北师大版七年级上册数学1.4 从三个方向看物体的形状
- 格式:ppt
- 大小:1.91 MB
- 文档页数:21
1.4 从三个方向看物体的形状【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.图1—27(2)球:三视图都是圆.图1—28提醒:在所有几何体中,只有正方体与球这两种几何体的三视图是相同的.(3)圆柱体:图1—29(4)圆锥体:图1—30圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?(1)由照片画三视图.由照片可以清楚地看到每个小正方体的位置,这样画三视图比较直观.画三视图,都要注意从这个方向看时几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.注意:主视图与左视图中每列的正方形都是从下往上排,底层整齐,不能出现悬空.而俯视图则有可能出现中空的现象.如右图:从正面看,2列,每列一层;从左面看,2列,每列一层;从上面看,2列,左列2层,右列一层.则三视图是:图1—31注意:照片中的几何体为了使大家看清前后情况,因此照片中的物体一般朝左偏的位置是正面.(2)由俯视图画主视图、左视图.解法一:根据俯视图摆出几何体,按照(1)的方法画主视图、左视图.解法二:直接由俯视图确定主视图、左视图的列数、层数,并画出图.①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字,就是这一横行逆时针转90°所成的左视图中的列的层数.如:俯视图俯视图2列,则主视图也有两列,左列中的三个方框中最大的是3,右列是1,所以主视图左列三层,右列一层;俯视图三行,则左视图有三列,俯视图从上至下三行最大数字分别为1,2,3,则左视图三列从左至右分别有1,2,3层.画图如下.(3)其他几何体的三视图:从某方向看时,这个几何体最大边缘的形状及能够看到的顶点及棱.【教学方法指导】[例1]根据每组三视图,判断几何体形状:(1)先看什么比较明显呢?图1—33(2)图1—34点拨:(1)中俯视图是六边形,说明是柱或是锥,而主视图、左视图都是矩形,说明是柱即六棱柱.(2)中由主视图、左视图是三角形说明是锥体,而底面是四边形,说明不是圆锥,而是棱锥,是四棱锥.俯视图中的点是锥点,四条线段是锥的四条棱.解答:(1)六棱柱(2)四棱锥[例2]用长∶宽∶高=3∶1∶1的两个长方体如图1—35摆放,画出三视图.图1—35点拨:只要把较长的长方体看作由三个正方体排起来的即可,主视图左部分三份,右部分一份,都只有一层;左视图两列,左列1份,右列两份(挡住一份);俯视图是两个长3份的长方形交叉放.三视图如下:[例3]用小立方体搭成一个几何体,使它的主视图和俯视图如图所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?图1—37点拨:①由于主视图每列的层数即是俯视图中该列的最大数字,因此,用的方块数最多的情况是每个方框都用该列的最大数字.即如图1—36所示;此种情况共用小立方体17块.图1—36图1—37②而搭建这样的几何体,每列只要有一个最大数字即可满足条件,其他方框内的数字可减少到最少的1,即如图1—37所示;这样的摆法只需立方体11块.解:摆这样的几何体,最多用17块立方体,最少用11块立方体.【拓展训练】某几何体左视图是长方形,说出这个几何体的两种可能性.点拨:对于棱柱,长方体的左视图可以是长方形;而圆柱,也可以符合条件.说明:考虑这类问题,可先从柱、锥、球开始,再往下细分,逐步排除不可能的,缩小思考范围.。
1.4 从三个方向看物体的形状一、单选题1.如图,从左面看如图所示的几何体得到的平面图形是()A.B.C.D.【答案】B【解析】【分析】直接根据三视图进行排除选项即可.【详解】由立体图形的三视图可直接排除A、C、D,只有B符合该立体图形的左视图;故选B.【点睛】本题主要考查三视图,熟练掌握三视图的方法是解题的关键.2.有一种圆柱体茶叶简如右图所示,则它的主视图是()A.B.C.D.【答案】D【解析】【分析】根据主视图的定义判断即可.【详解】茶叶盒是圆柱体,主视图应是矩形,故选D.【点睛】本题考查主视图的定义,关键在于牢记基本概念.3.下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.【答案】C【解析】【分析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.【详解】解:选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.故答案为:C.【点睛】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.4.下列立体图形中,俯视图是圆的是()A.①①①B.①①①C.①①①D.①①①【答案】D【解析】【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【详解】解:①圆柱的俯视图是圆,符合题意;①圆锥的俯视图是圆,符合题意;①六棱柱的俯视图是六边形,不符合题意;①球的俯视图是圆,符合题意.故选:D.【点睛】本题主要考查了简单几何体的俯视图,具有一定的空间想象能力是解决本题的关键.5.某几何体的三视图如下所示,则该几何体可以是()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据主视图、左视图、俯视图的平面图形,可以判断该几何体为A.故选:A6.如图是由几个大小相同的小正方体搭成的几何体从不同方向看到的平面图形,则搭成这个几何体的小正方体有()A.3个B.4个C.5个D.6个【答案】B【解析】【分析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来解答即可.【详解】由三视图可得,需要的小正方体的数目:1+2+1=4.故选:B.【点睛】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.7.如图,模块①由15个棱长为1的小正方体构成,模块①-①均由4个棱长为1的小正方体构成.现在从模块①-①中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块①,①,①B.