一维气体流动
- 格式:ppt
- 大小:4.86 MB
- 文档页数:100
流体⼒学教案第11章⽓体的⼀维⾼速流动第⼗⼀章⽓体的⼀维⾼速流动前⾯各章研究了不可压缩流体的运动,即认为流体在流动中其密度不变。
所得到的不可压缩流体的运动规律,不仅适⽤于液体的运动,也适⽤于流速不⾼的⽓体运动。
当然,严格说任何流体都是可压缩的。
不过,在我们通常所研究的流体运动中,液体的密度变化⾮常⼩,往往可以忽略不计;⽽⽓体在低速运动时,其密度变化也不⼤,若忽略其变化,把密度作为常数来处理,可使问题⼤为简化,⽽⼜不致引起⼤的误差。
例如,通常在常温下空⽓流速低于70m/s时,其密度变化不⾼于2%,以⽪托管测量⽓体流速为例,忽略密度变化所引起的误差不超过1%。
当流速增⾼时,⽓体的密度变化就会增⼤,若再按不可压缩流体处理,所引起的误差就会增⼤。
所以,对于⽓体的⾼速流动,必须考虑其密度的变化,按可压缩流体处理。
故研究⽓体的⾼速流动,通常称为可压缩流体动⼒学,⼜叫⽓体动⼒学。
§11-1声速和马赫数⼀、流体的可压缩性与微弱扰动的传播在可压缩性介质中,压强扰动以波的形式传播,其传播速度的⼤⼩与介质的压缩性有关。
例如,声⾳即为⼀微弱的压强性不同,可压缩性⼩的传播速度⾼,可压缩性⼤的传播速度低。
由此可见,声速值反映了流体可压缩性的⼤⼩。
图11-1 微弱扰动的传播下⾯说明微弱扰动波的传播过程。
如图11-1所⽰,管中充满可压缩流体,左端装有⼀活塞,原处于静⽌状态。
当活塞突然以速度d V向右运动时,活塞附近的流体⾸先被压缩,其压强产⽣⼀微⼩增量d p,密度也有⼀微⼩增量d ;同时,这⼀层流体质点也以速度d V 向前运动。
这⼀层被压缩了的流体随之⼜压缩其前⽅邻近的⼀层流体,使其也产⽣⼀个微⼩增量d p 、d ρ和d V 。
这样⼀层⼀层向前传播,形成了⼀个已受扰动和未受扰动区域的分界⾯,这个分界⾯以速度a 向前运动。
在扰动分界⾯尚未到达的区域,即未受扰动区,⽓体质点的速度为V =0,其压强、密度和温度分别为p 、ρ和T ;在扰动分界⾯之后,即已受扰动的区域,⽓体的各物理参数分别为d V 、p p d +、ρρd +和T T d +。
气体流动的三个基本原理-回复气体流动的三个基本原理是:压力差驱动、阻力和速度场。
一、压力差驱动压力差驱动是气体流动的基本原理之一。
根据气体动力学原理,气体分子会通过相互碰撞和运动来传递能量。
当气体存在压力差时,高压气体会自然地流向低压区域。
这是因为高压气体分子碰撞频率和力度较大,从而具有较大的平均动量。
而低压区域的气体分子碰撞频率和力度较小,平均动量较小。
因此,高压气体分子会自发地往低压区域流动,直到两个区域达到压力平衡。
二、阻力阻力是气体流动中的另一个基本原理。
当气体流动时,气体分子会与管道或其他障碍物发生碰撞,从而受到阻力的影响。
阻力会减缓气体分子的运动速度和流动速度。
根据流体力学原理,气体流动的阻力与气体流经管道的长度、管道的直径、气体的黏度以及其它物理特性相关。
阻力的大小可通过流体力学方程描述,其中存在流体的黏度参数。
较高黏度的气体会产生较大的阻力,从而减缓气体分子的运动速度。
相反,较低黏度的气体具有较小的阻力,使气体分子能够以较大的速度流动。
三、速度场速度场是描述气体流动的另一个重要原理。
速度场表示气体分子在空间中的运动速度和方向分布。
速度场可以通过测量气体流动中的速度向量及其分布来获得,并可通过连续性方程和牛顿第二定律等流体力学方程来描述。
气体流动的速度场是不均匀的,因为气体分子的运动速度和方向受到多种因素的影响,如压力差驱动、阻力、温度差等。
在一维流动中,速度场可以通过流速的大小和方向来描述。
总结:综上所述,气体流动的三个基本原理是压力差驱动、阻力和速度场。
压力差驱动使气体从高压区域自然流向低压区域,而阻力则减缓气体分子的运动速度和流动速度。
速度场描述了气体分子在空间中的速度和方向分布。
这三个原理共同决定了气体在管道或其他介质中的流动特性。
通过深入理解这些原理,我们可以更好地掌握和应用气体流动的原理和技术,以促进气体流动的研究和应用领域的发展。
