《材料分析技术》复习资料
- 格式:ppt
- 大小:1.55 MB
- 文档页数:12
计算题过程略,课堂作业少2题,所给答案仅供参考不保证正确第一章1、名词解释:(1)物相:在体系内部物理性质和化学性质完全均匀的一部分称为“相”。
在这里,更明白的表述是:成分和结构完全相同的部分才称为同一个相。
(2)K系辐射:处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。
原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。
当K电子被打出K层时,原子处于K 激发状态,此时外层如L、M、N……层的电子将填充K层空位,产生K系辐射。
(3)相干散射:由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。
(4)不相干散射:X射线经束缚力不大的电子(如轻原子中的电子)或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。
这种散射现象称为不相干散射。
(5)荧光辐射:处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射出被照物质的特征X射线,这种由入射X射线激发出的特征X射线称为二次特征X射线即荧光辐射。
(6)吸收限:激发K系光电效应时,入射光子的能量必须等于或大于将K电子从K层移至无穷远时所作的功WK,即将激发限波长λK和激发电压VK联系起来。
从X射线被物质吸收的角度,则称λK为吸收限。
(7)★俄歇效应:原子中K层的一个电子被打出后,它就处于K激发状态,其能量为EK。
如果一个L层电子来填充这个空位,K电离就变成L电离,其能量由EK变成EL,此时将释放EK-EL的能量。
释放出的能量,可能产生荧光X 射线,也可能给予L层的电子,使其脱离原子产生二次电离。
即K层的一个空位被L层的两个空位所代替,这种现象称俄歇效应.2、特征X射线谱与连续谱的发射机制之主要区别?特征X射线谱是高能级电子回跳到低能级时多余能量转换成电磁波。
连续谱:高速运动的粒子能量转换成电磁波。
3、计算0.071nm(MoKα)和0.154nm(CuKα)的X射线的振动频率和能量略4、x射线实验室用防护铅屏,若其厚度为1mm,试计算其对Cukα、Mokα辐射的透射因子(I透射/I入射)各为多少?略第二章1.名词解释:晶面指数:用于表示一组晶面的方向,量出待定晶体在三个晶轴的截距并用点阵周期a,b,c度量它们,取三个截距的倒数,把它们简化为最简的整数h,k,l,就构成了该晶面的晶面指数。
材料分析技术材料分析技术是一门涉及多种学科知识的综合性技术,它在材料科学、化学、物理等领域都有着广泛的应用。
通过对材料的成分、结构、性能等方面进行分析,可以帮助人们更好地理解材料的特性,从而指导材料的设计、制备和应用。
本文将介绍几种常见的材料分析技术,包括X射线衍射、扫描电子显微镜、质谱分析等。
X射线衍射是一种常用的材料分析技术,它通过研究材料对X射线的衍射图样来确定材料的晶体结构和晶体学性质。
这项技术可以帮助科研人员确定材料的晶体结构类型、晶格常数、晶面指数等重要参数,从而为材料的性能和应用提供重要的参考依据。
扫描电子显微镜(SEM)是一种观察和分析材料表面形貌和成分的重要手段。
它利用电子束与材料表面的相互作用来获取显微图像,并通过能谱分析技术来确定材料的成分。
SEM技术在材料科学、生命科学、纳米技术等领域都有着广泛的应用,可以帮助科研人员研究材料的微观形貌和成分分布。
质谱分析是一种通过对材料中的离子进行质量分析来确定材料成分和结构的技术。
它可以对材料中的各种元素和化合物进行快速、准确的分析,广泛应用于材料科学、化学、生物学等领域。
质谱分析技术的发展为材料研究和分析提供了强大的工具,为人们深入了解材料的组成和特性提供了重要手段。
除了以上介绍的几种常见的材料分析技术外,还有许多其他的分析方法,如透射电子显微镜、原子力显微镜、拉曼光谱等,它们各自具有独特的优势和适用范围。
随着科学技术的不断进步,材料分析技术也在不断发展和完善,为人们研究和应用各种材料提供了更加强大的工具和手段。
总之,材料分析技术在材料科学和工程领域具有重要的地位和作用,它为人们研究和应用各种材料提供了重要的手段和方法。
随着科学技术的不断进步,材料分析技术也在不断发展和完善,为人们更好地理解和利用材料提供了强大的支持。
希望本文介绍的几种常见的材料分析技术能够为读者提供一些参考和帮助,促进材料分析技术的研究和应用。
材料分析技术总结明场像:用另外的装置来移动物镜光阑,使得只有未散射的透射电子束通过它,其他衍射的电子束被光阑挡掉,由此所得到的图像被称为明场像(BF)。
暗场像:只有衍射电子束通过物镜光阑,透射电子束被光阑挡掉,称由此所得到的图像为暗场像(DF)。
散射电子成像,像有畸变:分辨率低通过调节中间镜的电流就可以得到不同放大倍数的明场像和暗场像。
