电力拖动控制系统
- 格式:doc
- 大小:237.00 KB
- 文档页数:16
电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。
该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。
在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。
1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。
2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。
电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。
电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。
2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。
控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。
控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。
3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。
通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。
3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。
例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。
通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。
4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。
未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。
4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。
通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。
电力拖动自动控制系统电力拖动自动控制系统简介电力拖动自动控制系统包括:直流调速系统和交流调速系统。
直流调速系统包括:直流调速方法、直流调速电源和直流调速控制。
交流调速系统包括:交流调速系统的主要类型、交流变压调速系统、交流变频调速系统、绕线转子异步电机双馈调速系统——转差功率馈送型调速系统和同步电动机变压变频调速系统。
电力拖动自动控制系统课程内容介绍第一篇直流调速系统闭环反馈直流调速系统着重讨论基本的闭环控制系统及其分析与设计方法。
1.1 直流调速系统用的可控直流电源1.2 晶闸管-电动机系统(V-M系统)的主要问题1.3 直流脉宽调速系统的主要问题1.4 反馈控制闭环直流调速系统的稳态分析和设计1.5 反馈控制闭环直流调速系统的动态分析和设计1.6 比例积分控制规律和无静差调速系统根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。
本节介绍几种主要的可控直流电源。
常用的可控直流电源有以下三种旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。
1.1.1 旋转变流机组G-M系统工作原理由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n 。
这样的调速系统简称G-M系统,国际上通称Ward-Leonard系统。
1.1.2 静止式可控整流器V-M系统工作原理晶闸管-电动机调速系统(简称V-M系统,又称静止的Ward-Leonard系统),图中VT 是晶闸管可控整流器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相位,即可改变整流电压Ud ,从而实现平滑调速。
电力拖动自动控制系统简介电力拖动自动控制系统是一种通过电动机及其控制设备来实现机械设备运动的自动化控制系统。
它广泛应用于各个工业领域,如船舶、电厂、交通运输等。
电力拖动自动控制系统能够对电动机进行电压、电流和频率的调节,实现对被控制设备的精确控制。
通过采用先进的控制算法和传感器反馈,可以实现高效的运动控制、准确的位置控制和稳定的速度控制。
本文将从以下几个方面详细介绍电力拖动自动控制系统的组成、工作原理以及应用。
组成电力拖动自动控制系统由以下几个主要组成部分构成:1.电动机:电动机作为电力拖动自动控制系统的核心部件,负责将电能转化为机械能,驱动被控制设备运动。
2.控制器:控制器是电力拖动自动控制系统的大脑,负责对电动机进行控制和调节。
它接收传感器反馈的信号,并根据预设的控制算法进行运算,实现对电动机的精确控制。
3.传感器:传感器用于获取被控制设备的状态信息,如位置、速度、温度等。
