2019高考数学二轮复习小题专项练习一集合与常用逻辑用语文
- 格式:doc
- 大小:51.50 KB
- 文档页数:3
专题01 集合与常用逻辑用语1、【2019高考全国Ⅰ理数】已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( )A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x << 2、【2019高考全国Ⅱ理数】设集合{}{}25601|,|0A x x x B x x =-+>=-<,则A B ⋂=( )A .(1),-∞B .()2,1-C .(3,1)--D .(3,)+∞3、【2019高考全国Ⅱ理数】设,αβ为两个平面,则//αβ的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .,αβ平行于同一条直线D .,αβ垂直于同一平面4、【2019高考全国Ⅲ理数】已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则AB =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 5、【2019高考浙江卷】已知全集{}1,0,1,2,3U=-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð=( ) A.{}1- B.{0,1} C.{}1,2,3- D.{}1,0,1,3-6、【2019高考浙江卷】若00a b >>,,则“4a b +≤”是 “4ab ≤”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、【2019高考天津卷理数】设集合{1,1,2,3,5},{2,3,4},{R |13}A B C x x =-==∈≤<,则()A C B =( )A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,4 8、【2019高考天津卷理数】设R x ∈,则“250x x -<”是“|1|1x -<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9、【2019高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 10、【2019高考江苏卷】已知集合{1,0,1,6}A =-,{|0,R}B x x x =>∈,则A B =____________答案以及解析1答案及解析:答案:C 解析:由题意得,{}{}42,23M x x N x x =-<<=-<<,则 {}22M N x x ⋂=-<<.故选C .2答案及解析:答案:A 解析:由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .3答案及解析:答案:B解析:由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .4答案及解析:答案:A 解析:由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A .5答案及解析:答案:A解析:6答案及解析:答案:A解析:7答案及解析:答案:D解析:因为{1,2}A C =,所以(){1,2,3,4}AC B =.故选D 。
该部分在高考中难度偏低,且考点相对集中,通过一轮的复习,绝大分考生已能熟练掌握.为节省宝贵的二轮复习时间,我们的复习策略是“以练代讲,练中促学”,在练中抓牢基础题型,在练中提升解题准度和速度,确保送分题一分不丢!该部分近三年高考考情统计见下表:送分专练1集合与常用逻辑用语(建议用时:40分钟)一、选择题1.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2}C [法一:由题意得A ={x |x ≥1},B ={0,1,2},所以A ∩B ={1,2},故选C.法二:x 取0,1,2,分别代入不等式x -1≥0,可排除A ,B ,D ,故选C.]2.(2018·沈阳模拟)已知集合A ={0,1,2},B ={1,m },若B ⊆A ,则实数m 的值是( )A .0B .2C .0或2D .0或1或2C [由B ⊆A 得m =0或2,故选C.]3.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32B .A ∩B =∅C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32D .A ∪B =RA [因为B ={x |3-2x >0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32,A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32,A ∪B ={x |x <2}. 故选A.]4.以下四个命题中,真命题的个数是( )①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②存在正实数a ,b ,使得lg(a +b )=lg a +lg b ;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC 中,A <B 是sin A <sin B 的充分不必要条件.A .0B .1C .2D .3C[对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知A<B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R为△ABC外接圆的半径)⇔sin A<sin B,故A<B是sin A<sin B的充要条件,故④是假命题.选C.]5.(2018·临沂模拟)设α,β是两个不同的平面,l是直线且l∥α,“l⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[l∥α,l⊥β⇒α⊥β,但α⊥β,l∥αD/⇒l⊥β,因此“l⊥β”是“α⊥β”的充分不必要条件.]6.下列说法错误的是()A.命题“若x2-4x+3=0,则x=1”的逆否命题为:“若x≠1,则x2-4x +3≠0”B.“a>1”是“1a<1”的充分不必要条件C.若“p∨綈q”为假命题,则q为假命题D.命题“∃x0∈R,使得x0sin x0<0”的否定为“∀x∈R,都有x sin x≥0”C[对于C,“p∨綈q”为假命题,则p与綈q都是假命题,从而q为真命题,故C错误.]7.(2018·哈尔滨模拟)李大姐常说“便宜没好货”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件A [“便宜没好货”的逆否命题是“好货不便宜”因此“好货”是“不便宜”的充分条件,故选A.]8.(2018·武汉模拟)设a ,b ,c 均为非零向量,则a =c 是a·b =b·c 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [当a =c 时,a·b =b·c 显然成立,充分性成立;反之当a =(0,1),b =(1,0),c =(0,-1)时,a·b =b·c ,但a ≠c ,必要性不成立,所以“a =c ”是“a·b =b·c ”成立的充分不必要条件,故选A.]9.