2012年湖南高考数学试题(文科)
- 格式:docx
- 大小:126.07 KB
- 文档页数:5
2012年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共9小题,每小题5分,满分45分)23.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()α≠=,则α≠.组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确回归直线过样本点的中心(,)根据回归方程为,),故正确;,∵回归方程为=0.856.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程的焦距为的焦距为=1b=a=2∴双曲线的方程为.①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).①﹣=﹣=>,故>,×边上的高为当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣时,(﹣时,()),函数单调减,(10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=.cos的普通方程是(x=,点(a=故答案为:可化为:或比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n的平均数)解:∵根据茎叶图可知这组数据的平均数是∴这组数据的方差是[[9+4+1+4+1615.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.=||||cos||cos OAP=2||=6由向量的数量积的定义可知,=|||16.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;顾客一次购物的结算时间的平均值为)18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.((﹣=∵点(×++,∴,<Asin2x+)]x+2x+sin2x+﹣﹣由﹣﹣≤≤)﹣x+,]AC⊥BD.(Ⅰ)证明:BD⊥PC;的高为AD+BC=×AD=2,PD=2OD=4=4S×20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n+1与a n的关系式;(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表aa(a+]=d=﹣a(a﹣a+](2d[(,即(d==a21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐,其焦距,利用离心率为,即可求得椭圆,由,利用,即可求得点的方程为:,其焦距为的方程为:=同理可得是方程所以,且,,得满足),或(22.(13分)(2012•湖南)已知函数f(x)=e﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:k=﹣=[=从而。
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B?A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.1【考点】BS:相关系数.【专题】29:规律型.【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选:D.【点评】本题主要考查样本的相关系数,是简单题.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)【考点】7C:简单线性规划.【专题】11:计算题.【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选:A.【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选:A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【考点】7J:指、对数不等式的解法.【专题】11:计算题;16:压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选:B.【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830【考点】8E:数列的求和.【专题】54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选:D.【点评】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.【点评】本题考查导数的几何意义,考查点斜式求直线的方程,属于基础题.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= ﹣2 .【考点】89:等比数列的前n项和.【专题】11:计算题.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】本题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为115.(5分)已知向量夹角为45°,且,则= 3.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=2 .【考点】3N:奇偶性与单调性的综合.【专题】15:综合题;16:压轴题.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】本题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC?(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.【点评】本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【考点】36:函数解析式的求解及常用方法;BB:众数、中位数、平均数;CS:概率的应用.【专题】15:综合题;5I:概率与统计.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)【点评】本题考查函数解析式的确定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【考点】L2:棱柱的结构特征;LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1?平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1?平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈?;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年湖南省高考数学试卷(文科)一、选择题(共9小题,每小题5分,满分45分)1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2=x},则M∩N=()A.{﹣1,0,1}B.{0,1}C.{1}D.{0}【分析】集合M与集合N的公共元素,构成集合M∩N,由此利用集合M={﹣1,0,1},N={x|x2=x}={0,1},能求出M∩N.【解答】解:∵集合M={﹣1,0,1},N={x|x2=x}={0,1},∴M∩N={0,1},故选:B.2.(5分)(2012•湖南)复数z=i(i+1)(i为虚数单位)的共轭复数是()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】由z=i(i+1)=i2+i=﹣1+i,能求出复数z=i(i+1)(i为虚数单位)的共轭复数.【解答】解:∵z=i(i+1)=i2+i=﹣1+i,∴复数z=i(i+1)(i为虚数单位)的共轭复数是﹣1﹣i.故选:A.3.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=【分析】原命题为:若a,则b.逆否命题为:若非b,则非a.