转化思想;函数的性质及应用.【分析】利用互为反函数的性质即可得出.【解答】解:∵函数f(x)=a x(a>0且a≠1)的反函数的图象过点(3,﹣1),∴3=a﹣1,解得a=.故答案为:.【点评】本题考查了互为反函数的性质,考查了推理能力与计算能力,属于基础题.4.已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是 2 .【考点】极差、方差与标准差.【专题】计算题;转化思想;综合法;概率与统计.【分析】由一组数据6,7,8,9,m的平均数是8,先求出m=10,由此能求出这组数据的方差.【解答】解:∵一组数据6,7,8,9,m的平均数是8,∴,解得m=10,∴这组数据的方差S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.故答案为:2.【点评】本题考查一组数据的方差的求法,是基础题,解题时要认真审题,注意平均数、方差计算公式的合理运用.5.在正方体ABCD﹣A1B1C1D1中,M为棱A1B1的中点,则异面直线AM与B1C所成的角的大小为arccos(结果用反三角函数值表示).【考点】异面直线及其所成的角.【专题】计算题;转化思想;向量法;空间角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AM与B1C所成的角.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),M(2,1,2),B1(2,2,2),C(0,2,0),=(0,1,2),=(﹣2,0,2),设异面直线AM与B1C所成的角为θ,cosθ===.∴θ=.∴异面直线AM与B1C所成的角为arccos.故答案为:.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;综合法;立体几何.【分析】根据底面周长计算底面半径,根据侧面积计算母线长,再根据勾股定理求出圆锥的高,代入体积公式计算体积.【解答】解:∵圆锥的底面周长为2π,∴圆锥的底面半径r=1,设圆锥母线为l,则πrl=2π,∴l=2,∴圆锥的高h==.∴圆锥的体积V=πr2h=.故答案为:.【点评】本题考查了圆锥的结构特征,侧面积与体积计算,属于基础题.7.已知,则cos(30°+2α)= .【考点】二阶矩阵;三角函数的化简求值.【专题】计算题;转化思想;综合法;矩阵和变换.【分析】由二阶行列式展开式得到cos(75°﹣α)=,再由诱导公式得cos(30°+2α)=cos[180°﹣2(75°﹣α)],由此利用二倍角公式能求出结果.【解答】解:∵,∴cos75°cosα+sin75°sinα=cos(75°﹣α)=,cos(30°+2α)=cos[180°﹣2(75°﹣α)]=﹣cos[2(75°﹣α)]=﹣[2cos2(75°﹣α)﹣1]=﹣[2×﹣1]=.故答案为:.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式、诱导公式、倍角公式的性质的合理运用.8.某程序框图如图所示,则该程序运行后输出的S值是.【考点】程序框图.【专题】计算题;图表型;数学模型法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,k的值,当k=2016时,不满足条件k≤2015,退出循环,输出S的值,从而得解.【解答】解:模拟执行程序,可得k=1,S=0满足条件k≤2015,S=,k=2满足条件k≤2015,S=+,k=3…满足条件k≤2015,S=++…+,k=2015满足条件k≤2015,S=++…++,k=2016不满足条件k≤2015,退出循环,输出S的值.由于S=++…++=1﹣﹣…+=1﹣=.故答案为:.【点评】本题主要考查了程序框图和算法,考查了循环结构和条件语句,用裂项法求S的值是解题的关键,属于基本知识的考查.9.过点P(1,2)的直线与圆x2+y2=4相切,且与直线ax﹣y+1=0垂直,则实数a的值为﹣.【考点】圆的切线方程.【专题】分类讨论;转化思想;综合法;直线与圆.【分析】先判断a≠0,可得要求的直线的方程为y﹣2=(x﹣1),即x﹣ay+2a﹣1=0,再根据圆心O到x﹣ay+2a﹣1=0的距离等于半径2,求得a的值.【解答】解:当a=0时,直线ax﹣y+1=0,即直线y=1,根据所求直线与该直线垂直,且过点P(1,2),故有所求的直线为x=1,此时,不满足所求直线与圆x2+y2=4相切,故a≠0.故要求的直线的斜率为,要求的直线的方程为y﹣2=(x﹣1),即x﹣ay+2a﹣1=0.再根据圆心O到x﹣ay+2a﹣1=0的距离等于半径2,可得=2,求得a=﹣,故答案为:﹣.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式,体现了分类讨论的数学思想,属于中档题.10.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用列举法求出所有的传球方法共有多少种,找出第3次球恰好传回给甲的情况,由此能求出经过3次传球后,球仍在甲手中的概率.【解答】解:用甲→乙→丙→甲表示一种传球方法所有传球方法共有:甲→乙→甲→乙;甲→乙→甲→丙;甲→乙→丙→甲;甲→乙→丙→乙;甲→丙→甲→乙;甲→丙→甲→丙;甲→丙→乙→甲;甲→丙→乙→丙;则共有8种传球方法.第3次球恰好传回给甲的有两种情况,∴经过3次传球后,球仍在甲手中的概率是p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.11.已知直角梯形ABCD,AD∥BC,∠BAD=90°.AD=2,BC=1,P是腰AB上的动点,则的最小值为 3 .【考点】平面向量数量积的运算.【专题】应用题;数形结合;向量法;平面向量及应用.【分析】先建立坐标系,以直线AD,AB分别为x,y轴建立平面直角坐标系,设P(0,b)(0≤b≤1),根据向量的坐标运算和模的计算得到,=≥3,问题得以解决.【解答】解:如图,以直线AD,AB分别为x,y轴建立平面直角坐标系,则A(0,0),B(0,1),C(1,1),D(2,0)设P(0,b)(0≤b≤1)则=(1,1﹣b),=(2,﹣b),∴+=(3,1﹣2b),∴=≥3,当且仅当b=时取等号,∴的最小值为3,故答案为:3.【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.12.已知n∈N*,若,则n= 4 .【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】由题意可得•2+•22+•23+…+•2n﹣1+•2n=40•2,即(1+2)n﹣1=80,由此求得n的值.【解答】解:∵n∈N*,若,则•2+•22+•23+…+•2n﹣1+•2n=40•2,即(1+2)n﹣1=80,∴n=4,故答案为:4.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若,n∈N*,S n为数列{a n}的前n项和,则= 100 .【考点】数列的求和.【专题】转化思想;分类法;等差数列与等比数列.【分析】=,n∈N*,当n=1,2,…,9时,a n=0;当n=10,11,12,…,19时,a n=1;…,即可得出S2009.【解答】解:=,n∈N*,当n=1,2,…,9时,a n=0;当n=10,11,12,…,19时,a n=1;…,∴S2009=0+1×10+2×10+…+199×10+200×10=10×=201000,则=100.故答案为:100.【点评】本题考查了取整函数、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.14.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是(1,+∞).【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由题意便知方程组至少有两个解,从而可得到至少有两个解,从而有k=1+|x|>1,这样即求出k的取值范围.【解答】解:根据题意知方程至少有两个不同实数根;即至少有两个实数根;∴;∴k=1+|x|>1;∴实数k的取值范围为(1,+∞).故答案为:(1,+∞).【点评】考查对一个函数在定义域上封闭的理解,清楚函数y=x的定义域和值域相同.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“函数y=sin(x+φ)为偶函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据三角函数的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若φ=时,y=sin(x+φ)=cosx 为偶函数;若y=sin(x+φ)为偶函数,则φ=+kπ,k∈Z;∴“函数y=sin(x+φ)为偶函数”是“φ=”的必要不充分条件,故选B.【点评】本题主要考查充分条件和必要条件的判断,利用三角函数的性质是解决本题的关键,难度不大.16.下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是()A.1 B.2 C.3 D.4【考点】空间中直线与平面之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】两条异面直线不能确定一个平面;若两个平面有3个共线的公共点,则这两个平面相交;若a与b共面,b与c共面,则a与c不一定共面;若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外.【解答】解:在①中,两条异面直线不能确定一个平面,故①错误;在②中,若两个平面有3个不共线的公共点,则这两个平面重合,若两个平面有3个共线的公共点,则这两个平面相交,故②错误;在③中,直线a,b,c,若a与b共面,b与c共面,则a与c不一定共面,如四面体S﹣ABC中,SA与AB共面,AB与BC共面,但SA与BC异面,故③错误;在④中,若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外,故④正确.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.17.已知圆M过定点(2,0),圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦为AB,则|AB|等于()A.4 B.3 C.2 D.1【考点】抛物线的简单性质.【专题】计算题;数形结合;综合法;圆锥曲线的定义、性质与方程.【分析】画出图形,可根据条件设,并可得出圆M的半径,从而得出圆M的方程为,这样令x=0便可求出y,即求出A,B点的坐标,根据A,B点的坐标便可得出|AB|.【解答】解:如图,圆心M在抛物线y2=4x上;∴设,r=;∴圆M的方程为:;令x=0,;∴;∴y=y0±2;∴|AB|=y0+2﹣(y0﹣2)=4.故选:A.【点评】考查抛物线上的点和抛物线方程的关系,圆的半径和圆心,以及圆的标准方程,直线和圆的交点的求法,坐标轴上的两点的距离.18.已知数列{a n}的通项公式为,则数列{a n}()A.有最大项,没有最小项B.有最小项,没有最大项C.既有最大项又有最小项D.既没有最大项也没有最小项【考点】数列的函数特性.【专题】探究型.【分析】把数列的通项公式看作函数解析式,令,换元后是二次函数解析式,内层是指数函数,由指数函数的性质可以求出t的大致范围,在求出的范围内分析二次函数的最值情况.【解答】解:令,则t是区间(0,1]内的值,而=,所以当n=1,即t=1时,a n取最大值,使最接近的n的值为数列{a n}中的最小项,所以该数列既有最大项又有最小项.故选C.【点评】本题考查了数列的函数特性,考查了换元法,解答此题的关键是由外层二次函数的最值情况断定n的取值,从而说明使数列取得最大项和最小项的n都存在,属易错题.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.【考点】棱柱、棱锥、棱台的体积.【专题】转化思想;数形结合法;立体几何.【分析】(1)根据题意画出图形,结合图形,过C作CF∥BP,交AD所在直线于F,且点F在线段AD上,用tanα表示出DF、AF,求出容器内溶液的体积,列出不等式求出溶液不会溢出时α的最大值;(2)当α=60°时,过C作CF∥BP,交AB所在直线于F,则点F在线段AB上,溶液纵截面为Rt △CBF,由此能求出倒出的溶液量,即可得出结论.