第8章-荧光免疫试验PPT课件
- 格式:ppt
- 大小:2.78 MB
- 文档页数:80
第八章荧光免疫技术第一节概述荧光免疫技术是标记免疫技术中发展最早的一种。
一、荧光的基本知识1.荧光:荧光就是某些物质受到一定波长光的激发后,在极短时间内发射出的波长大于激发光波长的光。
2.发射光谱:发射光谱是指固定激发光波长,在不同波长下所记录到的样品所发射的荧光强度谱图。
激发态电子回到的能级不同,发出的荧光波长就不同。
荧光物质在吸收光能后,即刻发射荧光,一旦停止供能,荧光随即消失。
3.激发光谱:激发光谱是指固定检测发射光荧光波长,用不同波长的激发光照射样品所记录到的相应的荧光发射强度谱图。
4.荧光效率;在一定范围内,荧光强度与激发光强度呈正相关,即激发光越强,荧光越强,但过强的激发光会使荧光很快褪去。
5.荧光寿命:荧光物质被激发后产生的荧光衰减到一定程度时所用的时间称为荧光寿命。
6.荧光淬灭:荧光物质在某些理化因素(如紫外线照射、高温、苯胺、酚、1-、硝基苯等)作用下,发射荧光减弱甚至消退称为荧光淬灭。
7.荧光偏振。
二、荧光物质(一)荧光色素1.异硫氰酸荧光素(FITC):为黄色或橙黄色结晶粉末,易溶于水或乙醇等溶剂。
分子量为389.4kD, 最大吸收光波长为490〜495nm,最大发射光波长为520〜530nm,呈现明亮的黄绿色荧光。
其主要优点是:①人眼对黄绿色较为敏感;②通常切片标本中的绿色荧光少于红色荧光。
2.四乙基罗丹明(RB200):不溶于水,易溶于乙醇和丙酮。
性质稳定,可长期保存。
最大吸收光波长为570nm,最大发射光波长为595〜600nm,呈橘红色荧光。
3.四甲基异硫氰酸罗丹明(TRITC):最大吸引光波长为550nm,最大发射光波长为620nm,呈橙红色荧光。
4.藻红蛋白(R-RE):最大吸引光波长为565nm,最大发射光波长为578nm,呈明亮的橙色荧光。
(二)其他荧光物质1.镧系螯合物:其中以致3+应用最广。
EU3+螯合物的激发光波长范围宽,发射光波长范围窄,荧光衰变时间长,最适合用于时间分辨荧光免疫测定。
医学免疫学检验-免疫荧光技术课件xx年xx月xx日CATALOGUE目录•免疫荧光技术概述•免疫荧光技术的基本原理和步骤•免疫荧光技术的临床应用•免疫荧光技术的质量控制和标准化•总结与展望01免疫荧光技术概述免疫荧光技术是一种将抗原-抗体反应与荧光标记相结合的免疫学技术,通过荧光显微镜观察样本中待测抗原的含量和分布。
定义免疫荧光技术利用抗原-抗体反应的特异性,将荧光标记物与抗体结合,对待测样本中的抗原进行特异性识别和结合,形成抗原-抗体复合物,再通过荧光显微镜观察复合物发出的荧光信号,从而确定抗原含量和分布。
原理免疫荧光技术的定义和原理1免疫荧光技术的应用范围23免疫荧光技术广泛应用于感染性疾病、自身免疫性疾病、肿瘤等临床疾病的诊断和鉴别诊断。
临床诊断免疫荧光技术还可用于细胞生物学、分子生物学等基础研究中,研究细胞和分子的定位、表达、相互作用等。
基础研究免疫荧光技术可用于药物筛选和药物作用机制研究,通过观察药物与细胞或组织的作用,评估药物的疗效和安全性。
药物研发20世纪40年代免疫荧光技术由瑞典科学家Axelsson和英国科学家Coons首次建立。
20世纪60年代免疫荧光技术得到广泛应用和发展,逐渐成为医学、生物学等领域的重要技术手段。
21世纪初随着新技术如激光共聚焦显微镜、多光子显微镜等的应用,免疫荧光技术不断发展,提高了分辨率和灵敏度,拓展了应用范围。
免疫荧光技术的发展历程02免疫荧光技术的基本原理和步骤免疫荧光技术的核心原理是抗原-抗体反应,即利用特异性抗体与相应抗原的结合反应,实现目标抗原的检测和识别。
免疫荧光技术利用荧光标记物作为示踪剂,将荧光染料标记在特异性抗体上,形成荧光抗体,再与目标抗原结合,形成的抗原-抗体复合物在一定激发波长下能发射出荧光信号,从而实现抗原的定量和定位检测。
样品制备将待检测组织或细胞制备成单细胞悬液,固定在载玻片上,制成涂片或组织切片。
免疫荧光染色将制备好的样品进行预处理,加入荧光抗体标记的一抗,室温孵育一定时间;洗涤后加入荧光标记的二抗,再次室温孵育一定时间;洗涤后加入缓冲甘油等封片介质,封片。