中心暗场像:使入射电子束偏转2θ,使得衍射束平行于物镜光轴通过物镜光阑。
这种方法称为中心暗场成像。
射电子束对试样倾斜照明,得到的暗场像。
像不畸变:分辨率高八强线:三强线:第一强锋,第二强峰及第三强峰的峰强:峰位:半峰宽等参数点阵消光:由于晶胞中点阵位置而导致的│F|2=0的现象。
结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。
系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。
吸收限:X射线照射固体物质产生光子效应时能量阀值对应的波长称为物质的吸收限。
短波限:极限情况下,能量为eV的电子在碰撞中一下子把能量全部转给光子,那么该光子获得最高能量和具有最短波长。
荧光X射线:当入射的X射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X射线。
特征X射线:处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。
原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。
二次电子:当入射电子与原子核外电子发生交互作用时,会使原子失掉电子而变成离子,这个脱离原子的电子称为二次电子。
背散射电子:入射电子与固体作用后又离开固体的总电子流。
俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。
当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。
衬度光阑:衬度光阑又称为物镜光阑,通常它被放在物镜的后焦面上。
材料分析技术材料分析技术是一种通过对材料进行实验和测试,以确定其组成、结构、性能和特性的方法。
它在各种领域都有着重要的应用,包括材料科学、化学工程、环境科学、生物医学工程等。
随着科学技术的不断发展,材料分析技术也在不断更新和完善,为人们的生活和工作带来了诸多便利。
首先,常见的材料分析技术包括光学显微镜、扫描电子显微镜、X射线衍射、质谱分析、核磁共振等。
这些技术可以帮助科研人员和工程师深入了解材料的微观结构和性能,从而指导材料的设计、制备和改进。
例如,通过光学显微镜可以观察材料的表面形貌和晶粒结构;扫描电子显微镜可以实现对材料的高分辨率成像;X 射线衍射可以确定材料的晶体结构和晶格参数;质谱分析可以确定材料的分子结构和元素组成;核磁共振可以研究材料的分子运动和化学环境。
这些技术的应用为材料研究和开发提供了重要的手段和支持。
其次,随着纳米技术的发展,纳米材料成为材料科学研究的热点之一。
纳米材料具有特殊的物理、化学和力学性质,因此需要特殊的分析技术来研究和表征。
传统的材料分析技术在纳米材料的研究中存在一定的局限性,因此人们开发了一系列针对纳米材料的新型分析技术,如透射电子显微镜、原子力显微镜、拉曼光谱等。
这些技术可以实现对纳米材料的高分辨率成像、表面形貌和化学成分的分析,为纳米材料的研究和应用提供了重要的技术支持。
最后,材料分析技术的发展离不开计算机技术和数据处理技术的支持。
随着计算机和信息技术的不断进步,人们可以利用计算机模拟和仿真技术对材料的结构和性能进行预测和优化。
同时,大数据和人工智能技术的应用也为材料分析提供了新的思路和方法。
例如,通过机器学习算法可以实现对材料的高通量筛选和优化,大大加快了材料研究和开发的进程。
综上所述,材料分析技术是现代材料科学研究和工程应用中不可或缺的重要手段。
随着科学技术的不断进步,人们对材料分析技术的要求也在不断提高,希望能够开发出更加高效、精准和可靠的分析技术,为材料的研究和应用提供更好的支持和保障。
X射线:波长很短的电磁X射线的本质是什么?答:X射线是一种电磁波,有明显的波粒二象性。
特征X射线:是具有特定波长的X射线,也称单色X射线。
连续X射线:是具有连续变化波长的X射线,也称多色X射线。
荧光X射线:当入射的X射线光量子的能量足够大时,可以将原子内层电子击出,被打掉了内层的受激原子将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线x射线的定义性质连续X射线和特征X射线的产生X射线是一种波长很短的电磁波X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。
呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。
对动物有机体能产生巨大的生理上的影响,能杀伤生物细胞。
连续X射线根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。
由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。