【解答】解:(1)根据题意,画出图形,如图a所示,过C作CF∥BP,交AD所在直线于F,在Rt△CDF中,∠FCD=α,CD=20cm,DF=20tanα,且点F在线段AD上,AF=30﹣20tanα,此时容器内能容纳的溶液量为:S梯形ABCF•20=•20=(30﹣20tanα+30)•20•10=2000(6﹣2tanα)(cm3);而容器中原有溶液量为20×20×20=8000(cm3),令2000(6﹣2tanα)≥8000,解得tanα≤1,所以α≤45°,即α的最大角为45°时,溶液不会溢出;(2)如图b所示,当α=60°时,过C作CF∥BP,交AB所在直线于F,在Rt△CBF中,BC=30cm,∠BCF=30°,BF=10cm,∴点F在线段AB上,故溶液纵截面为Rt△CBF,∵S△ABF=BC•BF=150cm2,容器内溶液量为150×20=300cm3,倒出的溶液量为(8000﹣3000)cm3<3000cm3,∴不能实现要求.【点评】本题考查了棱柱的体积在生产生活中的实际应用问题,解题时要认真审题,注意空间思维能力的培养,是综合性题目.20.已知x∈R,设,,记函数.(1)求函数f(x)取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,求△ABC的面积S 的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;转化思想;向量法;综合法;解三角形.【分析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出ab≤3,根据三角形的面积公式即可求出答案.【解答】解:(1)=.当f(x)取最小值时,,,k∈Z,所以,所求x的取值集合是.(2)由f(C)=2,得,因为0<C<π,所以,所以,.在△ABC中,由余弦定理c2=a2+b2﹣2abcosC,得3=a2+b2﹣ab≥ab,即ab≤3,所以△ABC的面积,因此△ABC的面积S的最大值为.【点评】本题考查了向量的数量积的运算和二倍角公式和两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.21.设函数f(x)=k•a x﹣a﹣x(a>0且a≠1)是奇函数.(1)求常数k的值;(2)若,且函数g(x)=a2x+a﹣2x﹣2mf(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.【考点】函数的最值及其几何意义;函数奇偶性的性质.【专题】分类讨论;分析法;函数的性质及应用.【分析】(1)方法一、由奇函数的性质:f(0)=0,解方程可得k=1,检验成立;方法二、运用奇函数的定义,由恒等式的性质即可得到k=1;(2)求得a=3,即有g(x)=32x﹣3﹣2x﹣2m(3x﹣3﹣x),令t=3x﹣3﹣x,则t是关于x的增函数,可得,h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2,讨论对称轴和区间的关系,运用单调性,可得最小值,解方程可得m的值.【解答】(1)解法一:函数f(x)=k•a x﹣a﹣x的定义域为R,f(x)是奇函数,所以f(0)=k﹣1=0,即有k=1.当k=1时,f(x)=a x﹣a﹣x,f(﹣x)=a﹣x﹣a x=﹣f(x),则f(x)是奇函数,故所求k的值为1;解法二:函数f(x)=k•a x﹣a﹣x的定义域为R,由题意,对任意x∈R,f(﹣x)=﹣f(x),即k•a﹣x﹣a x=a﹣x﹣k•a x,(k﹣1)(a x+a﹣x)=0,因为a x+a﹣x>0,所以,k=1.(2)由,得,解得a=3或(舍).所以g(x)=32x﹣3﹣2x﹣2m(3x﹣3﹣x),令t=3x﹣3﹣x,则t是关于x的增函数,,g(x)=h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2,当时,则当时,,解得;当时,则当t=m时,,m=±2(舍去).综上,.【点评】本题考查奇函数的定义和性质的运用,考查可化为二次函数的最值的求法,注意运用换元法和二次韩寒说的对称轴和区间的关系,考查运算能力,属于中档题.22.在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为.(1)求动点P的轨迹C的方程;(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、OB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.【考点】椭圆的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设P(x,y),由两点间距离公式和点到直线距离公式能求出动点P的轨迹C的方程.(2)设N(x,y),利用两点间距离公式能求出m.(3)法一:设A(x1,y1),B(x2,y2),由,得,由点A、B在椭圆C上,得,由此利用点到直线的距离公式、椭圆的对称性,结合已知条件能求出四边形ABA1B1的面积为定值.法二:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,点A、B在椭圆C上,得.由此利用点到直线的距离公式、椭圆的对称性,结合已知条件能求出四边形ABA1B1的面积为定值.法三:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,点A、B在椭圆C上,得.由此利用行列式性质及椭圆的对称性,能求出四边形ABA1B1的面积为定值.【解答】解:(1)设P(x,y),∵动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为,∴由题意,,…化简得3x2+4y2=12,…∴动点P的轨迹C的方程为.…(2)设N(x,y),则=,﹣2≤x≤2.…①当0<4m≤2,即时,当x=4m时,|MN|2取最小值3(1﹣m2)=1,解得,,此时,故舍去.…②当4m>2,即时,当x=2时,|MN|2取最小值m2﹣4m+4=1,解得m=1,或m=3(舍).…综上,m=1.(3)解法一:设A(x1,y1),B(x2,y2),则由,得,,,∵点A、B在椭圆C上,∴,,∴=,化简得.…①当x1=x2时,则四边形ABA1B1为矩形,y2=﹣y1,则,由,得,解得,,S=|AB|•|A1B|=4|x1||y1|=.…②当x1≠x2时,直线AB的方向向量为,直线AB的方程为(y2﹣y1)x﹣(x2﹣x1)y+x2y1﹣x1y2=0,原点O到直线AB的距离为∴△AOB的面积,根据椭圆的对称性,四边形ABA1B1的面积S=4S△AOB=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…解法二:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2),由,得,…∵点A、B在椭圆C上,所以,,∴=,化简得.…直线OA的方程为y1x﹣x1y=0,点B到直线OA的距离,△ABA1的面积,…根据椭圆的对称性,四边形ABA1B1的面积=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…解法三:设A(x1,y1),B(x2,y2),则A1(﹣x1,﹣y1),B1(﹣x2,﹣y2)由,得,…∵点A、B在椭圆C上,所以,,∴=,化简得.…△ABA1的面积=|x1y2﹣x2y1|,…根据椭圆的对称性,四边形ABA1B1的面积=2|x1y2﹣x2y1|,…∴=,∴.∴四边形ABA1B1的面积为定值.…【点评】本题考查椭圆方程的求法,考查满足条件的实数值的求法,考查四边形面积是否为定值的求法与证明,是中档题,解题时要认真审题,注意点到直线的距离公式、椭圆的对称性的合理运用.23.设复数z n=x n+i•y n,其中x n y n∈R,n∈N*,i为虚数单位,z n+1=(1+i)•z n,z1=3+4i,复数z n在复平面上对应的点为Z n.(1)求复数z2,z3,z4的值;(2)是否存在正整数n使得∥?若存在,求出所有满足条件的n;若不存在,请说明理由;(3)求数列{x n•y n}的前102项之和.【考点】数列的求和;复数代数形式的乘除运算.【专题】计算题;规律型;转化思想;等差数列与等比数列.【分析】(1)利用已知条件之间求解z2,z3,z4.(2)求出,利用复数的幂运算,求解即可.(3)通过,推出x n+4=﹣4x n,y n+4=﹣4y n,得到x n+4y n+4=16x n y n,然后求解数列的和即可.【解答】本题,第1小题,第2小题,第3小题.解:(1)z2=(1+i)(3+4i)=﹣1+7i,z3=﹣8+6i,z4=﹣14﹣2i.…(算错一个扣,即算对一个得,算对两个得3分)(2)若∥,则存在实数λ,使得,故z n=λ•z1,即(x n,y n)=λ(x1,y1),…又z n+1=(1+i)z n,故,即(1+i)n﹣1=λ为实数,…故n﹣1为4的倍数,即n﹣1=4k,n=4k+1,k∈N.…(3)因为,故x n+4=﹣4x n,y n+4=﹣4y n,…所以x n+4y n+4=16x n y n,…又x1y1=12,x2y2=﹣7,x3y3=﹣48,x4y4=28,x1y1+x2y2+x3y3+…+x100y100=(x1y1+x2y2+x3y3+x4y4)+(x5y5+x6y6+x7y7+x8y8)+…+(x97y97+x98y98+x99y99+x100y100)=,…而,,…所以数列{x n y n}的前102项之和为1﹣2100+12×2100﹣7×2100=1+2102.…【点评】本题考查复数的基本运算,复数的代数形式混合运算,考查数列求和,考查计算能力.。
2021届高考复习综合检测二(全国卷)数学(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 4 页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3 .本次考试时间120 分钟,满分150 分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60 分)一、选择题(本题共12小题,每小题 5 分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2>0},B={x|log2x≤2},则A∩B等于()A.(-∞,-1)∪ (0,+∞ )B.(2,4]C.(0,2)D.(-1,4]2-i2.复数z=-对应的点在复平面内位于()1+iA.第一象限C.第三象限 3.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B. C. D.32 16 8 164.在△ ABC 中,内角A,B,C 的对边分别是a,b,c,若a2-b2=3bc,sin C=2 3sin B,则 A 等于()5.(2019 ·河南省郑州市第一中学适应性考试)已知函数 f (x)是定义在R 上的偶函数,且 f (0)B.第二象限D.第四象限A.π 2π 5 πB.3C. 3D. 6=0,当x<0时, f (x)单调递增.若实数 a 满足 f (3-|a +1|)>f9.抛物线 y 2=2px(p>0)的焦点为 F ,已知点 A 和 B 分别为抛物线上的两个动点.=120°,过弦 AB 的中点 M 作抛物线准线的垂线 MN ,垂足为 N ,则 |MN|的最大值为 ( ) |AB |A. 3 B . 1 C.233 D. 3333,则 a 的取值范围是 ( ) 3A.32,B. -∞, -3∪ -1,+∞22C.4, 3,D. -∞,4∪ -2,+∞336.一个几何体的三视图如图所示, 则这个几何体的体积为()A.6+6π 368+ 2π 3 C.69+2π 3 D. 67.已知函数 f (x)= Acos(ωx + φ) πA>0, ω>0, |φ|<2 的图象如图所示, 若函数h(x)=f (x)+1的2 π π 4 πA. 3B.2C. 3 D . π8. (2019 ·上海市吴淞中学期末 a -x 2)函数 f (x)=|x +a 1-|-x1为奇函数的充要条件是 (A . 0<a<1B . a>1C . 0<a ≤1D .a ≥1且满足∠ AFB则 两个不同零点分别为 x 1, x ,|lg|x -1|| x ≠1 ,10.(2019 ·上海市曹杨中学期末 )设定义域为 R 的函数 f (x)=则关于 x 的方0 x = 1 ,程 f 2(x)+ bf (x)+c =0有 7个不同实数根的充要条件是 ( )数 t 的取值范围是 ( )A . (-∞, 2) C .(-∞, 3)第Ⅱ卷(非选择题 共 90 分)、填空题 (本题共 4 小题,每小题 5分,共 20分.把答案填在题中横线上 )13.已知定义在 R 上的奇函数,当 x>0时, f (x)=log 2x -3x ,则 f (-1)= ________ . 14.若 (x -1)5-2x 4=a 0+ a 1(x -2)+a 2(x -2)2+ a 3(x -2)3+a 4(x - 2)4+a 5(x -2)5,则 a 2=15.设 f ′(x)和g ′(x)分别是 f (x)和g(x)的导函数,若 f ′(x) ·g ′(x)<0在区间 I 上恒成立,则1称 f (x)和 g(x)在区间 I 上单调性相反.若函数 f (x)=3x 3-2ax(a ∈R)与 g(x)=x 2+2bx(b ∈ R)在3区间 (a ,b)上单调性相反 (a>0) ,则 b - a 的最大值为 ______ .16.