(2018·开封联考)命题p :存在x ∈⎣⎢⎡⎦⎥⎤0,π2,使sin x +cos x >2;命题q :“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,则四个命题:(綈 p )∨(綈 q ),p ∧q ,(綈 p )∧q ,p ∨(綈 q )中,真命题的个数为( )A .1B .2C .3D .4B [因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,根据命题的否定知命题q 为真命题,则(綈 p )∨(綈 q )为真命题,p ∧q 为假命题,(綈 p )∧q 为真命题,p ∨(綈 q )为假命题.]10.已知命题“∃x 0∈R ,x 20+ax 0-4a <0”为假命题,则实数a 的取值范围为( )A .[-16,0]B .(-16,0)C .[-4,0]D .(-4,0)A [由题意可知“∀x ∈R ,x 2+ax -4a ≥0”为真命题,所以Δ=a 2+16a ≤0,解得-16≤a≤0,故选A.]11.下列命题中假命题的是()A.∃x0∈R,ln x0<0B.∀x∈(-∞,0),e x>x+1C.∀x>0,5x>3xD.∃x0∈(0,+∞),x0<sin x0D[对于A,比如x0=1e时,ln1e=-1,是真命题;对于B,令f(x)=ex-x-1,f′(x)=e x-1<0,f(x)递减,所以f(x)>f(0)=0,是真命题;对于C,函数y=a x当a>1时是增函数,是真命题;对于D,令g(x)=x-sin x,g′(x)=1-cos x≥0,g(x)递增,所以g(x)>g(0)=0,是假命题.故选D.]12.命题p:函数y=log2(x2-2x)的单调增区间是[1,+∞),命题q:函数y=13x+1的值域为(0,1).下列命题是真命题的为()A.p∧q B.p∨qC.p∧(q) D.qB[令t=x2-2x,则函数y=log2(x2-2x)化为y=log2t,由x2-2x>0,得x<0或x>2,所以函数y=log2(x2-2x)的定义域为(-∞,0)∪(2,+∞).函数t=x2-2x的图象是开口向上的抛物线,且对称轴方程为x=1,所以函数t=x2-2x在定义域内的增区间为(2,+∞).又因为函数y=log2t是增函数,所以复合函数y=log2(x2-2x)的单调增区间是(2,+∞).所以命题p为假命题;由3x>0,得3x+1>1,所以0<13x+1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(綈 q )为假命题,綈 q 为假命题,故选B.]二、填空题13.(2018·佛山模拟)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.1 [∵B ={a ,a 2+3},A ∩B ={1},∴a =1或a 2+3=1,∵a ∈R ,∴a =1,经检验,满足题意.]14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. ∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点 [全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.]15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8,B ={x ∈R |-1<x <m +1},若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪ 12<2x <8={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A ,所以A ⊆B ,所以m +1>3,即m >2.]16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.c ,a ,b [显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b 最大,a次之,c最小.]。
专题能力训练1 集合与常用逻辑用语一、能力突破训练1.若命题p:∀x∈R,cos x≤1,则p为()A.∃x0∈R,cos x0>1B.∀x∈R,cos x>1C.∃x0∈R,cos x0≥1D.∀x∈R,cos x≥12.(2018全国Ⅲ,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)5.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}6.(2018天津,理4)设x∈R,则“”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.已知集合A={x||x-2|>1},B={x|y=},则()A.A∩B=⌀B.A⊆BC.B⊆AD.A=B8.设m∈R,命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆否命题是()A.若关于x的方程x2+x-m=0有实根,则m>0B.若关于x的方程x2+x-m=0有实根,则m≤0C.若关于x的方程x2+x-m=0没有实根,则m>0D.若关于x的方程x2+x-m=0没有实根,则m≤09.已知命题p:“∃x0∈R,+2ax0+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)10.已知条件p:|x+1|>2,条件q:x>a,且p是q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥-1D.a≤-311.下列命题正确的是()A.∃x0∈R,+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b212.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题13.命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤014.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.15.设p:<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.16.已知集合A={y|y=log2x,x>1},B=,则A∩B= .17.设a,b∈R,集合{1,a+b,a}=,则b-a= .18.已知集合A={(x,y)|y=},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.二、思维提升训练19.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)21.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x222.已知p:函数f(x)=|x+a|在区间(-∞,-1)内是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在区间(-1,+∞)内是增函数,则p成立是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件23.