传感器的反馈信号用于控制器进行实时调节,确保被控制设备的运动精确控制。
4.执行器:执行器负责将控制器输出的控制信号转化为实际的电压、电流或频率输出,通过控制电动机来实现对被控制设备的运动。
工作原理电力拖动自动控制系统的工作原理可以简述如下:首先,传感器捕捉被控制设备的状态信息,并将其转化为模拟信号或数字信号。
这些信号经过放大、滤波等处理后,传送给控制器。
控制器接收传感器信号后,根据预设的控制算法进行运算,并输出控制信号。
这些控制信号经过执行器的转化,最终作用于电动机。
电动机根据控制信号的输入,改变其电压、电流或频率,实现对被控制设备的运动。
电动机的运动状态被传感器继续监测,反馈给控制器进行调节。
通过不断的传感器监测和控制器调节,电力拖动自动控制系统能够实现对被控制设备的高精度控制和稳定运行。
应用电力拖动自动控制系统广泛应用于各个工业领域,其中一些常见的应用包括:1.船舶:电力拖动自动控制系统在船舶中起着关键作用,可以实现对推进器、舵机和起重设备等的精确控制,提高船舶的安全性和操纵性。
第三章★微机数字控制系统:以微处理器为核心的数字控制系统(简称微机数字控制系统)★微型计算机数字控制的主要特点:微机数字控制系统的稳定性好,可靠性高,可以提高控制性能,此外,还拥有信息存储、数据通信和故障诊断等模拟控制系统无法实现的功能。
★由于计算机只能处理数字信号,因此,与模拟控制系统相比,微机数字控制系统的主要特点是离散化和数字化★数字控制直流调速系统的组成方式大致可分为三种: 1. 数模混合控制系统 2.数字电路控制系统 3. 计算机控制系统★数模混合控制系统特点:转速采用模拟调节器,也可采用数字调节器电流调节器采用数字调节器;脉冲触发装置则采用模拟电路★数字电路控制系统特点:除主电路和功放电路外,转速、电流调节器,以及脉冲触发装置等全部由数字电路组成★在数字装置中,由计算机软硬件实现其功能,即为计算机控制系统。
系统的特点:双闭环系统结构,采用微机控制;全数字电路,实现脉冲触发、转速给定和检测;采用数字PI 算法,由软件实现转速、电流调节。
★微机数字控制双闭环直流调速系统硬件结构系统由以下部分组成:主电路;检测电路;控制电路;给定电路;显示电路★主回路——微机数字控制双闭环直流调速系统主电路中的UPE 有两种方式:直流PWM 功率变换器;晶闸管可控整流器★检测回路——检测回路包括电压、电流、温度和转速检测,其中:电压、电流和温度检测由A/D 转换通道变为数字量送入微机;转速检测用数字测速★转速检测有模拟和数字两种检测方法。
对于要求精度高、调速范围大的系统,往往需要采用旋转编码器测速,即数字测速。
★故障综合——利用微机拥有强大的逻辑判断功能,对电压、电流、温度等信号进行分析比较,若发生故障立即进行故障诊断,以便及时处理,避免故障进一步扩大。
这也是采用微机控制的优势所在。
★数字控制器——数字控制器是系统的核心,可选用单片微机或数字信号处理器(DSP)★系统给定——系统给定有两种方式:(1)模拟给定:模拟给定是以模拟量表示的给定值,例如给定电位器的输出电压。
电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。
2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。
3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。
4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。
T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。
M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。
5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。
6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。
7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。
(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。
1.运动控制系统是由电动机、功率放大与变换装置、控制器及相应的传感器等构成,交流调速系统取代直流调速系统已成为不争的事实。
2.V-M系统:晶闸管整流器—电动机调速系统;SPVWM:电压空间矢量PWM控制3.直流PWM调速系统:脉宽调整变换器—直流电动机调速系统;脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速4.泵升电压:当系统工作在逆变状态时,会对滤波电路中滤波电容进行充电,使电容两端电压升高5.静特性:表示闭环系统电动机转速与负载电流(转矩)间的稳态关系6.有静差调速系统:在比例控制调速系统中,存在扰动引起的稳态误差;7.无静差调速系统:对于积分控制和比例积分控制系统,由阶跃扰动引起的稳态误差为0;8.电流截止负反馈:当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