已知圆 O :x 2+y 2=1 与 x 轴负半轴的交点为 A , P 为直线 3x +4y - a =0 上一点,过 P作圆 O 的切线,切点为 T ,若|PA|=2|PT|,则 a 的最大值为 ______ .三、解答题 (本题共 6 小题,共 70分.解答应写出文字说明、证明过程或演算步骤 )17.(12 分)在锐角△ ABC 中, a ,b ,c 为内角 A ,B ,C 的对边,且满足 (2c -a)cos B - bcos A =0.(1)求角 B 的大小;(2)已知 c = 2,AC 边上的高 BD =3 721,求△ ABC 的面积 S 的值.A . b<0 且 c>0C .b<0 且 c = 0B . b<0 且 c<0D . b ≥ 0 且 c 11.(2020 ·哈尔滨市师范大学附属中学月考)已知 O 为△ ABC 的外接圆的圆心, 且 3O →A + 4O →B =- 5OC ,则 C 的值为 ( )πA.4πD.1212.已知函数 f (x)=ln x + x - t 2t ∈R ,若对任意的 x ∈[1,2] ,f (x)>-x ·f ′(x)恒成立,则实B. -∞, 32D. -∞,18.(12 分)如图,在长方体ABCD -A1B1C1D 1 中,AA1=1,底面ABCD 的周长4,E 为BA1 为的中点.(2)当长方体ABCD-A1B1C1D1的体积最大时,求直线BA1 与平面A1CD 所成的角θ.在椭圆 C 1 上.(1)求椭圆 C 1 的方程;(2)设 P 为椭圆 C 2上一点,过点 P 作直线交椭圆 C 1于 A ,C 两点,且 P 恰为弦 AC 的中点,则当点 P 变化时,试问△ AOC 的面积是否为常数, 若是,求出此常数, 若不是,请说明理由.20.(12 分 )当前,以“立德树人”为目标的课程改革正在有序推进.目前,国家教育主管部 门正在研制的 《新时代全面加强和改进学校体育美育工作意见》 ,以及将出台的加强劳动教育 指导意见和劳动教育指导大纲,无疑将对体美劳教育提出刚性要求.为激发学生加强体育活 动,保证学生健康成长,某校开展了校级排球比赛,现有甲乙两人进行比赛,约定每局胜者 得 1 分,负者得 0 分,比赛进行到有一人比对方多 2 分或打满 8 局时停止.设甲在每局中获1胜的概率为 p p>12 ,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为19.(12 分 )已知椭圆 C 1: 22 a x 2+b y 2=1(a>b>0)和椭圆C 2:x 2+y 2=1 的离心率相同,且点 ( 2,1)5.9.(1)求p 的值;(2)设X 表示比赛停止时已比赛的局数,求随机变量X 的分布列和均值E(X).1-xx 121.(12分)函数 f (x)=ln x+(a∈R且a≠0),g(x)=(b-1)x-xe x-(b∈R).ax x(1)讨论函数 f (x)的单调性;(2)当a=1时,若关于x的不等式 f (x)+g(x)≤-2恒成立,求实数b的取值范围.请在第22~23 题中任选一题作答.22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标4cos θx=2+tcos α,系,已知曲线 C 的极坐标方程为ρ=4cos θ2,直线l 的参数方程是(t 为参1-cos2θy=2+tsin α数,0≤ α<π.)(1)求曲线 C 的直角坐标方程;(2)设直线l 与曲线 C 交于A,B 两点,且线段AB 的中点为M (2,2),求α.23.(10分)已知函数 f (x)=m-|x+4|(m>0) ,且 f (x-2)≥0的解集为[-3,-1].(1)求m 的值;1 1 1(2)若a,b,c 都是正实数,且a+2b+3c=m,求证:a+2b+3c≥9.答案精析1.B [∵集合 A = {x|x 2-x - 2>0} ={ x|x<- 1或 x>2}, B ={x|log 2x ≤ 2} = { x|0<x ≤ 4} ,∴A ∩B ={x|2<x ≤4}=(2,4].]2-i2- i 1- i1- 3i 1 3i2.D [z =12-+i i,即z =21+-ii 11--ii=1-23i=12-32i ,故z 在复平面内对应的点位于第四象限.]3. C [设小正方形的边长为 1,可得阴影平行四边形的底为2,高为 22,阴影等腰直角三角形的直角边为 2,斜边为 2 2,大正方形的边长为 2 2,4. A [∵sin C =2 3sin B ,∴由正弦定理得 c =2 3b ,则 c 2= 12b 2. 又 a 2- b 2= 3bc ,那么 a 2= 7b 2, cos A =b2+2c b 2c-a2=46b 32b 2=23∵A ∈(0,π,)∴A =6π.]5. B [∵f (3-|a +1|)>f - 33 ,∴f (3-|a +1|)>f 33 =f (3 2), 又 f (x )为偶函数,且在 (- ∞ ,0)上单调递增,1∴f (x )在(0,+ ∞ )上单调递减, ∴|a +1|>2,31解得 a ∈ -∞,-32 ∪ -21,+ ∞ .]6. B [几何体为一个四棱锥与一个半圆锥的组合体,四棱锥的高为3,底面为边长为 2 的11π·21正方形;半圆锥高为 3,底面为半径为 1 的半圆,因此体积为 13× 3×22+ 13× 3× π2·=13327.A [由图象可知, A =2, 4T =23π-6π=2π,∴T =2π,ω=1,∴f (x )= 2cos (x +φ),所以 P =2× 22+ 21×2×2 2 2× 2 2由余弦定理得8+ π 36 ,故选 B.] 3π π π ∵f 6 =2cos 6+φ=2,且 |φ|<2π, ππ∴φ=- 6,f (x )=2cos x -6 ,π令 h (x )= f (x )+1= 2cos x - + 1= 0,6π1可得 cos x -6 =- 2,解得 x -π=2π+2k π,k ∈Z 或 x -π=4π+2k π,k ∈Z ,6 3 6 3x =5π+2k π,k ∈Z 或 x = 3π+2k π,k ∈Z ,62则|x 1-x 2|的最小值为 32-56=23 .]则(a +b )2-ab ≥(a +b )2- a +2 b 2= 34(a +b )2,3即|AB|2≥43(a +b )2,8.C [f (x )= a -x 2 |x +1|-1 f (- x ) = a -x 2|-x +1|-1f (x) 为奇函数,a - x 2 =- a - x 2|x + 1|- 1=-|-x +1|-1∴|x +1|+ |x -1|=2,∴-1≤x ≤1,考虑定义域 a -x 2≥0,即- a ≤ x ≤ a(a>0)且 x ≠0, 由抛物线的定义,得|AF|=|AQ|,|BF|=|BP|,在梯形 ABPQ 中, 2|MN |= |AQ|+|BP|=a +b , 由余弦定理得 |AB|2=a 2+b 2-2abcos 120 °= a 2+ b 2+ ab ,整理得 |AB|2= (a + b)2- ab , 因为 ab ≤ a +2 b2,满足 a ≤1, ∴0<a ≤1.]设|AF|=a ,|BF|=b , Q ,P ,当且仅当 a =b ,即 |AF|=|BF|时取等号,故选 D.]10.C [令 t =f (x),考虑方程 t 2+bt +c =0的根, 该方程必有两个不同实数解, 设解为 t =t 1, t=t 2,由题设方程 t1=f ( x)和方程 t 2=f (x)的解即为方程 f 2(x)+ bf (x)+c =0 的解, 因为方程 f 2(x)+bf (x)+c=0 有 7 个不同的解,根据 f (x)的图象 (如图所示 )可得,直线 y =t 1与 y =f (x)的图象有 3 个不同的公共点, 直线 y =t 2与 y =f (x)的图象有 4 个不同的公共点,故 t1=0,t 2>0,所以 c =0,t 2=- b>0 即 b<0,故选 C.]→ 1 → →且OC =- 5(3OA +4OB),→ → → 1 → → ∴OC ·OC =|OC|2= 215(3OA +4OB)2 =295|O →A|2+2254O →A ·O →B + 2165|O →B|2 =|O →C|2+2254O →A ·O →B , ∴24O →A ·O →B =0,∴∠ AOB =90°.25 如图所示,建立平面直角坐标系,设 A(0,1) ,B(1,0),由 3O →A +4O →B = (4,3)=- 5O →C ,则 C = 4π.]x 2-ln x + 1-t 212.B [∵ f ′(x)=2,11 22令 g(x)=x +x ,又 g(x)=x +x 在[1,2] 上单调递增,xx33∴g(x)min =g(1)=2,∴t <2.] 13.3解析 因为 f (1)= log 21- 3=- 3, 又 f (x)为定义在 R 上的奇函数, 所以 f (-1)=-f (1)=3. 14.- 38解析 令 x - 2=t ,则 x = t + 2.由条件可得 (t +1)5-2(t +2)4=a 0+a 1t +a 2t 2+ a 3t 3+ a 4t 4+a 5t 5, 故 t 2的系数为 C 53-2C 42×22=- 38,即 a 2=- 38.115.2解析 由题意知 f ′(x)=x 2-2a , g ′(x)=2x +2b , 函数 f (x)与 g(x) 在区间 (a , b)上单调性相反, 则(x 2- 2a)(2x +2b)<0 在 x ∈(a ,b)上恒成立, 又 0<a<b ,所以 2x + 2b>0,于是 x 2-2a<0 在 x ∈( a , b)上恒成立.可知 C4,- 3 ,5,-5 ,则CA =45,85 ,C →B = 95, 3, 5,CA ·CBcos C =|CA|×|CB|24 = 2, 4 5× 3 10 2 5 × 53625 25又对任意的 x ∈ [1,2] ,f ′ (x) ·x + f (x)>0 恒成立, ∴对任意的 x ∈ [1,2] ,2x2-2tx +1>0 恒成立,即对任意的 x ∈ [1,2] , 2x 2-2tx +1> 0 恒成立,则 t <2x +12x= x +1 2x12 x + 恒成立,x x 2易知x2-2a<0 的解集为(-2a,2a),所以(a,b)? (-2a,2a),所以b-a≤2a-a=-a-21 2+12,11当a=21,b=1 时,b-a取得最大值12.2316.3 解析易知A(-1,0),设P(x,y),由|PA|=2|PT|,可得(x+1)2+y2=4(x2+y2-1),1 16化简得x-132+y2=196,可转化为直线3x+4y-a=0 与圆x-31 2+y2=196有公共点,所以d=|1-a|≤4,5317 23 解得-137≤a≤233.23故 a 的最大值为233.317.解(1)∵(2c-a)cos B-bcos A=0,由正弦定理得(2sin C-sin A)cos B-sin Bcos A=0,∴ (2sin C-sin A)cos B=sin Bcos A,2sin Ccos B-sin(A+B)=0,1∵A+B=π-C 且sin C≠ 0,∴cos B=2,∵B∈(0,π∴B=π.311(2)∵ S△ABC=2acsin B=2BD ·b,代入c=2,BD=3721,sin B=23,得b=37a,由余弦定理得b2=a2+c2-2accos B=a2+4-2a,代入b=37a,得a2-9a+18=0,解得a=3,b=7a=6,b= 2 7,又∵三角形为锐角三角形,∴a2<c2+b2,∴a=3,b=7.证明如下:如图,连接 AB 1, C 1D , 则 AB 1C 1D 是平行四边形, ∵E 是 AB 1的中点,1∴AE ∥C 1D ,AE =2C 1D , ∴AEC1D 为梯形, A ,E , C 1,D 四点共面, 又EC 1与AD 为梯形的两腰,故 EC 1与 AD 相交.(2)设 AB =b ,AD =2-b ,VABCD -A 1B 1C 1D 1=b(2- b)×AA 1=b (2-b )≤b +22- b2=1,当且仅当 b = 2- b ,即 b =1 时取等号, 方法一 连接 BD (图略),设点 B 到平面 A 1CD 的距离为 h ,则根据等体积法 VB -A 1CD =VA 1 -BCD ,其中 S △A 1CD =21×CD ×A 1D = 22, ∴h =22, 则直线 BA 1与平面 A 1CD 所成的角 θ满足 sin方法二 分别以边 AB ,AD ,AA 1所在的直线为 x ,y ,z 轴,建立如图所示的平面直角坐标系, 则 B(1,0,0),A 1(0,0,1) ,C(1,1,0),D(0,1,0),设平面 A 1CD 的法向量为 n = (x , y , z ),11 ∴ S △ABC =2ac sin B =2×2× 3×3=3 32=218.解 (1)EC 1 与 AD 是相交直线VA 1- BCD =13S △ BCD × AA 1=16,36h1θ=BA1=2,π∵ θ∈ 0, 2 ,θ=6π.BA 1=(-1,0,1), CD =(-1,0,0), CA 1=(-1, 1,1),- x = 0, 即- x - y +z = 0,取 z = 1,则 n = (0,1,1),n ·CD = 0,则→n ·C →A 1=∴sin θ= |cos 〈B →A 1, n 〉 |= 1=2× 2=1, 2,π ∵ θ∈ 0,∴θ=6π.2 1 c 219.