设全集U=R,集合M={x|y=},N={y|y=3-2x},则图中阴影部分表示的集合是()A.B.C.D.24.(2018浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件25.“对任意x∈,k sin x cos x<x”是“k<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件26.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1<0”27.下列命题中的真命题是()A.∃x0∈R,使得≤0B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.29.下列命题正确的是.(填序号)①若f(3x)=4x log23+2,则f(2)+f(4)+…+f(28)=180;②函数f(x)=tan 2x图象的对称中心是(k∈Z);③“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,+1>0”;④设常数a使方程sin x+cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.30.设p:关于x的不等式a x>1的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R,若p∨q为真命题,p∧q为假命题,则a的取值范围是.专题能力训练1集合与常用逻辑用语一、能力突破训练1.A解析由全称命题的否定得,p:∃x0∈R,cos x0>1,故选A.2.C解析由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.B4.A解析取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.B解析∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.故选B.6.A解析由,可得0<x<1.由x3<1,可得x<1.所以是“x3<1”的充分而不必要条件.故选A.7.A解析由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由得1≤x≤3,因此A={x|x<1或x>3},B={x|1≤x≤3},A∩B=⌀,故选A.8.D解析原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若关于x的方程x2+x-m=0没有实根,则m≤0”.9.A解析由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.A解析因为条件p:x>1或x<-3,所以p:-3≤x≤1;因为条件q:x>a,所以q:x≤a.因为p是q的充分不必要条件,所以a≥1,故选A.11.C解析+2x0+3=(x0+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错.故选C.12.C解析因为命题p:∃x0∈R,x0-2>lg x0是真命题,而命题q:∀x∈R,e x>1是假命题,所以由命题的真值表可知命题p∧(q)是真命题,故选C.13.C解析命题的条件的否定为x≤0,结论的否定为x2≤0,则该命题的否命题是“若x≤0,则x2≤0”,故选C.14.1解析由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.15.(2,+∞)解析由<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2.16解析由已知,得A={y|y>0},B=,则A∩B=17.2解析∵1≠0,∴a+b和a中必有一个为0,当a=0时,无意义,故a+b=0,∴两个集合分别为{1,0,a},{0,-1,b}.∴a=-1,b=1,b-a=2.18.[-7,7]解析集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7].二、思维提升训练19.D解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.B解析∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.D解析由含量词命题的否定格式,可知首先改写量词,而n≥x2的否定为n<x2.故选D.22.C解析由p成立,得a≤1,由q成立,得a>1,所以p成立时a>1,p成立是q成立的充要条件.故选C.23.B解析M=,N={y|y<3},故阴影部分N∩(∁U M)={x|x<3}24.A解析当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m∥n,m与n还可能异面.故选A.25.B解析当x时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x,sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.C解析否命题应同时否定条件与结论,选项A错;若x=-1,则x2-5x-6=0成立,反之不成立,选项B错;因为原命题为真命题,所以其逆否命题为真命题,选项C正确;特称命题的否定为全称命题,同时否定结论,选项D错,故选C.27.D解析对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+=-1,B错误;f(x)=2x-x2有三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28(1,+∞)解析M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=,M∪N=(0,+∞),M∩N=,所以M N=(1,+∞).29.③④解析因为f(3x)=4x log23+2,令3x=t⇒x=log3t,则f(t)=4log3t·log23+2=4log2t+2,所以f(2)+f(4)+…+f(28)=4(log22+log222+…+log228)+16=4×(1+2+…+8)+16=4×36+16=160,故①错;函数f(x)=tan 2x 图象的对称中心是(k∈Z),故②错;由全称命题的否定是特称命题知③正确;f(x)=sin x+cos x=2sin,要使sin x+cos x=a在闭区间[0,2π]上恰有三个解,则a=,x1=0,x2=,x3=2π,故④正确.30[1,+∞)解析当p真时,0<a<1;当q真时,ax2-x+a>0对x∈R恒成立,则即a>若p∨q为真,p∧q为假,则p,q应一真一假.①当p真q假时,0<a;②当p 假q真时,a≥1.综上,a[1,+∞).。