9.准时间最优控制:在设备物理上的允许条件下,实现最短时间的控制;10.双闭环调速系统:在电流、转速反馈控制系统中,从闭环结构上看,由电流环在里面构成的内环和由转速环在外面构成的外环,两个闭环构成的控制系统称作双闭环调速系统;11.可逆调速系统:可以实现电机正反转,具有四象限运行功能的调速系统称为可逆调速系统;12.环流的定义:采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流(1)静态环流——两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:直流平均环流——由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。
瞬时脉动环流——两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。
(2)动态环流——仅在可逆V-M系统处于过渡过程中出现的环流。
电力拖动自动控制系统阮毅第五版答案引言《电力拖动自动控制系统》是阮毅编写的一本经典教材,已经发行到第五版。
本文将为读者提供该教材的答案,以帮助读者更好地理解和应用其中的知识。
第一章系统基础知识答案1.电力拖动自动控制系统的定义是什么?答:电力拖动自动控制系统是由电机、传动装置和控制装置组成的系统,用于实现机械设备的自动化控制和调节。
2.电力拖动自动控制系统的主要组成部分有哪些?答:电力拖动自动控制系统的主要组成部分包括电机、传动装置、控制装置和电气部件。
3.电机在电力拖动自动控制系统中起到什么作用?答:电机是电力拖动自动控制系统中的执行元件,用于产生动力并驱动机械设备的运动。
4.传动装置在电力拖动自动控制系统中起到什么作用?答:传动装置是将电机的旋转运动传递给机械设备的装置,它能够改变电机输出的转矩、转速和转向。
5.控制装置在电力拖动自动控制系统中起到什么作用?答:控制装置是电力拖动自动控制系统中的核心部分,它根据输入的信号和设定的参数,对电机和传动装置进行控制,使机械设备实现自动化运行。
第二章电动机答案1.电动机的分类有哪些?答:电动机可以根据不同的标准进行分类,常见的分类方法有按电源类型分类(直流电动机、交流电动机)、按工作原理分类(异步电动机、同步电动机)等。
2.直流电动机的特点是什么?答:直流电动机的特点是转矩大、起动电流小、调速范围宽、响应速度快等。
3.交流电动机的特点是什么?答:交流电动机的特点是结构简单、维护成本低、功率因数高、运行可靠等。
4.异步电动机的工作原理是什么?答:异步电动机是利用旋转磁场的相对运动和感应电流的作用产生转矩,实现电动机工作的。
它的转速略低于旋转磁场的转速。
5.同步电动机的工作原理是什么?答:同步电动机是利用旋转磁场的转速与电动机转子的转速完全同步,实现电动机工作的。
它的转速与供电的电源频率和极对数有关。
第三章传动装置答案1.常见的传动装置有哪些?答:常见的传动装置有链传动、皮带传动、齿轮传动、联轴器等。
电力拖动自动控制系统介绍电力拖动自动控制系统是一种基于电力传动原理的自动控制系统,广泛应用于机械设备的驱动和控制中。
该系统通过电动机将电能转化为机械能来驱动机械设备,利用传感器感知环境信号并通过自动控制器对电机进行控制,实现对机械设备的自动化控制。
电力拖动自动控制系统主要由电动机、传感器、自动控制器和驱动装置组成。
电动机是系统的动力源,通过电能转换为机械能来驱动机械设备。
传感器用于感知机械设备的状态和环境参数,如位置、速度、力等。
自动控制器负责接收传感器的信号并根据预设的控制策略对电动机进行控制,实现对机械设备的自动化控制。
驱动装置用于将控制信号转化为电机驱动信号,控制电机的启停、转速和转向。
首先,系统的控制精度高。
由于电力传动具有快速响应、高精度和可调性的特点,可以实现对机械设备的精确控制。
其次,系统的抗干扰能力强。
电力传动系统能够通过电机的转矩调节来适应外部负载的变化,从而保持机械设备的稳定运行。
再次,系统的可靠性高。
电力拖动系统中的关键部件如电动机和传感器都经过严格的测试和筛选,能够在长时间运行过程中保持稳定和可靠的性能。
此外,电力拖动自动控制系统还具有节能和环保的优势。
通过合理的控制策略和调节机制,可以减少系统的能耗,并减少对环境的影响。
电力拖动自动控制系统广泛应用于各个领域,如工业制造、交通运输、石油化工等。
以工业制造为例,电力拖动系统可以用于汽车生产线、机械加工设备、输送线等机械设备的驱动和控制。
通过自动控制,可以提高生产效率和产品质量,减少人力投入和人为错误,实现机械设备的自动化生产。
总之,电力拖动自动控制系统是一种利用电力传动原理实现对机械设备自动化控制的系统。
它具有控制精度高、抗干扰能力强、可靠性高、节能环保等优势。
在工业制造、交通运输、石油化工等领域得到广泛应用,为提高生产效率和产品质量发挥了重要作用。
电力拖动自动控制系统实验报告一、实验目的本实验旨在通过搭建电力拖动自动控制系统,实现对电动机的控制,加深对电力拖动控制原理的理解,并学会使用电力拖动自动控制系统进行实际操作。
二、实验仪器1.电力拖动自动控制系统2.电动机3.控制器4.电源5.测量仪器:电流表、电压表三、实验原理电力拖动自动控制系统是一种通过电动机驱动负载进行工作的自动控制系统。
该系统的基本原理是通过控制电动机的转速和负载之间的关系,从而实现对负载的控制。