解 (1)由题意知, a 2+b 2=1,且a = 2 ,即 a 2= 4, b 2= 2,所以椭圆 C 1的方程为 x 4 +y 2=1.(2)是. ①当直线 AC 的斜率不存在时,必有 P ( ± 2,0),此时 |AC|=2,S△AOC= 2.② 当直线 AC 的斜率存在时,设其斜率为 k ,点 P (x 0,y 0),则 AC :y - y 0= k (x - x 0),直线 AC 与椭圆 C 1联立,得 (1+2k 2)x 2+4k (y 0-kx 0)x + 2(y 0- kx 0) 2- 4= 0,设 A 则 x 0= x1+ x2=-2k y0-k 2x0,即 x 0=-2ky 0,1+2k 2 0 02 2 21又 x 02+ 2y 20=2, ∴y 02=1+ 2k 2,S △AOC =21×|y01-+k kx02|× 1+k 216k 2 y 0- kx 0 2-4 1+2k 2 [2 y 0- kx 0 2 -4]1+ 2k 2 =2|y 0- kx 0| 2 1+ 2k 2 - 2 1+2k 2 y 0- kx 0 2=21+2k 2 |y 0| 2 1+2k 2 - 1+ 2k 2 2y 20 1+2k 2= 2|y 0| 1+ 2k 2= 2.综上, △AOC 的面积为常数 2.20.解 (1)依题意,当甲连胜 2 局或乙连胜 2 局时,第二局比赛结束时比赛结束.所以有 p 2+ (1-p )2=95,解得 p = 32或 p =13(舍).(2)依题意知, X 的所有可能值为 2,4,6,8.5 设每两局比赛为一轮, 则该轮结束时比赛停止的概率为 59.若该轮结束时比赛还将继续, 则甲、 乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.4从而有 P(X = 2)=59,5 5 20 P(X =4)= 1-9 × 9=81,所以随机变量 X 的分布列为21.解 (1)∵ f (x)=ln x +a 1x -1a ,1 1 ax - 1 ∴f ′ (x)= - 2=2 (x>0) , x ax 2 ax 2当 a<0 时, f ′(x)>0,∴f (x)在(0,+ ∞ )上单调递增,1当 a>0 时,由 f ′ (x)>0 得 x> ; a1由 f ′ (x)<0 得 0<x< ,a11∴f (x)在 0,1a 上单调递减,在 a 1,+ ∞ 上单调递增. aa11 综上,当a<0时,f (x)在(0,+ ∞ )上单调递增;当a>0时,f (x)在 0,1 上单调递减,在 1,+∞aa 上单调递增.(2)由题意,当 a = 1 时,不等式 f (x)+g(x)≤-2,11即 ln x + -1+(b - 1)x -xe x - ≤-2,xxln x 1即 b -1≤ e x -ln x x - 1x 在 (0,+ ∞)上恒成立,xx1 令 u(x)= x 2e x + ln x ,则 u ′ (x)= (x 2+ 2x)e x+ x >0,x∴u(x)在(0,+∞)上单调递增,P(X =6)= 1- 59 × 1-5 ×5=80,9 9 729 P(X =8)=×5-1×5-1-5 ×1= 64. -9 729.则 E(X)=2× 59+4×2810+6×78209+8×64 729 2 522729 . 令 h(x)= e x - ln xxx1, x ,则 h ′(x)= e x - 1- lnx x 2+x 2=x 2e x + ln xx 2又 u (1)= e>0, u 1 = e -ln 2<0,∴u(x)有唯一零点 x 0 2<x 0<1 , 所以 u(x 0)=0,即 x 0ex 0=-ln x0,(*)x 0当 x ∈(0,x 0)时,u(x)<0,即 h ′ (x)<0 , h(x)单调递减; x ∈(x 0,+∞)时,u(x)>0,即 h ′( x)>0 , h(x)单调递增, ∴h(x 0)为 h(x)在定义域内的最小值.x 1令k(x)=xe x 2<x<1,则方程 (*)等价于 k(x)=k(-ln x),1又易知 k(x)单调递增,所以 x =-ln x ,e x = x 1,x∴h(x)的最小值为∴ b - 1≤ 1,即 b ≤2, ∴实数 b 的取值范围是 (-∞,2].4cos θ22.解 (1)曲线 C :ρ=2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ, 化为直角坐标方程为 y 2=4x.y 2=4x ,(2)方法一 联立 x =2+tcos α,y =2+tsin α,则(2+tsin α)2=4(2+tcos α), 即 t 2sin 2α+ (4sin α- 4cos α)t - 4= 0.由 AB 的中点为 M(2,2),得 t 1+ t 2=0,有 4sin α- 4cos α=0, 所以 k =tan α=1,π由 0≤α<π 得α= .方法二 设 A(x 1, y 1), B(x 2, y 2),则(y 1+ y 2)( y 1- y 2)= 4(x 1- x 2),y 1-y 2 y 1+y 2=4,∴k =tan α==1,x 1-x 2由 0≤α<π得α=π.方法三设 A4,y1,B 4,y2 (y 1<y 2),则由 M(2,2)是 AB 的中点,得4+4=4, ? y 1+y 2=4,ln x 0 1 1-x0 124y 21= 4x 1,y1y2=0,y1+y2=4y1<y2,∴y1=0,y2=4,知A(0,0),B(4,4),π ∴k=tan α=1,由0≤α<π 得α=.4方法四依题意设直线l:y-2=k(x-2),与y2=4x联立得y-2=k y4-2 ,即ky2-4y-8k+8=0.4由y1+y2==4,得k=tan α=1,k因为0≤α<π ,所以α=4π.23.(1)解依题意 f (x-2)=m-|x+2|≥0,即|x+2|≤m,则-m-2≤x≤-2+m,-m-2=-3,∴m=1.-2+m=-1,1 1 1(2)证明∵a1+21b+31c=1(a,b,c>0),∴a+2b+3c=(a+2b+3c) 1a+21b+31c =3+a+2b+a+3c+2b+3c≥9,2b a 3c a 3c 2b3当且仅当a=2b=3c,即a=3,b=2,c=1时取等号.4。
最新普通高中毕业班模拟考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若全集U=R ,集合{}124xA x =<<,{}10B x x =-≥,则U A B I ð=(A ){}12x x << (B ){}01x x <≤ (C ){}01x x << (D ){}12x x ≤< (2)已知,a b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则()2i =a b +(A )3+4i (B )5+4i (C )34i - (D )54i - (3)下列说法中正确的是(A )“(0)0f =”是“函数()f x 是奇函数”的充要条件(B )若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<R(C )若p q ∧为假命题,则p ,q 均为假命题(D )命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠” (4)已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =(A ) 2 (B )2- (C )98- (D )98 (5)执行如图所示的程序框图,输出的结果为(A )()22-,(B )()40-,(C )()44--,(D )()08-,(6)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(A )78 (B )48 (C )60(D )72(7)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个 几何体的体积为 (A )312π(B )36π(C )34π(D )33π (8)已知3sin 5ϕ=,且2ϕπ⎛⎫∈π ⎪⎝⎭,,函数()sin()(0)f x x ωϕω=+>的图像 的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为 (A )35- (B )45- (C )35 (D )45(9)若实数,x y 满足约束条件220,240,2,x y x y y --≤⎧⎪+-≥⎨⎪≤⎩则x y 的取值范围是(A )2,23⎡⎤⎢⎥⎣⎦(B )13,22⎡⎤⎢⎥⎣⎦(C )3,22⎡⎤⎢⎥⎣⎦(D )[]1,2(10)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(A )2 (B )3 (C )2 (D )5 (11)将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有(A ) 150种 (B ) 180种 (C ) 240种 (D )540种 (12)已知ABC ∆的三个顶点A ,B ,C 的坐标分别为()()()0,1,2,0,0,2-,O 为坐标原点,动点P 满足1CP =uu r ,则OA OB OP ++uu r uu u r uu u r的最小值是(A 1 (B 1 (C 1 (D 1第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)已知向量a ,b 满足||4=b ,a 在b 方向上的投影是12,则=g a b . (14)已知()1cos 3θ+π=-,则sin 22θπ⎛⎫+= ⎪⎝⎭.(15)102a x ⎫⎪⎭展开式中的常数项为180,则a =.(16)已知()y f x =为R 上的连续可导函数,且()()0xf x f x '+>,则函数()()1g x xf x =+()0x >的零点个数为___________.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n ∈N ,都有()21n n S n a =+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列4(2)n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为nT ,求证:112n T ≤<.(18)(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=o ,1,D D 分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交AB ,AC 于点M ,N .(Ⅰ)证明:MN ⊥平面11ADD A ; (Ⅱ)求二面角1A A M N --的余弦值.(19)(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆221221x y C a b +=:()1a b >≥的离心率2e =,且椭圆1C 上一点M 到点()30,Q 的距离的最大值为4. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设1016A ⎛⎫ ⎪⎝⎭,,N 为抛物线22x y C =:上一动点,过点N 作抛物线2C 的切线交椭圆1C 于B ,C 两点,求ABC ∆面积的最大值.(21)(本小题满分12分)已知函数()e xf x ax =-(e 为自然对数的底数,a 为常数)在点()0,1处的切线斜率为1-.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,2e x x <;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有2e x x c <.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4—1:几何证明选讲如图90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆O 与BC 交于点E . (Ⅰ)求证:BC CE AD DB ⋅=⋅;(Ⅱ)若4BE =,点N 在线段BE 上移动,90ONF ∠=o ,NF 与O e 相交于点F ,求NF 的最大值.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩(t 为参数)与曲线2C :cos 3sin x a y θθ=⎧⎨=⎩,(θ为参数,0a >).(Ⅰ)若曲线1C 与曲线2C 有一个公共点在x 轴上,求a 的值;(Ⅱ)当3a =时,曲线1C 与曲线2C 交于A ,B 两点,求A ,B 两点的距离.(24)(本小题满分10分)选修4—5:不等式选讲已知定义在R 上的函数()||||f x x m x =-+,*m ∈N ,存在实数x 使()2f x <成立. (Ⅰ)求实数m 的值;(Ⅱ)若,1αβ>,()()2f f αβ+=,求证:4192αβ+≥.参考答案。