小题专项练习(一)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·成都经开区实验中学4月月考]已知集合A={-3,-2,-1,0,1,2},B ={x|x2≤3},则A∩B=()A.{0,2} B.{-1,0,1}C.{-3,-2,-1,0,1,2} D.[0,2]2.[2019·宁夏六盘山第三次模拟]集合A={y|y=2x,x∈R},B={(x,y)|y=x2,x∈R},以下正确的是()A.A=B B.A∪B=RC.A∩B=∅D.2∈B3.[2019·天津河北区质量检测]命题p:“∀x≥0,2x>x2”的否定綈p为()A.∃x0≥0,2x0<x20B.∀x≥0,2x<x2C.∃x0≥0,2x0≤x20D.∀x≥0,2x≤x24.[2019·天津南开中学第五次月考]“lg x,lg y,lg z成等差数列”是“y2=xz”成立的() A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件5.[2019·4月优质错题重组卷]已知命题p:∀x∈R,x2+x-1>0;命题q:∃x∈R,sin x +cos x=2,则下列判断正确的是()A.綈p是假命题B.q是假命题C.p∨(綈q)是真命题D.(綈p)∧q是真命题6.[2019·湖北宜昌调研]下列命题正确的是()A.命题“p∧q”为假命题,则命题p与命题q都是假命题B.命题“若x=y,则sin x=sin y”的逆否命题为真命题C.“am2<bm2”是“a<b”成立的必要不充分条件D.命题“存在x0∈R,使得x20+x0+1<0”的否定是“对任意x∈R,均有x2+x+1<0”7.[2019·江南十校冲刺联考]设集合A={y|y=-e x+4},B={x|y=lg[(x+2)(3-x)]},则下列关系正确的是()A.A⊆B B.A∩B=∅C.∁R A⊆∁R B D.∁R B⊆A8.[2019·四川蓉城四月联考]下列有关命题的说法一定正确的是()A.命题“∀x∈R,sin x≥1”的否定是“∃x0∈R,sin x0≤1”B.若向量a∥b,则存在唯一的实数λ,使得a=λbC.若函数f(x)在R上可导,则f′(x0)=0是x0为函数极值点的必要不充分条件D.若“p∨q”为真命题,则“p∧(綈q)”也为真命题9.[2019·哈尔滨第六中学第三次模拟考试]甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是()A.甲没过关B.乙过关C .丙过关D .丁过关10.[2019·高考冲刺卷一]设集合A ={x |x (x +3)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ y =lg x +21-x ,则A ∩B 等于( )A .(-3,1)B .(0,1)C .(-1,3)D .(-2,0)11.[2019·河南洛阳第三次统一考试]下列叙述中正确的个数是( )①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题p :∀x ∈[0,1],e x ≥1,命题q :∃x 0∈R ,x 20+x 0+1<0,则p ∧q 为真命题;③“cos α≠0”是“α≠2k π+π2(k ∈Z )的必要而不充分条件”;④将函数y =sin2x 的图象向左平移5π12个单位长度得到函数y =sin ⎝⎛⎭⎫π6-2x 的图象.A .1B .2C .3D .412.对于非空集合P ,Q ,定义集合间的一种运算“≯”:P ≯Q ={x |x ∈(P ∪Q ),且x ∉(P ∩Q )},如果P ={x |1≤3x ≤9},Q ={x |y =x -1},则P ≯Q =( )A .[1,2]B .[0,1]∪[2,+∞)C .[0,1]∪(2,+∞)D .[0,1)∪(2,+∞)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
U A. ∅ B.{2} C.{5} D.{2,5}答案 B解析 A ={x ∈N |x 2≥5}={x ∈N |x ≥},5故∁U A ={x ∈N |2≤x <}={2},故选B.53.已知集合A ={x |y =},B ={x |x 2<9,x ∈Z },则A ∩B 等于( )2+x -x 2A.[-1,2]B.{0,1}C.{0,2}D.{-1,0,1,2}答案 D解析 由2+x -x 2≥0得-1≤x ≤2,∴A =[-1,2],由题意得B ={-2,-1,0,1,2},∴A ∩B ={-1,0,1,2},故选D.4.设命题p :f (x )=ln x +2x 2+mx +1在(0,+∞)内单调递增,命题q :m ≥-5,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 f ′(x )=+4x +m (x >0),1x 由f ′(x )=+4x +m ≥0,得m ≥-.1x (1x+4x )因为+4x ≥2=4,所以-≤-4,所以m ≥-4,即p :m ≥-4.所以p 是q 1x 1x ·4x (当且仅当x =12时取等号)(1x +4x )的充分不必要条件,故选A.答案:A21.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B },若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =( )A .{x |2<x ≤4}B .{x |3≤x ≤4}C .{x |2<x <3}D .{x |2≤x ≤4}解析:∵A ={x |1<x <3},B ={x |2≤x ≤4},∴B △A ={x |3≤x ≤4}.答案:B22.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x -x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<020C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=,则sin α=”的否命题是“若α≠,则sin α≠”π612π612解析:f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x -x 0-1>0,则綈20p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.答案:D23.已知命题p :∀x ∈R,2x >0;命题q :在曲线y =cos x 上存在斜率为的切线,则下列判断正确的是( )2A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题解析:易知,命题p 是真命题,对于命题q ,y ′=-sin x ∈[-1,1],而∉[-1,1],故命题q 为假命题,所以2綈q 为真命题,p ∧(綈q )是真命题.故选C.答案:C24.命题p :∃a ∈,使得函数f (x )=在上单调递增;命题q :函数g (x )=x +log 2x 在(-∞,-14)|x +a x +1|[12,3]区间上无零点.则下列命题中是真命题的是( )(12,+∞)A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:设h (x )=x +.当a =-时,函数h (x )为增函数,且h =>0,则函数f (x )在上必单调递增,ax +112(12)16[12,3]即p 是真命题;∵g =-<0,g (1)=1>0,∴g (x )在上有零点,即q 是假命题,故选D.(12)12(12,+∞)答案:D25.