电动机在工作时,根据控制信号调整输出转矩或转速,进一步改变负载运行状态。
拖动自动控制系统的调速效果主要由电机的调速功能(转矩与负载相关)、控制器和反馈传感器等设备共同决定。
四、实验步骤1.搭建电力拖动自动控制系统将电动机与电源、控制器等设备连接起来,确保电路连接正常,并通过电流表和电压表监测电流和电压的变化。
2.调节控制器参数根据实际需求,调节控制器的参数,如PID控制器的比例系数、积分系数和微分系数等,以控制电动机的速度和负载的运行状态。
3.实际运行测试打开电源,启动电机,观察电动机的转速和负载的运行状态,记录相关数据,并进行分析。
4.调整控制器参数根据实际观察到的数据结果,进一步调整控制器参数,以达到更好的控制效果。
五、实验结果与分析通过实验观察,我们发现调整控制器参数可以直接影响电动机的转速和负载的运行状态。
当比例系数增大时,电动机的加速度增加,但易产生震动;当积分系数增大时,电动机的速度稳定性增加,但容易产生超调;当微分系数增大时,电动机的速度调整时间缩短,但对于噪声信号的敏感性增加。
因此,需要根据实际情况进行综合考虑,调整合适的参数。
六、实验总结通过本次实验,我们对电力拖动自动控制系统的原理和操作有了更深入的了解。
通过调节控制器参数,我们成功实现了对电动机的控制,并观察到了不同参数对电动机转速和负载运行状态的影响。
同时,我们也了解到了参数调整需要综合考虑各个因素,并根据实际需求进行调整。
电力拖动自动控制知识点总结电力拖动自动控制是一种利用电动机作为动力源,完成一系列运动控制和操作的技术。
它通过电力传动系统来把控制命令转换为电机动力输出,实现对设备的位置、速度和转矩等参数的精确控制。
电力拖动自动控制在各个行业的自动化生产中广泛应用,提高了生产效率和产品质量,降低了劳动强度和人为失误。
一、电力拖动自动控制基本原理电力拖动自动控制的基本原理是通过电动机来实现运动控制。
一般来说,电力拖动自动控制主要包括三个基本组成部分:传感器、控制器和执行器。
传感器用于采集反馈信号,控制器进行信号处理和计算,并将处理后的信号发送给执行器。
执行器则根据控制信号,调节电动机的转速、方向和输出力矩,实现对设备的运动控制。
二、电力拖动自动控制系统组成1.电动机电动机是电力拖动自动控制系统的核心部件,它将电能转换为机械能来驱动设备运动。
常用的电动机有直流电动机、交流感应电动机和步进电动机等。
选择合适的电动机型号和规格,对于实现精确控制至关重要。
2.传感器传感器用于采集各种物理信号,比如位置、速度、力矩等,并将其转换为电信号送入控制器。
常用的传感器有编码器、接近开关、力传感器和位移传感器等。
传感器的准确度和稳定性对于控制系统的精确性和性能至关重要。
3.控制器控制器是电力拖动自动控制系统的智能核心,负责信号的处理和控制算法的执行。
根据控制要求和应用场景的不同,常用的控制器有PLC(可编程逻辑控制器)、单片机和工控机等。
控制器的设计和参数设置决定了系统的稳定性和运行特性。
4.电力传动装置电力传动装置一般由电动机、传动装置和工作机构组成。
传动装置根据控制信号来调整输出轴的转速和转矩,使工作机构按照预设的规律运动。
常用的电力传动装置有齿轮传动、皮带传动、链传动和螺杆传动等。
5.控制回路控制回路是电力拖动自动控制系统中最关键的部分,它根据输入信号和反馈信号进行比较和判断,产生控制信号送入执行器。
常见的控制回路有位置闭环控制、速度闭环控制和转矩闭环控制等。
电力拖动自动控制系统1. 系统简介电力拖动自动控制系统是一种基于电力传动和自动控制的系统,用于驱动和控制各种机械设备的运动。
该系统通过电动机将电能转化为机械能,实现对设备的拖动和控制。
电力拖动自动控制系统广泛应用于工业生产、交通运输、能源领域等各个行业。
2. 系统架构电力拖动自动控制系统主要由以下几个部分组成:2.1 电动机电力拖动自动控制系统的核心部件是电动机。
电动机负责将电能转化为机械能,驱动机械设备的运动。
根据实际需求,电动机可以采用不同的类型,如直流电动机、交流电动机等。
2.2 控制器控制器是电力拖动自动控制系统的核心部分,用于监测和控制电动机的运行。
控制器接收来自传感器的反馈信号,根据预设的控制算法和逻辑,控制电动机的启动、停止、速度调节等操作。
2.3 传感器传感器用于获取与机械设备运动相关的物理量信息,如速度、位置、温度等。
传感器通过将物理量转化为电信号,传递给控制器进行处理和决策。
2.4 电源系统电源系统为电力拖动自动控制系统提供稳定可靠的电能供应。
电源系统可以采用市电供电、蓄电池供电或者发电机供电等多种方式,以满足不同场景的需求。
2.5 人机界面人机界面是用户与电力拖动自动控制系统进行交互的窗口。
通过人机界面,用户可以设置运行参数、监测系统状态、获取报警信息等。
人机界面通常采用触摸屏、按钮、指示灯等形式,具备直观、便捷的操作方式。
3. 工作原理电力拖动自动控制系统的工作原理如下:1.用户通过人机界面设置运行参数,如设备运行速度、运行时间等。
2.人机界面将参数传递给控制器。
3.控制器根据参数和实时反馈信号来控制电动机的启动、停止和调速。
4.传感器将机械设备运动相关的物理量信息转换为电信号,传递给控制器。
5.控制器根据传感器的反馈信号进行实时监测和控制,调整电动机的运行状态。
6.电动机将电能转化为机械能,驱动机械设备的运动。