高中数学《计数原理与概率统计》知识点归纳一、选择题1.从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和为奇数,则不同取法种数有( ) A .60 B .66 C .72 D .126【答案】A 【解析】 【分析】要使四个数的和为奇数,则取数时奇数的个数必须是奇数个,再根据排列组合及计数原理知识,即可求解. 【详解】从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和要为奇数,则取数时奇数的个数必须是奇数个:所以共有1331545460C C C C +=种取法.故选:A 【点睛】本题考查了排列组合及简单的计数问题,属于简单题.2.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( ) A .13B .14C .16D .112【答案】D 【解析】 【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。
【详解】由题意,将一枚骰子抛掷两次,共有6636⨯=种结果,又由向量(,),(3,6)p m n q ==u r r共线,即630m n -=,即2n m =,满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果,所以向量p u r 与q r 共线的概率为313612P ==,故选D 。
【点睛】本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础题。
3.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,则这两卦的六根线中恰好有4根阴线的概率为()A.314B.27C.928D.1928【答案】A【解析】【分析】列出所有28种情况,满足条件的有6种情况,计算得到概率.【详解】根据题意一共有:乾坤、乾巽、乾震、乾坎、乾离、乾艮、乾兑;坤巽、坤震、坤坎、坤离、坤艮、坤兑;巽震、巽坎、巽离、巽艮、巽兑;震坎、震离、震艮、震兑;坎离、坎艮、坎兑;离艮、离兑;艮兑,28种情况.满足条件的有:坤巽,坤离,坤兑,震坎,震艮,坎艮,共6种.故632814 p==.故选:A.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.4.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C 内任取一点,则该点落在区域M上的概率为()A.35B.925C.1625D.25【答案】B【解析】PQ中点组成的区域M如图阴影部分所示,那么在C内部任取一点落在M内的概率为25π-16π925π25=,故选B.5.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为 A .100 B .110 C .120 D .180【答案】B 【解析】试题分析:10人中任选3人的组队方案有310120C =,没有女生的方案有3510C =, 所以符合要求的组队方案数为110种 考点:排列、组合的实际应用6.如图所示,线段BD 是正方形ABCD 的一条对角线,现以BD 为一条边,作正方形BEFD ,记正方形ABCD 与BEFD 的公共部分为Ω(如图中阴影部分所示),则往五边形ABEFD 中投掷一点,该点落在Ω内的概率为( )A .16B .15C .14D .13【答案】B 【解析】 【分析】五边形ABEFD 的面积52S =,阴影Ω的面积为12,得到概率. 【详解】不妨设1AB =,故五边形ABEFD 的面积15222S =+=,阴影Ω的面积为12,故所求概率为1121522P ==+,故选:B.【点睛】本题考查了几何概型,意在考查学生的计算能力和应用能力.7.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为()A .110B .15C .25D .12【答案】C 【解析】 【分析】从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,由此能求出这3个数字的属性互不相克的条件下,取到属性为土的数字的概率. 【详解】由题意得数字4,9属性为金,3,8属性为木,1,6属性为水, 2,7属性为火,5,10属性为土,从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,∴这3个数字的属性互不相克的条件下,取到属性为土的数字的概率82205m p n ===. 故选:C . 【点睛】此题考查古典概型,关键在于根据计数原理准确求解基本事件总数和某一事件包含的基本事件个数.9.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是( ) A .18B .35C .58D .78【答案】C 【解析】 【分析】设1路车到达时间为x 和2路到达时间为y .(x ,y )可以看做平面中的点,利用几何概型即可得到结果.设1路车到达时间为x 和2路到达时间为y .(x ,y )可以看做平面中的点,试验的全部结果所构成的区域为Ω={(x ,y )|0≤x ≤10且0≤y ≤20},这是一个长方形区域,面积为S =10×20=200A 表示某生等车时间不超过5分钟,所构成的区域为a ={(x ,y )|0≤x ≤5或0≤y ≤5}, 即图中的阴影部分,面积为S ′=125, 代入几何概型概率公式,可得 P (A )'12552008S S === 故选C【点睛】解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.10.在区间[2,2]-上任意取一个数x ,使不等式20x x -<成立的概率为( ) A .16B .12C .13D .14【答案】D 【解析】 【分析】先解不等式,再根据几何概型概率公式计算结果. 【详解】由20x x -<得01x <<,所以所求概率为1012(2)4-=--,选D.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【答案】D【解析】4项工作分成3组,可得:24C=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:36363A⨯=种.故选D.12.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A.413B.21313C.926D.31326【答案】A 【解析】【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可. 【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB ADBD AD BD =+-⋅︒=,所以13DF AB =. 所以所求概率为24=1313DEF ABC S S ∆∆= ⎪⎝⎭. 故选A. 【点睛】本题考查了几何概型的概率计算问题,是基础题.13.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.14.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( ) A .125个 B .60个 C .100个 D .48个【答案】C 【解析】由题意得,0a ≠,a 的选择一共有14C =4,b 的选择一共有155C =,c 的选择共155C =种,根据分步计数原理,不同的二次函数共有N=455⨯⨯=100种。
(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{20}A x x x =-->,2{430}B x x x =-+<,则A B =( )A .{1x x <-或1}x >B .{23}x x <<C .{13}x x <<D .{12}x x <<2.设复数i z x y =+(其中x ,y 为实数),若x ,y 满足22(2)4x y +-=,则2i z -=( ) A .42i -B .22i -C .2D .43.可知155a -=,41log 5b =,141log 5c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(510.6182-≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是( )(结果保留一位小数)A .8.1cmB .8.0cmC .7.9cmD .7.8cm5.函数cos 2()||xf x x =的图象大致为( ) A .B .C .D .6.回文数是指从左往右读与从右往左读都是一样的正整数,如323,5445等,在所有小于200的三位回文数中任取两个数,则两个回文数的三位数字之和均大于5的概率为( ) A .25B .13C .29D .4157.已知非零向量a ,b 满足||3||=a b 且(3)()+⊥-a b a b ,则a 与b 夹角为( ) A .π3B .π6C .π2D .08.已知n S 为等差数列}{n a 的前n 项和,714S =,68a =,则( ) A .310n a n =- B .24n a n =-C .2319n S n n =-D .231344n S n n =-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,则m =( )A .1-B .1C .23D .3210.已知4,n ,9成递增等比数列,则在(4)nx x-的展开式中,下列说法正确的是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .二项式系数之和为64B .各项系数之和为1C .展开式中二项式系数最大的项是第4项D .展开式中第5项为常数项11.若椭圆221169x y +=上的一点P 到椭圆焦点的距离之积为a ,当a 取得最大值时,点P 的坐标可能为( ) A .(4,0)-B .(4,0)C .(0,3)D .(0,3)-12.已知函数2222()4()()x x f x x x m m e e--+=-+-+有唯一零点,则m 的值可能为( )A .1B .1-C .2D .2-第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.曲线2()1x f x xe x =+-在0x =处的切线方程为 . 14.已知π1sin()48α+=,则πcos()4α-= ,3πsin()4α+= . 15.兵乓球单打比赛在甲、乙两名运动员进行,比赛采取五局三胜制(即先胜3局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,且各局比赛结果相互独立,那么甲以3:2获胜的概率为 .16.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)若数列{}n a 满足1231111231n n a a a na n ++++=+. (1)求数列{}n a 的通项公式;(2)若 ,求数列{}n b 的前n 项和n T . ①2nn n a a b =,②11n n n b a a +=,③(1)nn n b a =-⋅. (从这三个条件中任选一个填入第(2)问的横线中,并回答问题)18.(12分)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知()(sin sin )c a A C -+ (sin )b B A =-.(1)求角C 的大小; (2)求222cos cos 5A B +=且b a >,求sin 2A .19.(12分)如图,在直三棱柱AED BFC -中,底面AED 是直角三角形,且EA AD ⊥,3AB AE AD ===,其中M ,N 分别是AF ,BC 上的点且13FM CN FA CB ==. (1)求证:MN ∥平面CDEF ; (2)求二面角A CF B --的正弦值.20.(12分)某厂加工的零件按箱出厂,每箱有12个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取5个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有4个次品,则对剩下的7个零件逐一检验.已知每个零件检验合格的概率为0.9,每个零件是否检验合格相互独立,且每个零件的人工检验费为3元. (1)设1箱零件人工检验总费用为X 元,求X 的分布列;(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为2元,现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.21.