模块①,①,①C.模块①,①,①D.模块①,①,①【答案】C【解析】【分析】观察模块①可知,模块①补到模块①上面的左边,模块①补到模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体.【详解】由图形可知模块①补模块①上面的左边,模块①补模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体,故能够完成任务的是模块①,①,①,故选C.【点睛】此题主要考察简单组合体的三视图.8.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.【答案】A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.9.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A .43πB .83πC .163πD .3π 【答案】C【解析】【分析】根据主视图、左视图以及俯视图,即可判定这个几何体是圆锥,求出外接球的半径,即可求出球的表面积.【详解】由三视图可知,这个几何体是圆锥,其外接球的球心恰好是正三角形的外心,因为这个圆锥外接球的半径为23=① 所以这个球的表面积为:S =4πr 2=163π. 故选C.【点睛】本题考查了利用三视图求几何体的表面积.理解外接球的球心就是正三角形的外心是解题的关键. 10.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是( )A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个【答案】A【解析】根据主视图①左视图①画出俯视图可能情况.所以选A.二、填空题11.从正面、左面、上面看一个几何体,三个面看到的图形大小、形状完全相同的是__.(写出一个这样的几何体即可).【答案】正方体【解析】【分析】分别根据所看位置写出每个几何体的三视图形状,即可得到答案.【详解】解:正方体从正面看是正方形、从左面看是正方形、从上面看正方,符合题意,故答案为正方体.【点睛】本题考查三视图相关,从不同的方向观察几何体,即可分析得到答案.12.如图是一个由一些相同的小正方体搭成的立体图形,图(1)~(3)是它的三视图,试标出各个视图的名称________,______,_________.【答案】(1)左视图(2)俯视图(3)主视图【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【详解】解:根据题意可知,主视图是(3),左视图是(1),俯视图是(2),故答案为:(1)左视图,(2)俯视图,(3)主视图.【点睛】本题考查了简单组合体的三视图,从上边看到的图是俯视图,从左边看到的图是左视图,从正面看到的图是主视图.13.一个几何体分别从上面看、从左面看、从正面看,得到的平面图形如图所示,则这个几何体是________.【答案】圆柱【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故答案为:圆柱.【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.14.已知一个物体由x个相同的正方体堆成,它的三视图如图,那么x ________.【答案】8【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,求出总个数即可.【详解】综合三视图,这个物体共有3层,第一层有6个,第二层2个,一共有6+2=8(个),则x=8,故答案是:8.【点睛】考查了由三视图判断几何体,考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.若干桶方便面摆放在桌面上,如图所给出的是从不同方向看到的图形,从图形上可以看出这堆方便面共有_______桶.【答案】6【解析】【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【详解】三摞方便面是桶数之和为:3+1+2=6.故答案是:6.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.一个由若干个小正方体搭建而成的几何体的三视图如下,则搭建这个几何体的小正方体有_______个。
北师大版七年级数学第一章1.4 从三个方向看物体的形状(第1课时)一、教学目的知识与技能目标:1、在观察的过程中初步体会从不同方向观察物体可能看到不同的图形。
2、能识别简单物体的三视图。
过程与方法:1、经历从不同方向观察物体的活动过程,发展空间观念,积累数学活动经验。
2、能在与他人交流的过程中,合理清晰地表达自己的思维过程。
情感态度与价值观:有意识地培养学生学习数学的积极的情感,激发对空间与图形学习的好奇心,初步形成与他人合作交流的意识。
二、教学重点、难点重点:1、经历从不同方向观察物体和与他人合作交流,发展空间观念。
2、初步体会从不同方向观察同一物体可能看到的不同的图形。
3、能识别简单的三视图。
难点:识别简单的三视图。
三、教学方法发现式教学法结合一些具体的实物的情境,通过从不同方向观察,发现从不同方向观察同一物体可能看到不同的图形,然后过渡到讨论立方体及其简单组合体的三视图。
教学过程一、创设现实情景,引入新课就地取材,教师在展示台上放置课室中的粉笔盒、浆糊瓶和桶放在讲台上,使它们在一条直线上,叫四个同学分别站在讲台的前后左右,其余学生坐在自己的位置上观察,然后让他们分别说出自己所看到的物体的形状;并在学生回答的基础上,请学生思考:同样的三样物体,为什么看到的不是一样的呢?从而引出新课———从不同方向看物体的形状二、讲授新课1、同学们通过刚才的活动,会发现从不同的方向观察同一物体,通常可以看到不同的图形。
在小学数学中,我们曾经辨认过从正面、左面(或右面)和上面三个不同方向观察同一物体时看到的物体的形状图。
下面我们看几个由小正方体组成的图,从上面、左面、上面看到的几何体的形状如下图所示:从正面看从左面看从上面看三、例题[例1]桌子上放着一个长方体和圆柱(如下图),说出下列三幅图分别是_____。
[例2]画出下列几何体的主视图、左视图和俯视图。
分析:先由学生板演,并深入学生中去对接受较差的学生以帮助、关心。