若a ,b ∈R ,则>成立的一个充分不必要条件是( )1a 31b 3A .a <b <0B .b >aC .ab >0D .ab (a -b )<0解析:-==,选项A 可以推出>.故选A.1a 31b 3b 3-a 3ab 3 b -a b 2+ab +a 2 ab 31a 31b 3答案:A26.不等式组Error!的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2;p 2:∃(x ,y )∈D ,x +2y ≥2;p 3:∀(x ,y )∈D ,x +2y ≤3;p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3解析:不等式组表示的区域D 如图中阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.故选B.答案:B27.已知集合A ={x |2x 2+3x -2<0},集合B ={x |x >a },如果“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .a ≤-2B .a <-2C .a >-2D .a ≥-2解析:由2x 2+3x -2<0,解得-2<x <,即A ={x |-2<x <},因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以1212A ⊆B ,所以a ≤-2,即实数a 的取值范围是a ≤-2.。
小题必刷卷(一) 集合与常用逻辑用语考查范围:第1讲~第3讲题组一刷真题角度1集合1.[2018·全国卷Ⅲ]已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.[2017·全国卷Ⅰ]已知集合A={x|x<2},B={x|3-2x>0},则()} B.A∩B=⌀A.A∩B={x|x<32} D.A∪B=RC.A∪B={x|x<324.[2015·全国卷Ⅰ]已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.25.[2018·天津卷]设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}6.[2017·天津卷]设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}7.[2015·陕西卷]设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]8.[2013·江西卷]若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或49.[2013·福建卷] 若集合A={1,2,3},B={1,3,4},则A ∩B 的子集个数为 ( ) A .2 B .3 C .4 D .16角度2 命题、充要条件10.[2014·全国卷Ⅱ] 函数f (x )在x=x 0处导数存在.若p :f'(x 0)=0,q :x=x 0是f (x )的极值点,则 ( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件11.[2018·天津卷] 设x ∈R,则“x-12<12”是“x 3<1”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件12.[2015·山东卷] 设m ∈R,命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是( )A .若方程x 2+x-m=0有实根,则m>0 B .若方程x 2+x-m=0有实根,则m ≤0 C .若方程x 2+x-m=0没有实根,则m>0 D .若方程x 2+x-m=0没有实根,则m ≤013.[2018·北京卷] 设a ,b ,c ,d 是非零实数,则“ad=bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.[2014·广东卷]在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件角度3简单的逻辑联结词、全称量词与存在量词15.[2014·湖南卷]设命题p:∀x∈R,x2+1>0,则x p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x∈R,x2+1≤016.[2017·山东卷]已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧qB.p∧x qC.x p∧qD.x p∧x q17.[2018·北京卷]设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A题组二刷模拟18.[2018·西南名校联考]函数y=e x的值域为M,函数y=ln x的值域为N,则M∩N= ()A.{y|y>1}B.{y|y≥0}C.{y|y>0}D.{y|y∈R}19.[2018·河北衡水联考]已知命题p:∀x∈R,(2-x)12<0,则命题x p为()A.∃x0∈R,(2-x0)12>0 B.∀x∈R,(2-x)12>0C.∀x∈R,(2-x)12≥0 D.∃x0∈R,(2-x0)12≥020.[2018·佛山二模]已知函数f(x)=3x-3-x,a,b∈R,则“a>b”是“f(a)>f(b)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件21.[2018·南昌4月模拟]已知集合A={x|y=√4−x,x∈N*},B={x|x=2n+1,n∈Z},则A∩B=()A.(-∞,4]B.{1,3}C.{1,3,5}D.[1,3]22.[2018·乌鲁木齐二模]若集合A={x|x(x-1)<0},B={y|y=x2},则()A.A=BB.A⊆BC.A∪B=RD.B⊆A23.[2018·湖北重点中学联考]已知集合A={x∈Z|-2≤x<2},B={y|y=|x|,x∈A},则集合B 的子集的个数为()A.7B.8C.15D.1624.[2018·哈尔滨九中二模]设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,x∈PB.∀x∉Q,x∉PC.∃x0∉Q,x0∈PD.∃x0∈P,x0∉Q图X1-125.[2018·云南曲靖一测]已知全集U=R,集合A={x|y=√ln x},集合B=yy=x12+32,则图X1-1中阴影部分表示的集合是()A.1,32B.1,32C.1,32D.32,+∞26.[2018·四川4月联考]已知命题p:“事件A与事件B对立”的充要条件是“事件A与事件B互斥”,命题q:偶函数的图像一定关于y轴对称.下列命题为假命题的是()A.p或qB.p且qC.x p或qD.x p且q27.[2018·湖南湘潭三模]已知集合M={x|-1<x<2},N={x|x2-mx<0},若M∩N={x|0<x<1},则m 的值为()A.1B.-1C.±1D.228.[2018·安徽蚌埠三模]已知命题p:∃m∈R,f(x)=x2+mx是偶函数,命题q:若a<b,则1x >1 x.下列命题为真命题的是()A.p∧x qB.x p∧qC.p∧qD.x p∧x q29.