【解答】解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选:C.4.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【分析】由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项【解答】解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选:C.5.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选:D.6.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.【分析】利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.【解答】解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.7.(5分)(2012•湖南)设a>b>1,c<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序()A.①B.①②C.②③D.①②③【分析】利用作差比较法可判定①的真假,利用幂函数y=x c的性质可判定②的真假,利用对数函数的性质可知③的真假.【解答】解:①﹣=,∵a>b>1,c<0∴﹣=>0,故>正确;②考查幂函数y=x c,∵c<0∴y=x c在(0,+∞)上是减函数,而a>b>0,则a c<b c正确;③当a>b>1时,有log b(a﹣c)>log b(b﹣c)>log a(b﹣c);正确.故选:D.8.(5分)(2012•湖南)在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选:B.9.(5分)(2012•湖南)设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为()A.2B.4C.5D.8【分析】根据x∈(0,π),且x≠时,(x﹣)f′(x)>0,确定函数的单调性,利用函数的图形,即可得到结论.【解答】解:∵x∈(0,π),且x≠时,(x﹣)f′(x)>0,∴x∈(0,),函数单调减,x∈(,π),函数单调增,∵x∈[0,π]时,0<f(x)<1,在R上的函数f(x)是最小正周期为2π的偶函数,在同一坐标系中作出y=sinx 和y=f(x)草图象如下,由图知y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为4个.故选:B.二、填空题(共7小题,满分30分)(10-11为选做题,两题任选一题,12-16为必做题)10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=.【分析】根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2将极坐标方程化成普通方程,利用交点在极轴上进行建立等式关系,从而求出a的值.【解答】解:∵曲线C1的极坐标方程为:ρ(cosθ+sinθ)=1,∴曲线C1的普通方程是x+y﹣1=0,∵曲线C2的极坐标方程为ρ=a(a>0)∴曲线C2的普通方程是x2+y2=a2∵曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上∴令y=0则x=,点(,0)在圆x2+y2=a2上解得a=故答案为:11.(2012•湖南)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为7.【分析】由题知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点,由分数法的最优性定理可得结论.【解答】解:由已知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点由分数法的最优性定理可知F8=33,即通过7次试验可从这33个分点中找出最佳点.故答案为:7.12.(5分)(2012•湖南)不等式x2﹣5x+6≤0的解集为{x|2≤x≤3} .【分析】把不等式的左边分解因式后,根据两数相乘的取符法则:同得正,异得负,转化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.【解答】解:不等式x2﹣5x+6≤0,因式分解得:(x﹣2)(x﹣3)≤0,可化为:或,解得:2≤x≤3,则原不等式的解集为{x|2≤x≤3}.故答案为:{x|2≤x≤3}.13.(5分)(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n 的平均数)【分析】根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.【解答】解:∵根据茎叶图可知这组数据的平均数是=11∴这组数据的方差是[(8﹣11)2+(9﹣11)2+(10﹣11)2+(13﹣11)2+(15﹣11)2]=[9+4+1+4+16]=6.8故答案为:6.8.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=4.【分析】计算循环中x,与i的值,当x<1时满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前x=3.5,不满足判断框条件,第1次循环,i=2,x=2.5,第2次判断后循环,i=3,x=1.5,第3次判断并循环i=4,x=0.5,满足判断框的条件退出循环,输出i=4.故答案为:4.15.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.【分析】设AC与BD交于O,则AC=2AO,在RtAPO中,由三角函数可得AO与AP的关系,代入向量的数量积=||||cos∠PAO可求【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1816.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.【分析】(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0),则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;2当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.【解答】解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0),则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,2c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011 =0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,前面有偶数个1时,b i+1b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.三、解答题(共6小题,满分75分)17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)【分析】(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,进而可求顾客一次购物的结算时间的平均值;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率求出相应的概率,利用互斥事件的概率公式即可得到结论.【解答】解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;顾客一次购物的结算时间的平均值为=1.9(分钟);(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率可得P(A1);P(A2)=;P(A3)=∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.