特征X射线处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。
原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。
因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。
4 简述材料研究X射线试验方法在材料研究中的主要应用精确测定晶体的点阵常数物相分析宏观应力测定测定单晶体位相测定多晶的织够问题.X 射线衍射分析,在无机非金属材料研究中有哪些应用?(8分)答:1. 物相分析:定性、定量2. 结构分析:a、b、c、α、β、γ、d3. 单晶分析:对称性、晶面取向—晶体加工、籽晶加工4. 测定相图、固溶度5. 测定晶粒大小、应力、应变等情况X射线衍射的几何条件是d、θ、λ必须满足什么公式?写出数学表达式,并说明d、θ、λ的意义。
(5分)答:. X射线衍射的几何条件是d、θ、λ必须满足布拉格公式。
材料分析技术扫描电子显微镜一、基本原理 理论基础:V225.1=λ,电子波长由加速电压V 决定。
电子与物质的相互作用①二次电子:从距样品表面100埃左右深度范围内激发出来的低能电子,能量较低。
因此二次电子的反射区域与入射电子束轰击的区域重合度很好,故成像分辨率很高。
表面形貌信息的主要来源,也可以观测磁性材料和半导体材料。
②背散射电子:除了可以显示表面形貌外,还可以显示元素分布状态和相轮廓。
③吸收电子:这部分电子在试样和地之间形成的电流等于入射电子流和反射电子流的差额,可以用来显示样品元素表面分布状态和试样表面形貌。
④X 射线:进行微区元素的定性和定量分析。
扫描电子显微镜就是通过电子枪发射高能量的电子束,与样品之间发生相互作用,产生各种电子和射线,并将其收集转换成信号。
分辨本领:几十到一百埃。
二、所得图像二次电子像产生的二次电子被旁边的正电位收集极经转换后变成图像信号。
二次电子的反射量主要取决于样品表面的起伏状况,如果电子束垂直于表面入射,则二次电子反射量很小。
且二次电子像是一种无影像。
表面电位会影响二次电子量的变化,因此可以利用电压发差效应研究半导体器件的工作状态。
背散射电子像收集极电位为零,不经加速,因此背散射电子像是一种有影像。
背散射电子发射量还与样品的原子序数有关,原子序数越大,散射量越大,因此还可以反映样品表面平均原子序数分布。
但背散射电子像分辨本领较差。
吸收电流像研究晶体管或集成电路的PN 结性能与晶体缺陷和杂质的关系。
X 射线及X 射线显微分析当具有一定能量的入射电子束激发杨平时,样品中的不同元素将受激发射特征X 射线。
各种元素特征X 射线波长与其原子序数Z 之间存在着一定的关系,可以用莫赛莱定律表示:()σν-=Z K 。
能量色散法(EDX )三、对样品的要求1. 观测的样品必须为固体(块状或粉末),在真空条件下能保持长时间的稳定。
有水分的样品应进行预先的干燥;有氧化层的样品需剥离氧化层;有油污的样品应先清洗干净。
《材料分析测试技术》硕士生考试答案姓名:院/系:学号:一、填空(20分,每空1分)1. 紫外光谱中蒽和萘相比,λmax比较长。
2. 决定化合物红外吸收峰强度的决定因素是瞬间偶极矩的变化。
3. 在红外光谱分析中,用KBr做样品池,这是因为KBr无红外吸收。
4.XPS、俄歇电子能谱、X射线荧光、二次离子质谱,这四种表面分析方法中,表征深度从浅到深依次为:二次离子质谱<俄歇电子能谱< XPS< X射线荧光。
5.属于吸收光谱的分析方法,如红外、紫外-可见和NMR、AAS (举例)。
6.二维核磁共振中,可以用于不同扩散系数的多种分子混合物溶液成分分析的扩散排序谱(DOSY)。
7.核磁共振波谱法中,乙烯、乙烷、苯分子中质子化学位移值序是:乙烷、乙烯、苯。
8.NMR法中影响质子化学位移值的因素有电负性、环流效应、范德华作用、氢键等。
9.差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC和功率补偿型DSC.10.根据产生原因不同,电极的极化可以分为浓差极化和电化学极化。
11.电池的电压主要取决于(电极材料)的氧化还原电势,电池的比容量主要取决于单位质量的电极活性物质得失电子数。
二、问答题(40分,每题5分)1.请列出三种以上的热分析技术,并简述其基本原理及各自的应用范围。
DSC(差示扫描量热)TG(热重)DTA(差热)2. 解释原子吸收光谱和原子发射光谱的异同。
答:都是原子光谱。
原子吸收是吸收光谱,用火焰法、石墨炉法等方法将样品原子化,用空心阴极灯作为光源,用于定量分析特定的元素。
原子发射光谱是发射光谱,用电弧、ICP等方法将样品原子化,检测原子化的样品发射的原子谱线,可以同时监测很多种元素,定量能力不如原子吸收光谱。
3. 试举出三类常用的的参比电极;简述如何为一个电化学反应体系选择合适的参比电极。