[2018·西安一模]已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N 的关系是()A.M=NB.N⫋MC.M⊆ND.M∩N=⌀30.[2018·河北衡水中学月考]已知数集A={-1,0,1,2,3},B={-1,0,1},设函数f(x)是从A 到B的函数,则函数f(x)的值域的可能情况的个数为()A.1B.3C.7D.831.[2018·郑州三模]已知S n是等差数列{a n}的前n项和,则“S n<na n对n≥2恒成立”是“数列a n为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≥m”是假命题,则实数m的取值范围32.[2018·太原二模]若命题“∀x∈(0,+∞),x+1x是.小题必刷卷(一)1.C [解析]∵A={x|x ≥1},B={0,1,2},∴A ∩B={1,2}.2.A [解析] 当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以集合A={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共有9个元素.3.A [解析] 由题得,B={x |x <32},故B ⊆A ,所以A ∩B=B={x |x <32},A ∪B=A={x|x<2}.故选A .4.D [解析] 集合A={2,5,8,11,14,17,…},所以A ∩B={8,14},所以A ∩B 中有2个元素.5.B [解析]∁R B={x|x<1},所以A ∩(∁R B )={x|0<x<1}.故选B .6.B [解析](A ∪B )∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.7.A [解析] 由题得集合M={0,1},N=(0,1],所以M ∪N=[0,1].8.A [解析] 当a=0时,A=⌀;当a ≠0时,Δ=a 2-4a=0,则a=4,故选A . 9.C [解析]A ∩B={1,3},子集共有22=4(个),故选C .10.C [解析] 函数在x=x 0处有导数且导数为0,x=x 0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x 0为函数的极值点,则函数在x=x 0处的导数一定为0,所以p 是q 的必要不充分条件.11.A [解析] 由x-12<12,解得0<x<1,可推出x 3<1,反之不成立,故为充分而不必要条件. 12.D [解析]∵逆否命题是将原命题的条件与结论互换并分别否定,∴命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是“若方程x 2+x-m=0没有实根,则m ≤0”.13.B [解析] 当ad=bc 时,例如1×8=4×2,但1,4,2,8不能构成等比数列,故充分性不成立;反之,由等比数列的性质易得必要性成立.14.A [解析] 设R 是三角形外接圆的半径,R>0.由正弦定理,得a=2R sin A ,b=2R sin B.∵sin A ≤sin B ,∴2R sin A ≤2R sin B ,∴a ≤b.同理也可以由a ≤b 推出sin A ≤sin B.故选A . 15.B [解析] 由全称命题的否定形式可得x p :∃x 0∈R,x 02+1≤0.16.B [解析] 易知命题p 为真命题,命题q 为假命题,所以x q 为真命题,由复合命题真值表知,p ∧x q 为真命题,故选B .17.D [解析] 当a=0时,A 为空集,排除A;当a=2时,(2,1)∈A ,排除B;当a=32时,作出可行域如图中阴影部分所示,由{x -x =1,32x +x =4,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D .18.C [解析] 依题意得M={y|y=e x}={y|y>0},N={y|y=ln x }={y|y ∈R},所以M ∩N={y|y>0}.故选C .19.D [解析] 含有一个量词的命题的否定写法是“变量词,否结论”,故x p :∃x 0∈R,(2-x 0)12≥0.故选D .20.C [解析] 因为y=3x为增函数,y=3-x为减函数,所以f (x )=3x-3-x为增函数,故a>b ⇔f (a )>f (b ).故选C .21.B [解析] 由题意可得A={x|x ≤4,x ∈N *}={1,2,3,4},B={…,-5,-3,-1,1,3,5,…},所以A ∩B={1,3}.故选B .22.B [解析] 由已知得A={x|x (x-1)<0}={x|0<x<1},B={y|y=x 2}={y|y ≥0},所以A ⊆B.故选B .23.B [解析] 依题意得,A={-2,-1,0,1},B={0,1,2},所以集合B 的子集有23=8(个),故选B . 24.B [解析] 由于P ∩Q=P ,因此不属于集合Q 的元素一定不属于集合P.故选B . 25.A [解析]A={x|y=√ln x }={x|x ≥1},B=yy=x 12+32=yy ≥32,∁U B=yy<32,题图中阴影部分表示的集合是A ∩(∁U B ),且A ∩(∁U B )=1,32.故选A .26.B [解析] 由于“事件A 与事件B 对立”是“事件A 与事件B 互斥”的充分不必要条件,故命题p 是假命题.显然命题q 为真命题,所以“p 且q ”是假命题.故选B . 27.A [解析] 因为M={x|-1<x<2},M ∩N={x|0<x<1},显然m>0,所以N={x|x 2-mx<0}={x|0<x<m },则m=1.故选A .28.A [解析] 当m=0时,f (x )=x 2+mx 是偶函数,所以命题p 是真命题.当a<0,b>0时,a<b ,但1x >1x不成立,所以命题q 是假命题,从而x q 是真命题,所以p ∧x q 是真命题.故选A . 29.B [解析] 因为M={-1,0,1},N={x|x=ab ,a ,b ∈M 且a ≠b },所以N={-1,0},于是N ⫋M.故选B .30.C [解析] 函数f (x )的值域是B 的非空子集,即{-1},{0},{1},{-1,0},{0,1},{-1,1},{-1,0,1},共7种不同的情况.故选C .31.C[解析] 设{a n}的公差为d,由S n<na n得x(x1+x x)2<na n,即na1<na n,a1<a n,所以a1<a1+(n-1)d,因为n≥2,所以d>0,所以数列{a n}为递增数列;反之,若数列{a n}为递增数列,则d>0,即S n<na n(n≥2).故选C.32.(2,+∞)[解析] 原命题的否命题“∃x0∈(0,+∞),x0+1x0<m”为真命题,所以m>x+1x min=2,当且仅当x=1时取等号,所以m∈(2,+∞).。