7.控制器不断与人机界面进行信息交互,向用户显示设备状态、报警信息等。
成都理工大学电力拖动实验报告指导老师:刘伟学院:核技术与自动化工程学院专业:电气工程及其自动化班级:姓名:学号:日期:2014/6/18实验一晶闸管直流调速系统开环机械特性的测试一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。
3.熟悉MCL-18, MCL-33的结构及调试方法4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验内容1.各控制单元调试2.测定电流反馈系数。
3.测定开环机械特性及闭环静特性。
4.闭环控制特性的测定。
5.观察,记录系统动态波形。
三.实验系统组成及工作原理双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统调节的主要量为转速,故转速环作为主环放在外面,电流环作为付环放在里面,这样可抑制电网电压波动对转速的影响,实验系统的组成如图6-8所示。
系统工作时,先给电动机加励磁,改变给定电压的大小即可方便地改变电机的转速。
ASR,ACR 均有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制起动电流的目的, ACR的输出作为移相触发电路的控制电压,利用ACR的输出限幅可达到限制αmin和βmin的目的。
当加入给定U g后,ASR即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定转速(即Ug=U fn),并出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件。
4.MEL-11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。
6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。
7.直流电动机M03。
8.双踪示波器。
五.注意事项1.三相主电源连线时需注意,不可换错相序。
2.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。
3.系统开环连接时,不允许突加给定信号U g起动电机4.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。
5.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
6.进行闭环调试时,若电机转速达最高速且不可调,注意转速反馈的极性是否接错。
7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
六. 实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)用示波器观察双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。
(3)将控制一组桥触发脉冲通断的六个直键开关弹出,用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
(4)将U blr接地,可观察反桥晶闸管的触发脉冲。
2.双闭环调速系统调试原则(1)先部件,后系统。
即先将各单元的特性调好,然后才能组成系统。
(2)先开环,后闭环,即使系统能正常开环运行,然后在确定电流和转速均为负反馈时组成闭环系统。
(3)先内环,后外环。
即先调试电流内环,然后调转速外环。
3.开环外特性的测定(1)控制电压Uct由给定器Ug直接接入,测功机加载旋钮应逆时针旋到底(或直流发电机所接负载电阻R G断开)。
(2)使U g=0,调节偏移电压电位器,使α稍大于90°,合上主电路电源,调节调压器旋钮,使U uv,U vw,U wu为200V,逐渐增加给定电压Ug,使电机起动、升速,调节Ug使电机空载转速n0=1500r/min,再调节测功机加载旋钮(或负载电阻R G),改变负载,在直流电机空载至额定负载范围,测取7~8点,读取电机转速n,电机电枢电流I d,即可测出系统的开环外特性n=f (Id)。
注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。
以下均同。
n(r/min) 1000 1100 1200 1300 1400 1500I(A) 1.65 1.8 1.9 2.4 2.9 3 注意,若给定电压Ug为0时,电机缓慢转动,则表明α太小,需后移。
5.单元部件调试ASR调试方法与实验二相同。
ACR调试:使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使脉冲前移α≤300,使脉冲后移β=300,反馈电位器RP3逆时针旋到底,使放大倍数最小。
4.系统调试将U blf接地,U blr悬空,即使用一组桥六个晶闸管。
(1)电流环调试电动机不加励磁(a)系统开环,即控制电压U ct由给定器U g直接接入,开关S拨向左边,主回路接入电阻R d并调至最大(R d由MEL—03的两只900Ω电阻并联)。
逐渐增加给定电压,用示波器观察晶闸管整流桥两端电压波形。