(12分)过点(1,0)E 的直线l 与抛物线22y x =交于A ,B 两点,F 是抛物线的焦点. (1)若直线l 的斜率为3,求||||AF BF +的值; (2)若12AE EB =,求||AB .22.(12分)已知函数222()(12)ln f x x a x a x =+--,当1a <<(1)()f x 有唯一极值点; (2)()f x 有2个零点.(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】由题意可知,{1A x x =<-或2}x >,{13}B x x =<<, 则{23}AB x x =<<,故选B .2.【答案】C【解析】∵i z x y =+,∴2i (2)i z x y -=+-,∴2i 2z -===,故选C . 3.【答案】C 【解析】∵1050551-<<=,41log 05b =<,14441log log 5log 415c ==>=, ∴c a b >>,故选C . 4.【答案】B【解析】设该美女穿的高跟鞋为cm x ,则103.810.6181602x =+≈,解得8.0x ≈,故选B . 5.【答案】C【解析】∵易知函数cos 2()||xf x x =为偶函数,排除A ,B 选项; ∵πcosπ2()0π44f ==,当π(0,)4x ∈时,cos20x >,即()0f x >,排除D . 6.【答案】B【解析】列出所有小于200的三位回文数如下:101,111,121,131,141,151,161,171,181,191共10个,从中任取两个数共有210C 45=种情况, 其中两个回文数的三位数字之和均大于5有26C 15=种情况,故所求概率为151453P ==,故选B . 7.【答案】C【解析】∵(3)()+⊥-a b a b ,则(3)()0+⋅-=a b a b ,得22||23||0+⋅-=a a b b ,223||||2-⋅=b a a b ,设a 与b 夹角为θ,则223||||cos 02||||θ-==⋅b a a b ,即夹角为π2. 8.【答案】A【解析】由题意得117211458a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故231722310n n S n na n ⎧=-⎪⎨⎪=-⎩.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】AD【解析】∵直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,直线1l 的斜率为21233m k -=,直线2l 的斜率为23m k =,则12k k =,即22333m m-=,解得1m =-或32. 10.【答案】ACD【解析】由4,n ,9成递增等比数列可得6n =, 故6(4x -的二项式系数之和为64,A 正确;令1x =,66(4264x==,则6(4x -的各项系数之和为64,B 错误; 6(4x 的展开式共有7项,则二项式系数最大的项是第4项,C 正确;6(4x的展开式中展开式中第5项4246C(4)(151616x=⨯⨯为常数项,D正确,故答案选ACD.11.【答案】CD【解析】记椭圆221169x y+=的两个焦点分别为1F,2F,故12||||8PF PF+=,可得21212||||||||()162PF PFPF PF+≤=,当且仅当12||||4PF PF==时取等号,即点P位于椭圆的短轴的顶点处时,a取得最大值,此时点P的坐标为点(0,3)或(0,3)-.12.【答案】BC【解析】∵22222222()4()()(2)4()()x x x xf x x x m m e e x m m e e--+--+=-+-+=--+-+,令2t x=-,则22()4()()t tg t t m m e e-=-+-+,定义域为R,22()()4()()()t tg t t m m e e g t--=--+-+=,故函数()g t为偶函数,所以函数()f x的图象关于2x=对称,要使得函数()f x有唯一零点,则(2)0f=,即2482()0m m-+-=,解得1m=-或2,故答案选BC.第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.【答案】10x y--=【解析】()2x xf x e x e x'=+⋅+,(0)1f=-,根据导数的几何意义可知曲线在点(0,1)-处的切线斜率为(0)1k f'==,∴切线方程为1y x+=,即10x y--=.14.【答案】18,【解析】∵π1sin()48α+=,则ππππ1cos()cos[()]sin()42448ααα-=-+=+=,3ππππsin()sin()cos()4244ααα+=++=+,根据22ππsin()cos()144αα+++=,得πcos()48α+=±.15.【答案】316【解析】因为利用比赛规则,那么甲以3:2获胜表示甲在前4局中胜2局,最后一局甲赢,则利用独立重复实验的概率公式可知22241113C()()22216P=⨯⨯⨯=.16.【答案】2【解析】由题意得FA b=,3FB b=,OA a=,由题得tan tanbBOF AOFa∠=∠=,∴24tan tan21()b bb a aBOA BOFbaa+∠==∠=-,整理得222a b=,即2222()a c a=-,∴2232a c=,232e=,即2e=.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)1na n=+;(2)见解析.【解析】(1)1231111231nna a a na n++++=+,当2n≥时,1231111123(1)nna a a n a n-++++=-,两式相减得1111(1)nn nna n n n n-=-=++,∴1na n=+,当1n=时,12a=满足,1na n=+,∴数列{}na的通项公式为1na n=+.(2)选条件① ∵1122n n n a n a n b ++==,∴234123412222n n n T ++=++++,∴34521234122222n n n T ++=++++, 两式相减得123412211(1)121111118212222222212n n n n n n n T -+++-++=++++-=+-- 1223113342242n n n n n +++++=--=-, ∴13322n n n T ++=-. 选条件②: ∵11111(1)(2)12n n n b a a n n n n +===-++++, ∴1111111111233445122224n n T n n n n =-+-+-++-=-=++++. 选条件③:∵(1)nn n b a =-,∴当n 为奇数时,132345(1)11222n n n T n n -=-+-+--+=⨯--=--; 当n 为偶数时,234(1)122n n nT n =-+-+++=⨯=,∴3222n n n T n n ⎧--⎪⎪=⎨⎪⎪⎩,为奇数,为偶数.18.【答案】(1)π4C =;(2)614+. 【解析】(1)由正弦定理得()()(2)c a a c b b a -+=-,故2222c a ab b -=-+,即2222a b c ab +-=,∴2222cos 2a b c C ab +-==, ∵(0,π)C ∈,∴π4C =. (2)∵π4C =,∴3π222B A =-, ∴221cos 21cos 2cos cos 22A BA B +++=+112π2(cos 2cos 2)11(cos 2sin 2)1sin(2)22245A B A A A =++=+-=--=, ∴π32sin(2)45A -=, ∵b a >,∴B A >,即3π4A A ->,得3π8A <, 又∵ABC △为锐角三角形,∴π3ππ442A <-<,∴ππ42A <<.∴π3π48A <<, 则πππ2442A <-<,∴π7cos(2)45A -=, ∴ππππππsin 2sin(2)sin(2)cos cos(2)sin 444444A A A A =-+=-⋅+-⋅ 3227261452210+=⨯+⨯=. 19.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:如下图,分别在FC ,EF 上取点P ,Q ,13CP FQ CF FE ==, 连接NP ,PQ 及MQ ,∵13FM CN FA CB ==,∴13MF FQ MQ AE FA FE ==⇒∥及13MQ AE =,13CN CP NP BF CB CF ==⇒∥且13NP BF =,∴MQ NP ∥,MQ NP =,∴四边形MNPQ 为平行四边形,∴MN QP ∥, 又∵MN ⊄平面CDEF ,QP ⊂平面CDEF ,∴MN ∥平面CDEF .(2)如下图所示,以A 为坐标原点,AE 方向为x 轴正方向,AD 方向为y 轴正方向,AB 方向为z 轴正方向建立空间直角坐标系,则(0,0,0)A ,(3,0,3)F ,(0,3,3)C ,(0,0,3)B ,∴(3,0,3)AF =,(0,3,3)AC =,由题易知平面BCF 的法向量为1(0,0,1)=n , 设平面ACF 的法向量为2(,,)x y z =n ,则2203303300AF x z y z AC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩n n ,取1x =,则2(1,1,1)=-n ,∵1212123cos ,3⋅===-⋅n n n n n n ,则二面角A CF B --的正弦值为63.20.【答案】(1)分布列见解析;(2)人工检验,详见解析. 【解析】(1)X 的可能取值为15,36,55(15)0.90.10.590490.000010.5905P X ==+=+=,(36)10.59050.4095P X ==-=,则X 的分布列为(2)由(1)知,()150.5905360.409523.5995E X =⨯+⨯=,∴1000箱零件的人工检验总费用的数学期望为()100023.599523599.5E X =⨯=元.∵1000箱零件的机器检验总费用的数学期望为212100024000⨯⨯=元, 且2400023599.5>,∴应该选择人工检验. 21.【答案】(1)299;(2)352.【解析】设11(,)A x y ,22(,)B x y ,(1)由题意可知直线l 的方程为33y x =-,由2233y x y x ⎧=⎨=-⎩,消去y ,得292090x x -+=,12209x x +=,∴122029||||199AF BF x x p +=++=+=. (2)由12AE EB =,可知212y y =-①, 设直线l 的方程为y kx k =-,由22y x y kx k⎧=⎨=-⎩,消去x ,得2220ky y k --=,2480Δk =+>恒成立, 122y y k+=②,122y y =-③, 由①②③解得1212y y =⎧⎨=-⎩或1212y y =-⎧⎨=⎩,∴122||||1y y k +==,得2114k =,∴135||1184AB =++= 22.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)()f x 的定义域为(0,)+∞,222222(12)()2(12)a x a x a f x x a x x +--'=+--==2(21)()x x a x+-,当2(0,)x a ∈时,()0f x '<,()f x 单减;当2(,)x a ∈+∞时,()0f x '>,()f x 单增,∴()f x 有唯一极值点.(2)由(1)知()f x 在2(0,)a 单减,在2(,)a +∞单增,∴()f x 在2x a =时取得极小值为2222()(1ln )f a a a a =--, ∵1a e <<21a e <<,2ln 0a >,∴2()0f a <,又∵222221112112()(1)0a f a a e e e e e e-=++=++->, 根据零点存在性定理,函数()f x 在2(0,)a 上有且只有一个零点. ∵ln x x >,222()(12)ln f x x a x a x =+--222(12)x a x a x >+--222(13)(13)x a x x x a =+-=+-,∵1a <<22231210a a a --=->,2231a a ->,∴231x a >-时,()0f x >,根据零点存在性定理,函数()f x 在2(,)a +∞上有且只有一个零点, ∴()f x 有2个零点.。
2020-2021学年⾼三数学(理科)第⼀次⾼考模拟考试试题及答案解析@学⽆⽌境!@绝密★启⽤前试卷类型:A 最新第⼀次⾼考模拟考试数学试卷(理科)本试卷分选择题和⾮选择题两部分,共4页,满分150分,考试时间120分钟。
