ADC入门 基础知识资料讲解
- 格式:ppt
- 大小:975.00 KB
- 文档页数:34
adc 基本概念、逻辑概念和物理概念ADC是模拟数字转换器(Analog to Digital Converter)的英文简称,它是一种将模拟信号转换为数字信号的设备或模块。
ADC在现代电子系统中起着非常重要的作用,它可以将来自传感器、麦克风、摄像头等模拟信号转换为数字信号,以便数字处理器进行处理和分析。
在本文中,我们将从基本概念、逻辑概念和物理概念三个方面来探讨ADC的工作原理和应用。
首先,我们来看一下ADC的基本概念。
ADC的基本原理是根据一定的采样频率对模拟信号进行采样,并将采样值按照一定的编码规则转换为数字信号。
其中,采样频率表示每秒钟采集模拟信号的次数,而编码规则则决定了数字信号的精度和范围。
通常来说,ADC的输出是一个n位的二进制数,其取值范围为0到2的n次方减1。
因此,ADC的精度可以通过比特数来表示,比如8位ADC的输出精度为256个离散值。
其次,我们来谈一下ADC的逻辑概念。
在数字系统中,ADC通常作为一个独立的模块,负责将模拟信号转换为数字信号。
它可以通过串行接口(如SPI、I2C)或并行接口(如并行总线)与其他数字器件进行通信。
在实际应用中,ADC的转换结果可以直接用于数字信号处理器(DSP)、微控制器(MCU)或FPGA进行进一步处理。
此外,为了提高系统的灵敏度和精度,可能还会使用ADC前置放大器、数字滤波器等辅助器件。
最后,我们来探讨ADC的物理概念。
ADC通常由模拟前端、数字处理器和接口电路等部分组成。
其中,模拟前端用于对模拟信号进行采样、滤波和放大,以保证转换的准确性和稳定性;数字处理器负责将模拟信号转换为数字信号,并进行存储、加工和输出;而接口电路用于与其他数字设备之间进行通信和数据传输。
此外,ADC的性能参数还包括转换速率、信噪比、非线性度等,这些参数直接影响了其在实际应用中的性能和稳定性。
综上所述,ADC作为一种重要的模拟数字转换设备,在现代电子系统中具有广泛的应用。
ADC采样的相关基础知识(网上摘录)1 MSPS - 模拟混合信号转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
1msps=1000 ksps2 kspskilo Samples per Second 表示每秒采样千次,是转化速率的单位。
所谓的转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
1msps=1000ksps3 数据采集中的采样率、缓冲区大小以及,每通道采样数之间的关系采样率,主要取决于你需要分析信号的带宽。
根据采样定理,采样率至少是带宽的两倍。
一般取2.56倍或者更高。
每通道采样数,指的是每次从通道读取的数据长度,其实是从通道的buffer里面读取的。
如果每次读得太少,而且读的间隔过长,那么buffer里面的数据就会堆积,最后导致buffer溢出。
所以buffer size应该大于数据读取间隔*采样率,否则一个间隔的数据就足以把buffer填满了,同时读取的长度也应该保证buffer不会溢出。
ADC基础知识
12位ADC是一种逐次逼近型模拟数字转换器。
它有多达18个通道,可测量16个外部和2个内部信号源。
各通道的A/D 转换可以单次、连续、扫描或间断模式执行。
ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。
模拟看门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。
ADC的输入时钟不得超过14MHz,否则采样结果不准确,它是由PCLK2经分频产生,因此,初始化阶段需要调用相关函数对它进行预分频
ADC转化时间为1us左右
注: 不能供5V,会烧坏ADC引脚的
--》ADC主要特征:
12位分辨率
转换结束、注入转换结束和发生模拟看门狗事件时产生中断
单次和连续转换模式
从通道0到通道n的自动扫描模式
采样间隔可以按通道分别编程
ADC供电要求:2.4V到3.6V
ADC输入范围:VREF- ≤ VIN ≤ VREF+
注意: 如果有VREF-引脚(取决于封装),必须和VSSA相连接
注意:
注: 单次转换只转换一次就停止了
不可能同时使用自动注入和间断模式
下面是: 慢速交叉模式。
ADC基本知识ADC学习知识整理本文给大家分享了ADC学习知识。
过采样频率:增加一位分辨率或每减小6dB 的噪声,需要以4 倍的采样频率fs 进行过采样.假设一个系统使用12 位的ADC,每秒输出一个温度值(1Hz),为了将测量分辨率增加到16 位,按下式计算过采样频率:fos=4^4*1(Hz)=256(Hz)。
1. AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。
1).积分型积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,抗干扰能力强(为何抗干扰性强?原因假设一个对于零点正负的白噪声干扰,显然一积分,则会滤掉该噪声),但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD 转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2).逐次比较型SAR逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3).并行比较型/串并行比较型并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。