在一个周期内,电压波形应有6个对称波头平滑变化。
(b)增加给定电压,减小主回路串接电阻R d,直至I d=1.1I ed,再调节MCL-01挂箱上的电流反馈电位器RP,使电流反馈电压U fi近似等于速度调节器ASR的输出限幅值(ASR的输出限幅可调为±5V)。
(c)MCL—18(或实验台主控制屏)的G(给定)输出电压U g接至ACR的“3”端,ACR 的输出“7”端接至U ct,即系统接入已接成PI调节的ACR组成电流单闭环系统。
ASR的“9”、“10”端接MEL—11电容器,可预置7μF,同时,反馈电位器RP3逆时针旋到底,使放大倍数最小。
逐渐增加给定电压U g,使之等于ASR输出限幅值(+5V),观察主电路电流是否小于或等于1.1I ed,如I d过大,则应调整电流反馈电位器,使U fi增加,直至I d<1.1I ed;如I d<I ed,则可将R d减小直至切除,此时应增加有限,小于过电流保护整定值,这说明系统已具有限流保护功能。
测定并计算电流反馈系数(2)速度变换器的调试电动机加额定励磁(a)系统开环,即给定电压U g直接接至U ct,U g作为输入给定,逐渐加正给定,当转速n=1500r/min时,调节FBS(速度变换器)中速度反馈电位器RP,使速度反馈电压为+5V左右,计算速度反馈系数。
(b)速度反馈极性判断:系统中接入ASR构成转速单闭环系统,即给定电压U g接至ASR 的第2端,ASR的第3端接至U ct。
调节U g(U g为负电压),若稍加给定,电机转速即达最高速且调节U g不可控,则表明单闭环系统速度反馈极性有误。
但若接成转速—电流双闭环系统,由于给定极性改变,故速度反馈极性可不变。
4.系统特性测试将ASR,ACR均接成PI调节器接入系统,形成双闭环不可逆系统。
ASR的调试:(a)反馈电位器RP3逆时针旋到底,使放大倍数最小;(b)“5”、“6”端接入MEL—11电容器,预置5~7μF;(c)调节RP1、RP2使输出限幅为±5V。
(1)机械特性n=f(I d)的测定(a)调节转速给定电压U g,使电机空载转速至1500 r/min,再调节测功机加载旋钮(或发电机负载电阻R g),在空载至额定负载范围内分别记录7~8点,可测出系统静特性曲线n=f(I d)n(r/min) 1000 1100 1200 1300 1400 1500I(A) 0.36 0.64 0.65 1.10 1.47 1.80 (2)闭环控制特性n=f(U g)的测定调节U g,记录U g和n,即可测出闭环控制特性n=f(U g)。
n(r/min) 1000 1100 1200 1300 1400 1500Ug(V) 2.0 2.3 2.5 2.9 3.1 3.3 8.系统动态波形的观察用二踪慢扫描示波器观察动态波形,用光线示波器记录动态波形。
在不同的调节器参数下,观察,记录下列动态波形:七.实验结果及分析转速给定电压的变化会引起电动机转速的变化;励磁的变化会引起电动机最大电流的变化。
这次实验使我对双闭环不可逆调速系统有了进一步的理解和运用,加深了对电机调速应用。
双闭环调速就是转速、电流两种负反馈在不同的阶段分别起作用。
而在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计都要从动态校正的需要来解决。
对于调速系统,最重要的动态性能是抗扰性能。
一般来说,双闭环调速系统具有比较满意的动态性能。
在设计双闭环调速系统的时候采用工程设计方法,在设计时,把实际系统校正或简化成典型系统,利用现成的公式或简明的图表来进行参数计算,这样设计过程就简单得多。
设计过程第一步先解决动态稳定性和稳态精度,选择调节器的结构确保系统稳定且满足稳态精度。
第二步在选择调节器参数,满足动态性能指标。
这样的设计方法规范化、简单化。
实验二直流调速系统参数和环节测定一.实验目的1.了解MCL-II电机及控制教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机—直流发电机—测速发电机组(或光电编码器)的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数Td5.测定直流电动机电势常数Ce和转矩常数CM6.测定晶闸管直流调速系统机电时间常数TM7.测定晶闸管触发及整流装置特性Ud = f (Uct)8.测定测速发电机特性UTG = f (n)三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变Ug的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.电机导轨及测速发电机、直流发电机2.MCL—01挂箱3.MCL—02挂箱4.直流电动机M035.MEL—03三相可调电阻器(或自配滑线变阻器)6.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加Ug须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻Ra,平波电抗器的直流电阻RL和整流装置的内阻Rn,即R=Ra+RL+Rn为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图2-1所示。