限时速解训练一 集合、常用逻辑用语(附参考答案)(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( )A .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C.3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎨⎧a 2=16,a =4,则a =4. 5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2a i,a∈R},B={z∈C||z|=2},则A∩B等于() A.{1+3i,1-3i} B.{3-i}C.{1+23i,1-23i} D.{1-3i}解析:选A.问题等价于|1-2a i|=2,a∈R,解得a=±32.故选A.7.已知命题p:对任意x>0,总有e x≥1,则綈p为()A.存在x0≤0,使得e x0<1B.存在x0>0,使得e x0<1C.对任意x>0,总有e x<1D.对任意x≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x>0,总有e x≥1的否定綈p为:存在x0>0,使得e x0<1.故选B.8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是()A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=π4,有tanπ4=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+log x2≥2,则x>1;③“若a>b>0且c<0,则ca>cb”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是()A.①②③B.①②④C.①③④D.②③④解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+1log2x≥2,得x>1;③中由a>b>0,得1a<1b,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=2x-x2},B={y|y=2x,x>0},则A×B=() A.[0,1]∪(2,+∞) B.[0,1)∪[2,+∞)C.[0,1] D.[0,2]解析:选A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B =[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=|b|2<1,即|b|<2,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=|b|2<12<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是()①命题“∃x0∈R,x20+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.A.1 B.2C .3D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确.二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎨⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1.答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题,所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知,綈p :∀x ∈R ,mx 2+2>0为真命题,所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知,綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝ ⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。
专题 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U BA =ð{6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-. 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}AB =.【名师点睛】本题主要考查交集的运算,属于基础题.12.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为 A .1 B .5 C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.14.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}xB x =<,即{}0B x x =<,而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.15.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.16.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.17.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.18.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则BA 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{AB =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.19.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 20.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.21.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.22.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题.23.【四川省宜宾市2019届高三第三次诊断性考试数学】设 是空间两条直线,则“ 不平行”是“ 是异面直线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由 是异面直线⇒ 不平行.反之,若直线 不平行,也可能相交,不一定是异面直线. 所以“ 不平行”是“ 是异面直线”的必要不充分条件. 故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题.24.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.25.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y =={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以AB ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.27.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ðA .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3x y x =≤的值域是解题的关键.28.