注意事项:1.答卷前,考⽣要务必填写答题卷上的有关项⽬。
2.选择题每⼩题选出答案后,⽤2B 铅笔把答案填在答题卡相应的位置上。
3.⾮选择题必须⽤⿊⾊字迹的钢笔或签字笔作答,答案必须写在答题卷各题⽬指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使⽤铅笔和涂改液. 不按以上要求作答的答案⽆效。
4.考⽣必须保持答题卷的整洁,考试结束后,将答题卷交回。
第Ⅰ卷(选择题,共60分)⼀.选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的. 1.复数i215-(i为虚数单位)的虚部是()A. 2iB. 2i -C. 2-D. 22. 下列函数在其定义域上既是奇函数⼜是减函数的是()A .()2x f x =B .()sin f x x x =C .1()f x x =D .()||f x x x =- 3.已知()=-παcos 12,πα-<<,则tan α=()A.B.C. D.4.设双曲线2214y x -=上的点P到点的距离为6,则P点到(0,的距离是()@学⽆⽌境!@A .2或10 B.10 C.2 D.4或85. 下列有关命题说法正确的是()A. 命题p :“sin +cos =2x x x ?∈R ,”,则?p 是真命题 B .21560x x x =---=“”是“”的必要不充分条件 C .命题2,10x x x ?∈++的否定是:“210x x x ?∈++D .“1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件6. 将函数-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的⼀条对称轴⽅程可以为() A. 43π=x B. 76x π= C. 127π=x D. 12π=x 7.2015年⾼中⽣技能⼤赛中三所学校分别有3名、2名、1名学⽣获奖,这6名学⽣要排成⼀排合影,则同校学⽣排在⼀起的概率是()A .130 B .115 C .110 D .158.执⾏如图8的程序框图,若输出S 的值是12,则a 的值可以为()A .2014B .2015C .2016D .20179.若某⼏何体的三视图(单位:cm )如图所⽰,则该⼏何体的体积()A.310cmB.320cmC.330cmD.340cm10.若nx x ??? ?-321的展开式中存在常数项,则n 可以为() A .8 9 C .10 D. 11 11.=∠=?==?C CA A B CA BC ABC 则中在,60,6,8, ()A .?60B .C .?150D .?120 12. 形如)0,0(||>>-=b c cx by 的函数因其图像类似于汉字中的“囧”字,故我们把其⽣动地称为“囧函数”.若函数()()2log 1a f x x x =++)1,0(≠>a a 有最⼩值,则当,c b 的值分别为⽅程222220x y x y +--+=中的,x y 时的“囧函数”与函数||log x y a =的图像交点个数为().A .1B .2C .4D .6第Ⅱ卷(⾮选择题,共90分)⼆.填空题:本⼤题共4⼩题,每⼩题 5分,共20分.13.⼀个长⽅体⾼为5,底⾯长⽅形对⾓线长为12,则它外接球的表⾯积为@学⽆⽌境!@14.如图,探照灯反射镜的纵截⾯是抛物线的⼀部分,光源在抛物线的焦点F 处,灯⼝直径AB 为60cm ,灯深(顶点O 到反射镜距离)40cm ,则光源F 到反射镜顶点O 的距离为15.已知点()y x P ,的坐标满⾜条件>-+≤≤02221y x y x ,那么()221y x ++的取值范围为 16.CD CB AD AC AD AB ,AB D ABC 3,,3,===?且的⼀个三等分点为中在,则B cos =三.解答题:本⼤题共5⼩题,每题12分共60分.解答应写出⽂字说明,证明过程或演算步骤.17.(本⼩题满分12分)已知{}n b 为单调递增的等差数列,168,266583==+b b b b ,设数列{}n a 满⾜n b n n a a a a 2222233221=++++(1)求数列{}n b 的通项; (2)求数列{}n a 的前n 项和n S 。
高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
最新高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卷相应的位置上. 1.若z l=a+2i,z2=3﹣4i,且为纯虚数,则实数a的值为.2.在边长为1的正方形ABCD中,设,则= .3.已知命题p:x2﹣x≥6,q:x∈Z,则使得“p且q”与“非q”同时为假命题的所有x组成的集合M= .4.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则f (1)+f (2)+f (3)+…f (2015)= .5.某单位从4名应聘者A,B,C,D中招聘2人,如果这4名应聘者被录用的机会均等,则A,B 两人中至少有1人被录用的概率是.6.某市高三数学抽样考试中,对90分及其以上的成绩情况进行统计,其频率分布直方图如图所示,若(130,140]分数段的人数为90人,则(90,100]分数段的人数为.7.已知l、m是两条不同的直线,α、β是两个不同的平面,有下列4个命题:①若l⊂β,且α⊥β,则l⊥α;②若l⊥β,且α∥β,则l⊥α;③若l⊥β,且α⊥β,则l ∥α;④若α∩β=m,且l∥m,则l∥α.其中真命题的序号是.(填上你认为正确的所有命题的序号)8.设S n是等差数列{a n}的前n项和.若,则= .9.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.10.在如图所示的流程图中,若输入n的值为11,则输出A的值为.11.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= .12.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.13.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②;③f(1﹣x)=1﹣f(x).则= .14.设函数f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是.二、解答题:15.设函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象相邻两条对称轴之间的距离为,函数y=f(x+)为偶函数.(1)求f(x)的解析式;(2)若α为锐角,f(+)=,求sin2α的值.16.在三棱柱ABC﹣A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB的中点,求证:BC1∥平面A1CD.17.某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.18.已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.19.(2014•淮安模拟)已知函数f(x)=(x﹣a)2e x在x=2时取得极小值.(1)求实数a的值;(2)是否存在区间[m,n],使得f(x)在该区间上的值域为[e4m,e4n]?若存在,求出m,n的值;若不存在,说明理由.20.已知数列{a n}中,a2=a(a为非零常数),其前n项和S n满足:S n=(1)求数列{a n}的通项公式;(2)若a=2,且a m2﹣S n=11,求m、n的值;(3)是否存在实数a、b,使得对任意正整数p,数列{a n}中满足a n+b≤p的最大项恰为第3p﹣2项?若存在,分别求出a与b的取值范围;若不存在,请说明理由.参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卷相应的位置上. 1.若z l=a+2i,z2=3﹣4i,且为纯虚数,则实数a的值为.【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】把z l=a+2i,z2=3﹣4i代入,然后化简,复数分子、分母同乘分母的共轭复数,利用实部等于0,虚部不为0,求出a即可.【解答】解:=它是纯虚数,所以3a﹣8=0,且4a+6≠0,解得a=故答案为:【点评】本题考查复数代数形式的乘除运算,复数的基本概念,是基础题.2.在边长为1的正方形ABCD中,设,则= 2 .【考点】向量加减混合运算及其几何意义.【专题】计算题.【分析】由题意可得||=1,||=,+=,可得=2||,从而得到答案.【解答】解:∵边长为1的正方形ABCD中,设,∴||=1,||=,+=.∴==|﹣2|=2||=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.3.已知命题p:x2﹣x≥6,q:x∈Z,则使得“p且q”与“非q”同时为假命题的所有x组成的集合M= {﹣1,0,1,2} .【考点】命题的真假判断与应用.【专题】计算题.【分析】由题设条件先求出命题P:x≥3或x≤﹣2.由“p且q”与“¬q”同时为假命题知﹣2<x <3,x∈Z.由此能得到满足条件的x的集合.【解答】解:由命题p:x2﹣x≥6,得到命题P:x≥3或x≤﹣2;∵¬q为假命题,∴命题q:x∈Z为真翕题.再由“p且q”为假命题,知命题P:x≥3或x≤﹣2是假命题.故﹣2<x<3且x∈Z.∴满足条件的x的集合为{﹣1,0,1,2}.故答案为:{﹣1,0,1,2}.【点评】本题考查命题的真假判断和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.属基础题.4.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,则f (1)+f (2)+f (3)+…f (2015)= 0 .【考点】正弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,克的函数的解析式;再利用利用周期性求得要求的式子的值.【解答】解:函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象,可得A=2,•=6﹣2,∴ω=.再根据图象经过原点,可得φ=0,∴f(x)=2sin x.由于f(x)的周期为=8,f (1)+f (2)+f (3)+…f (8)=0,则f (1)+f (2)+f (3)+…f (2015)=251×0+f (1)+f (2)+f (3)+…f (7)=0,故答案为:0.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,利用周期性求函数的值,属于基础题.5.某单位从4名应聘者A,B,C,D中招聘2人,如果这4名应聘者被录用的机会均等,则A,B 两人中至少有1人被录用的概率是.【考点】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】先利用排列组织知识求出A,B两人都不被录用的概率,再用间接法求出A,B两人中至少有1人被录用的概率.【解答】解:某单位从4名应聘者A,B,C,D中招聘2人,∵这4名应聘者被录用的机会均等,∴A,B两人都不被录用的概率为=,∴A,B两人中至少有1人被录用的概率p=1﹣=1﹣=.故答案为:.【点评】本题考查古典概型及其计算公式的应用,是基础题.解题时要认真审题,仔细解答.6.某市高三数学抽样考试中,对90分及其以上的成绩情况进行统计,其频率分布直方图如图所示,若(130,140]分数段的人数为90人,则(90,100]分数段的人数为810 .【考点】频率分布直方图.【专题】概率与统计.【分析】先分别求出130~140分数段的频率与90~100分数段的频率,然后根据频数,求出这次抽考的总人数,最后根据频数=总数×频率求出(90,100]分数段的人数即可.【解答】解:根据直方图,组距为10,在(130,140]内的,所以频率为0.05,因为此区间上的频数为90,所以这次抽考的总人数为1800人.因为(90,100]内的,所以频率为0.45,设该区间的人数为x,则由,得x=810,即(90,100]分数段的人数为810.故答案为:810.【点评】该题考查频率分布直方图的意义及应用图形解题的能力,频数=频率×样本容量,属于基础题.7.已知l、m是两条不同的直线,α、β是两个不同的平面,有下列4个命题:①若l⊂β,且α⊥β,则l⊥α;②若l⊥β,且α∥β,则l⊥α;③若l⊥β,且α⊥β,则l ∥α;④若α∩β=m,且l∥m,则l∥α.其中真命题的序号是②.(填上你认为正确的所有命题的序号)【考点】命题的真假判断与应用;空间中直线与平面之间的位置关系.【专题】综合题.