第7章气体一维高速流动授课教师洪文鹏、张玲、郭婷婷、孙斌、张志达授课对象热动专业选用教材《工程流体力学》(第三版)(周云龙、洪文鹏)、中国电力出版社课次31-32 第 7 章第7.1-7.4节[1] 周云龙,洪文鹏. 工程流体力学(第二版).北京:中国电力出版社,2004[2] 李少华,郭婷婷. 工程流体力学. 成都:西南交通大学出版社,2007[3] 周云龙,洪文鹏,张玲. 工程流体力学习题解析.北京:中国电力出版社,2007[4] 王松岭主编. 流体力学.北京:中国电力出版社,2004[5] 孔珑主编. 工程流体力学.北京:水利电力出版社,1992参考教材[6] 莫乃榕. 工程流体力学. 武汉:华中科技大学出版社,2000教学目的及要求当气体流动的速度或物体在气体中运动的速度接近甚至超过声速时,如果气体受到扰动,必然会引起很大的压强变化,以致密度和温度也会发生显著的变化,气体的流动状态和流动图形都会有根本性的变化,这时就必须考虑压缩性的影响。
本章主要讨论可压缩气体一维流动的一些基本知识。
如声速和马赫数,正激波,微弱扰动在气体中的传播等。
1、掌握声速及马赫数的概念。
2、掌握微弱扰动波在空间的传播情况。
3、了解气体一维定常等熵流动的基本方程及基本概念。
4、了解正激波的形成及正激波前后气流参数的变化规律。
教学重点1、声速、马赫数定义、特征2、微弱扰动拨的空间传播3、气体一维定常等熵流动的基本方程及基本概念4、伯努利方程及其应用5、正激波教学难点1、微弱扰动拨的空间传播2、正激波的形成及正激波前后气流参数的变化规律教学方式、方法1、教学方式:课堂讲授2、教学方法:公式推导+举例+习题演练,理论联系实际3、教学手段:多媒体+板书教 学 过 程 及 时 间 分 配31-1 可压缩流体知识回顾(10分钟) 31-1 微弱扰动波的一维传播(20分钟) 31-1 声速、马赫数(15分钟) 31-2 微弱扰动波的空间传播(20分钟) 31-2 气体一维定常流动基本方程(25分钟) 32-1 正激波形成(10分钟)32-1 正激波前后气流参数变化(20分钟) 32-1 本章小结、(15分钟) 32-2 思考题、习题讲解(45分钟)主要教学内容7.1 微弱扰动波的传播一、声速气体中微弱扰动波的传播速度就是声速。
一维非定常连续流动一维非定常流动是指气流的速度和热力学参数仅与时间t和一个坐标变量x有关的流动,也就是说,在某一时刻,在任何一个垂直于x轴的平面上,气流的速度和热力学参数是不变的。
它包括连续流(等熵波)和间断流(激波、接触面)。
下面主要介绍连续流。
在进行讨论之前,首先假定气体为常比热完全气体(或称量热完全气体),忽略气流的粘性和热传导作用,流动过程是等熵的。
作为理解非定常连续流动的基础,首先介绍小扰动波的产生,传播及其简化分析。
一、小扰动波1.产生小扰动是指气流的速度和热力学参量的相对变化量都很小,例如声波就是一种小扰动波,它以声速传播,因此,通常人们把小扰动在介质中的传播速度称为声速。
对介质的扰动形式有很多,但总归起来不外乎速度不匹配和压力不平衡。
下面将要介绍的是由于活塞运动引起速度不匹配所产生的波。
在一个等截面无限长的圆管中,初始时刻,活塞及其两边的气体处于静止状态。
设活塞在很短的时间内,速度增加至du。
此后,它以匀速向右运动。
这时,活塞左右两边的气体同时受到一个微弱的扰动:右边的气体被压缩,左边的气体变得稀疏,其效果以小扰动波的形式向两边传播。
这种波通过以后,波后气体均以活塞的速度向右运动。
同时,右边气体压力增加一个微量dp,左边气体减小一个微量dp,这两种波分别称为小扰动压缩波和小扰动稀疏波。
上述两类小扰动波得传播过程在(x,t)图上的图示法如下压缩波通过以后,波后气流速度方向与波面传播方向一致,质点迹线靠近波面迹线;稀疏波通过以后,波后气流速度方向与波面传播方向相反,质点迹线偏离波面迹线。
对于运动的气体,压缩波后气体被加速,稀疏波后气体被减速。
2.传播定义向右为x轴的正方向,如果气体本身以u(代数值)的速度在运动,则波的传播速度为定义以速度(u+a)传播的波为“右行波”,以速度(u-a)传播“左行波”。
对于右行波而言,气体质点一定从右边(x轴正向)进入波阵面,对于左行波而言,气体质点一定从左边(x轴负向)进入2. 小扰动波的简化物理分析以一道右行小扰动波为例进行分析。