【辽宁省沈阳市2019届高三教学质量监测(三)】“k =:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则3k =±.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A. 【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =,即2111(2)(8)a d a a d +=+,变形可得1a d =, 则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件.综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件.故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题.30.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________.【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.31.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合则 =__________.【答案】【解析】求解绝对值不等式 可得 ,求解函数 的值域可得 ,由交集的定义可知: .故答案为 .【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.32.【河北省衡水市2019届高三下学期第三次质量检测数学】设 为两个不同平面,直线 ,则“ ”是“ ”的__________条件.【答案】充分不必要【解析】根据题意,α,β表示两个不同的平面,直线m α⊂,当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得 ,所以α∥β ⇒ ;当 且m α⊂时,α∥β或α与β相交,所以“ ”是“ ”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.33.【安徽省江淮十校2019届高三第三次联考数学】若命题“,”的否定是假命题,则实数的取值范围是__________.【答案】∞【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式对恒成立,又在上为增函数,所以,即.故实数的取值范围是:∞.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.。
上教习网(w),百万精品课件教案试卷免费下!2019届高考数学小题精练第1练集合与常用逻辑用语一、单选题1.设集合A={x|−1<x≤2},B={x|x<0},则下列结论正确的是( ) A.(C R A)∩B={x|−1<x≤2} B.A∩B={x|−1<x<0}C.A∪(C R B)={x|x≥0} D.A∪B={x|x<0}【答案】B【解析】A∩B=(−1,0),故选B.2.设集合A={y|y=log2x,0<x≤4},集合B={x|e x>1},则A∩B等于( )A.(0,2) B.(0,2] C.(−∞,2] D.R【答案】B【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.),f(x0)<0,则()3.已知f(x)=sinx−tanx,命题p:∃x0∈(0,π2),f(x)≥0A.p是假命题,¬p:∀x∈(0,π2),f(x0)≥0B.p是假命题,¬p:∃x0∈(0,π2),f(x)≥0C.p是真命题,¬p:∀x∈(0,π2),f(x0)≥0D.p是真命题,¬p:∃x0∈(0,π2【答案】C【解析】【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果。
【详解】f(x)=sinx−tanx,x∈(0,π2),当x=π4时,f(x)=√22−1<0命题p:∃x0∈(0,π2),f(x0)<0,是真命题命题p:∃x0∈(0,π2),f(x0)<0,则¬p:∀x∈(0,π2),f(x)≥0故选C【点睛】本题主要考查了命题的否定,特称命题与全称命题的否定关系,属于基础题。
4.“sinx=cosx+1”是“tan x2=1”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【详解】当x =π时,sinx =0,cosx =−1,满足sinx =cosx +1,此时tan x 2不存在,则充分性不成立;若tan x 2=1,则x 2=kπ+π4(k ∈Z ),据此可得:x =2kπ+π2(k ∈Z ), 此时sinx =1,cosx =0,满足sinx =cosx +1,即必要性成立,综上可得:“sinx =cosx +1”是“tan x 2=1”的必要不充分条件. 本题选择B 选项.【点睛】本题主要考查三角函数的性质,充分条件与必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.5.已知R 为实数集,集合A ={x| (x +1)2(x−1)x >0},B ={x| (x +1)(x −12)>0},则韦恩图中阴影部分表示的集合为( )A . {−1}∪[0,1]B . [0,12]C.[−1,12] D.{−1}∪[0,12]【答案】D韦恩图中阴影部分表示的集合为C R(A∪B)={−1}∪{x|0<x<12},即{−1}∪[0,12].本题选择D选项.【点睛】本题主要考查集合的表示方法,集合的交并补运算,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.6.已知p:∀x∈R,x2+2x+a>0;q:2a<8.若“p∧q”是真命题,则实数a 的取值X围是A. (1,+∞) B. (-∞,3) C. (1,3) D.(−∞,1)∪(3,+∞)【点睛】本题主要考查复合命题问题,与二次函数有关的命题,与指数函数有关命题的处理方法等知识,意在考查学生的转化能力和计算求解能力.7.已知非空集合A 、B 满足A ≠⊂B ,给出以下四个命题:①若任取x ∈A ,则x ∈B 是必然事件 ②若x ∉A ,则x ∈B 是不可能事件 ③若任取x ∈B ,则x ∈A 是随机事件 ④若x ∉B ,则x ∉A 是必然事件 其中正确的个数是( )A . 1B . 2C . 3D . 4【答案】C【分析】由集合的包含关系可得A中的任何一个元素都是B中的元素,B中至少有一个元素不在A中,结合必然事件、不可能事件和随机事件的概念,即可判断正确的个数【详解】非空集合A、B满足A⊊B,可得A中的任何一个元素都是B中的元素,B中至少有一个元素不在A中,①若任取x∈A,则x∈B是必然事件,故①正确;②若x∉A,则x∈B是可能事件,故②不正确;③若任取x∈B,则x∈A是随机事件,故③正确;④若x∉B,则x∉A是必然事件,故④正确.其中正确的个数为3,故选C.【点睛】本题考查集合的包含关系,以及必然事件、不可能事件和随机事件的概念和判断,考查判断能力,属于基础题.8.已知集合A={x|x2−2x−3>0},B=N,则集合(∁R A)∩B中元素的个数为()A. 2 B. 3 C. 4 D. 5【答案】C【点睛】本题主要考查了集合的交集,补集的混合运算,熟练掌握各自的定义是解题的关键,属于基础题。