饱和干汞,银/氯化银,标准氢电极,硫酸亚汞……..满足条件:1,电极反应单一可逆;2,交换电流密度大(电极电势稳定和重现性好)(流过微小电流的时候电极电势不发生明显变化);3.一定的温度对应一定的电位;4.与研究体系兼容….4. 请简述俄歇电子发射过程,并说明“LMM”的含义。
材料分析技术复习材料分析技术是一门研究材料性质和组成的科学和技术。
它主要包括材料结构、组分、性能以及材料制备和加工等方面的研究。
材料分析技术的重要性在于其可以揭示材料的微观结构和组成,帮助人们了解材料的性能和特性,为材料设计和工程应用提供科学依据。
1.X射线衍射(XRD)X射线衍射是一种非常重要的材料分析技术,可以用来研究晶体的结构和成分。
通过照射样品的X射线,通过结晶样品中的原子、离子、分子的散射作用,来捕捉到经过散射后的X射线的信息。
通过对散射强度的解析和计算,可以得到样品的晶体结构参数、相对晶粒尺寸、晶体的取向、材料的相变等信息。
2.扫描电子显微镜(SEM)扫描电子显微镜是一种常用的表征材料表面形貌和成分的技术。
它利用样品表面与电子束的相互作用产生的信号来观察和分析样品表面形貌。
SEM可以产生高分辨率的图像,并且可以通过能区谱仪来分析样品表面的化学成分。
3.透射电子显微镜(TEM)透射电子显微镜是一种高分辨率的显微镜,可以用于观察材料的微观结构。
与SEM不同的是,透射电子显微镜通过透射电子束穿过样品来观察样品的内部结构。
TEM可以用来观察材料中的晶体结构、晶界、位错等微观缺陷,并且可以通过选区电子衍射来分析晶体的晶格结构。
4.能谱分析技术能谱分析技术包括X射线能谱分析(XRF)和电子能谱分析(ESCA)等。
XRF是一种非破坏性的化学分析方法,可以用于分析材料中的元素组成和浓度。
它通过样品中元素吸收入射的X射线产生的特征能谱来分析样品的元素组成。
而ESCA则是利用电子束轰击样品产生的能量分布谱来分析元素的化学价态和表面成分。
5.热分析技术热分析技术包括热重分析(TG)、差热分析(DSC)和热膨胀分析(TMA)等。
热重分析可以用来测量材料的质量变化随温度的关系,从而确定材料中的各种成分的含量。
DSC可以用来测量材料的热性能,例如熔点、结晶温度和相变等。
而TMA则可以用来测量材料的尺寸或形状随温度的变化情况。
《材料分析测试技术》试卷(答案)一、填空题:(20分,每空一分)1. X射线管主要由阳极、阴极、和窗口构成。
2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。
3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。
4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。
5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。
6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。
7. 电子探针包括波谱仪和能谱仪成分分析仪器。
8. 扫描电子显微镜常用的信号是二次电子和背散射电子。
二、选择题:(8分,每题一分)1. X射线衍射方法中最常用的方法是( b )。
a.劳厄法;b.粉末多晶法;c.周转晶体法。
2. 已知X光管是铜靶,应选择的滤波片材料是(b)。
a.Co ;b. Ni ;c. Fe。
3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。
a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。
4. 能提高透射电镜成像衬度的可动光阑是(b)。
a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。
5. 透射电子显微镜中可以消除的像差是( b )。
a.球差;b. 像散;c. 色差。
6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。
a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。
7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。
a.背散射电子;b.俄歇电子;c. 特征X射线。
8. 中心暗场像的成像操作方法是(c)。
a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。
三、问答题:(24分,每题8分)1.X射线衍射仪法中对粉末多晶样品的要求是什么?答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个最佳厚度(t =2.分析型透射电子显微镜的主要组成部分是哪些?它有哪些功能?在材料科学中有什么应用?答:透射电子显微镜的主要组成部分是:照明系统,成像系统和观察记录系统。