【分析】对于①,根据线面垂直的判定可知,只要当l与两面的交线垂直时才有l⊥α;对于②,根据若一条直线垂直与两平行平面中的一个,一定垂直与另一个;对于③,若l⊥β,α⊥β,则l∥α或l⊂α;对于④,若l∥m,且α∩β=m,则l∥α或l⊂α【解答】解:对于①,若l⊂β,且α⊥β,则根据线面垂直的判定可知,只要当l与两面的交线垂直时才有l⊥α,所以①错;对于②,根据若一条直线垂直与两平行平面中的一个,一定垂直与另一个,即若l⊥β,α∥β,l ⊥α;②正确对于③,若l⊥β,α⊥β,则l∥α或l⊂α,所以③错对于④,若l∥m,且α∩β=m,则l∥α或l⊂α,所以④错故答案为②【点评】本题主要考查了空间中直线与直线之间的位置关系,以及空间中直线与平面之间的位置关系,属于基础题.8.设S n是等差数列{a n}的前n项和.若,则= .【考点】等差数列的性质.【专题】计算题.【分析】由等差数列的求和公式表示出S3与S7,代入已知的等式左边,整理后得到a1=6d,将所求式子的分子分母分别利用等差数列的求和公式化简,将a1=6d代入,约分后即可求出值.【解答】解:∵S n是等差数列{a n}的前n项和,=,且S3=3a1+3d,S7=7a1+21d,∴=,整理得:a1=6d,则===.故答案为:【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.9.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【考点】点到直线的距离公式.【专题】直线与圆.【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA ⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.10.在如图所示的流程图中,若输入n的值为11,则输出A的值为.【考点】程序框图.【专题】计算题;等差数列与等比数列.【分析】由程序框图,执行程序,写出运行结果,找出其规律,以4为周期,即可得到结论.【解答】解:由程序框图,执行程序,运行结果如下:A=2 I=1A=﹣3 I=2A=﹣I=3A=I=4A=2 I=5A=﹣3 I=6A=﹣I=7A=I=8A=2 I=9A=﹣3 I=10A=﹣I=11此时A=,退出循环故答案为:.【点评】本题考查循环结构,考查学生分析解决问题的能力,属于基础题.11.若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= 50 .【考点】等比数列的性质.【专题】计算题;等差数列与等比数列.【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.12.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1 .【考点】椭圆的标准方程;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,属于中档题.13.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②;③f(1﹣x)=1﹣f(x).则= .【考点】函数单调性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由已知函数f(x)满足的三个条件求出f(1),f(),f(),进而求出f(),f()的函数值,又由函数f(x)为非减函数,求出f()的值,即可得到答案.【解答】解:∵f(0)=0,f(1﹣x)=1﹣f(x),令x=1,则f(0)=1﹣f(1),解得f(1)=1,令x=,则f()=1﹣f(),解得:f()=.又∵,∴f()=f(1)=,f()=f()=,f()=f()=,又由f(x)在[0,1]上为非减函数,故f()=,∴f()+f()=.故答案为:.【点评】本题主要考查了抽象函数及其应用,以及对新定义的理解,同时考查了计算能力和转化的思想,属于中档题.14.设函数f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是(7,+∞).【考点】一元二次不等式的应用;一元二次不等式的解法.【专题】压轴题.【分析】函数f(x)=x2﹣ax+a+3的图象恒过定点(1,4),g(x)=ax﹣2a的图象恒过定点(2,0),利用这两个定点,结合图象解决.【解答】解:由f(x)=x2﹣ax+a+3知f(0)=a+3,f(1)=4,又存在x0∈R,使得f(x0)<0,知△=a2﹣4(a+3)>0即a<﹣2或a>6,另g(x)=ax﹣2a中恒过(2,0),故由函数的图象知:①若a=0时,f(x)=x2﹣ax+a+3=x2+3恒大于0,显然不成立.②若a>0时,g(x0)<0⇔x0<2③若a<0时,g(x0)<0⇔x0>2此时函数f(x)=x2﹣ax+a+3图象的对称轴x=,故函数在区间(,+∞)上为增函数又∵f(1)=4,∴f(x0)<0不成立.故答案为:(7,+∞).【点评】充分挖掘题目中的隐含条件,结合图象法,可使问题的解决来得快捷.本题告诉我们,图解法对于解决存在性问题大有帮助.二、解答题:15.设函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象相邻两条对称轴之间的距离为,函数y=f(x+)为偶函数.(1)求f(x)的解析式;(2)若α为锐角,f(+)=,求sin2α的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;二倍角的正弦.【专题】三角函数的图像与性质.【分析】(1)由题意可得,函数的周期为=π,求得ω=2.再根据函数y=f(x+)=sin(2x+π+φ)为偶函数,求得φ=,可得f(x)的解析式.(2)由条件求得cos(α+)和sin(α+)的值,利用二倍角公式求得sin(2α+)和cos(2α+)的值,再根据sin2α=sin[(2α+)﹣],利用两角差的正弦公式计算求得结果.【解答】解:(1)由题意可得,函数的周期为=π,求得ω=2.再根据函数y=f(x+)=sin(2x+π+φ)为偶函数,可得π+φ=kπ+,k∈z,即φ=kπ﹣,k∈z,结合0<φ<π,可得φ=,∴f(x)=sin(2x+)=cos2x.(2)∵α为锐角,f(+)=cos(α+)=,∴sin(α+)=.∴sin(2α+)=2sin(α+)cos(α+)=,cos(2α+)=2﹣1=﹣,∴sin2α=sin[(2α+)﹣]=sin(2α+)cos﹣cos(2α+)sin=﹣(﹣)×=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,两角和差的正弦公式,二倍角公式,正弦函数的周期性,属于中档题16.在三棱柱ABC﹣A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB的中点,求证:BC1∥平面A1CD.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)利用等边三角形的判定、勾股定理的逆定理、及线面、面面垂直的判定定理和性质定理即可证明;(2)利用平行四边形的性质、三角形的中位线定理、线面平行的判定定理即可证明.【解答】证明:(1)在,∴A1C=1,在△A1BC中,BC=1,A1C=1,,∴,∴∠A1CB=90°,∴BC⊥A1C,又AA1⊥BC,AA1∩A1C=A1,∴BC⊥平面ACC1A1,∵BC⊂平面A1BC,∴平面A1BC⊥平面ACC1A1.(2)连接A1C交AC1于O,连接DO,则由D为AB中点,O为AC1中点得,OD∥BC1,∵OD⊂平面A1DC,BC1⊄平面A1DC,∴BC1∥平面A1DC.【点评】熟练掌握等边三角形的判定、勾股定理的逆定理、及线面、面面垂直与平行的判定定理和性质定理、平行四边形的性质、三角形的中位线定理是证明问题的关键.17.某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.【考点】基本不等式在最值问题中的应用.【专题】计算题;应用题;不等式的解法及应用.【分析】设一个矩形长AF=x(dm),则另一矩形长为8﹣x(dm).设圆半径为r(dm),则﹣1+=8﹣x,化简整理,令9﹣x=t,得到2=(t+)﹣,再由基本不等式即可得到最小值,注意等号成立的条件.【解答】解:设一个矩形长AF=x(dm),则另一矩形长为8﹣x(dm).设圆半径为r(dm),则﹣1+=8﹣x,r2﹣x2=(9﹣x)2+r2﹣﹣2(9﹣x),即2(9﹣x)=(9﹣x)2+x2﹣.令9﹣x=t,得2t=t2+(9﹣t)2﹣=t2+20﹣t,得2=(t+)﹣≥﹣=,即r2≥+,即有r,此时t=4即有x=5,y=3(单位:dm).则不同意他的观点.【点评】本题考查基本不等式在最值问题中的运用,根据题意得到等式,通过换元化简整理是解题的关键,考查运算能能力,属于中档题.18.已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【考点】圆与圆锥曲线的综合;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.19.(2014•淮安模拟)已知函数f(x)=(x﹣a)2e x在x=2时取得极小值.(1)求实数a的值;(2)是否存在区间[m,n],使得f(x)在该区间上的值域为[e4m,e4n]?若存在,求出m,n的值;若不存在,说明理由.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(1)通过求导直接得出,(2)构造出新函数通过求导得出方程组,解得即可.【解答】解:(1)f'(x)=e x(x﹣a)(x﹣a+2),由题意知f'(2)=0,解得a=2或a=4.当a=2时,f'(x)=e x x(x﹣2),易知f(x)在(0,2)上为减函数,在(2,+∞)上为增函数,符合题意;当a=4时,f'(x)=e x(x﹣2)(x﹣4),易知f(x)在(0,2)上为增函数,在(2,4),(4,+∞)上为减函数,不符合题意.所以,满足条件的a=2.(2)因为f(x)≥0,所以m≥0.①若m=0,则n≥2,因为f(0)=4<e4n,所以(n﹣2)2e n=e4n.设,则,所以g(x)在[2,+∞)上为增函数.由于g(4)=e4,即方程(n﹣2)2e n=e4n有唯一解为n=4.②若m>0,则2∉[m,n],即n>m>2或0<m<n<2.(Ⅰ)n>m>2时,,由①可知不存在满足条件的m,n.(Ⅱ)0<m<n<2时,,两式相除得m(m﹣2)2e m=n(n﹣2)2e n.设h(x)=x(x﹣2)2e x(0<x<2),则h'(x)=(x3﹣x2﹣4x+4)e x=(x+2)(x﹣1)(x﹣2)e x,h(x)在(0,1)递增,在(1,2)递减,由h(m)=h(n)得0<m<1,1<n<2,此时(m﹣2)2e m<4e<e4n,矛盾.综上所述,满足条件的m,n值只有一组,且m=0,n=4.【点评】本题考察了求导函数,函数的单调性,解题中用到了分类讨论思想,是一道较难的问题.20.已知数列{a n}中,a2=a(a为非零常数),其前n项和S n满足:S n=(1)求数列{a n}的通项公式;(2)若a=2,且a m2﹣S n=11,求m、n的值;(3)是否存在实数a、b,使得对任意正整数p,数列{a n}中满足a n+b≤p的最大项恰为第3p﹣2项?若存在,分别求出a与b的取值范围;若不存在,请说明理由.【考点】等差数列与等比数列的综合;等差数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(1)利用数列的项与前n项和的关系,将条件转化为数列的项之间的关系,判定数列为特征数列,再求通项公式;(2)利用(1)的结论,求出m、n满足的关系,分析求解即可;(3)根据条件a n+b≤p求出n满足的条件,再根据满足a n+b≤p的最大项始终为3P﹣2,转化为不等式的恒成立问题,分析求解即可.【解答】解:(1)由已知,得a1=S1==0,∴S n=,则有S n+1=,∴2(S n+1﹣S n)=(n+1)a n+1﹣na n,即(n﹣1)a n+1=na n n∈N*,∴na n+2=(n+1)a n+1,两式相加得,2a n+1=a n+2+a n n∈N*,即a n+2﹣a n+1=a n+1﹣a n n∈N*,故数列{a n}是等差数列.又a1=0,a2=a,∴a n=(n﹣1)a.(2)若a=2,则a n=2(n﹣1),∴S n=n(n﹣1).由,得n2﹣n+11=(m﹣1)2,即4(m﹣1)2﹣(2n﹣1)2=43,∴(2m+2n﹣3)(2m﹣2n﹣1)=43.∵43是质数,2m+2n﹣3>2m﹣2n﹣1,2m+2n﹣3>0,∴,解得m=12,n=11.(3)由a n+b≤p,得a(n﹣1)+b≤p.若a<0,则n≥+1,不合题意,舍去;若a>0,则n≤+1.∵不等式a n+b≤p成立的最大正整数解为3p﹣2,∴3p﹣2≤+1<3p﹣1,即2a﹣b<(3a﹣1)p≤3a﹣b,对任意正整数p都成立.∴3a﹣1=0,解得a=,此时,﹣b<0≤1﹣b,解得<b≤1.故存在实数a、b满足条件,a与b的取值范围是a=,<b≤1.【点评】本题考查了等差数列的通项公式,数列的项与前n项和之间的关系及数列的综合问题.。