(I)先利用函数图象求此函数的周期,从而计算得ω的值,再将点(,0)【分析】和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可;(II)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间【解答】解:(I)由图象可知,周期T=2(﹣)=π,∴ω==2∵点(,0)在函数图象上,∴Asin(2×+φ)=0∴sin(+φ)=0,∴+φ=π+kπ,即φ=kπ+,k∈z∵0<φ<∴φ=∵点(0,1)在函数图象上,∴Asin=1,A=2∴函数f(x)的解析式为f(x)=2sin(2x+)(II)g(x)=2sin[2(x﹣)+]﹣2sin[2(x+)+]=2sin2x﹣2sin(2x+)=2sin2x﹣2(sin2x+cos2x)=sin2x﹣cos2x=2sin(2x﹣)由﹣+2kπ≤2x﹣≤+2kπ,k∈z得kπ﹣≤x≤kπ+∴函数g(x)=f(x﹣)﹣f(x+)的单调递增区间为[kπ﹣,kπ+]k∈z 19.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P﹣ABCD 的体积.【分析】(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD ⊥PC;(2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求S ABCD,V P.﹣ABCD【解答】解:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD;又AC⊥BD,PA,AC是平面PAC内的两条相交直线,∴BD⊥平面PAC,而PC⊂平面PAC,∴BD⊥PC;(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,∴∠DPO是直线PD和平面PAC所成的角,∴∠DPO=30°,由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD.∵四边形ABCD是等腰梯形,AC⊥BD,∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(4+2)=3,于是S ABCD=×(4+2)×3=9.在等腰三角形AOD中,OD=AD=2,∴PD=2OD=4,PA==4,=S ABCD×PA=×9×4=12.∴V P﹣ABCD20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n与a n的关系式;+1(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).【分析】(Ⅰ)由题意可求得a1=2000(1+50%)﹣d,a2=a1(1+50%)﹣d=,…从而归纳出a n=a n﹣d.+1(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=…=a1﹣d[1+++…+],利用等比数列的求和公式可求得a n=(3000﹣3d)+2d,再结合题意a m=4000,即可确定企业每年上缴资金d的值.【解答】解:(Ⅰ)由题意得:a1=2000(1+50%)﹣d=3000﹣d,a2=a1(1+50%)﹣d=a1﹣d=4500﹣d,…a n+1=a n(1+50%)﹣d=a n﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=a n﹣2﹣d﹣d=…=a1﹣d[1+++…+]整理得:a n=(3000﹣d)﹣2d[﹣1]=(3000﹣3d)+2d.由题意,a m=4000,即(3000﹣3d)+2d=4000.解得d==,故该企业每年上缴资金d的值为时,经过m(m≥3)年企业的剩余资金为4000万元.21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.【分析】(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:>>,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.【解答】解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:>>,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且>∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或(,)或(,)22.(13分)(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【分析】(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g(t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F (0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.。
2012年普通高等学校招生全国统一考试理科数学(湖南卷)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,0,1M =-,{}2N x x x ==,则M N =IA.{}1,0,1-B.{}0,1C.{}1D.{}0 2.复数(1)z i i =+(i 是虚数单位)的共轭复数是A.1i --B.1i -+C.1i -D.1i + 3.命题“若4πα=,则tan 1α=”的逆否命题是A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠C.若tan 1α≠,则4πα≠D.若tan 1α≠,则4πα=4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是5.设某大学的女生体重y(单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y (1,2,,i n =L ),用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(,)x yB CDC.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg6.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为A.221205x y -= B.221520x y -= C.2218020x y -= D.2212080x y -= 7.设1a b >>,0c <,给出下列三个结论 ①c ca b > ②c c a b < ③log ()log ()b a a c b c ->- 其中所有的正确结论的序号是A.①B.①②C.②③D.①②③8.在ABC ∆中,AC =,2BC =,60B =o ,则BC 边上的高等于9.设定义在R 上的函数()f x 是最小正周期2π的偶函数,()f x '是()f x 的导函数,当[0,]x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时,()()02x f x π'->,则函数()sin y f x x =-在[2,2]ππ-上的零点个数为A .2B .4C .6D .8 二、填空题:本大题共7小题,考生作答6小题,每小题5分,共30分. (一)选做题:请考生在第10、11两题中任选一题作答,如果全做,则按前一题记分.10.在极坐标系中,曲线1C :sin )1ρθθ+=与曲线2C :a ρ=(0a >)的一个交点在极轴上,则a = .11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为2963C C o o :.精确度要求1C ±o .用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为 . (二)必做题(1216:题)12.不等式2560x x -+≤的解集是 .13.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 .14.如果执行如图所示的程序框图,输入1x=-,3n=,则输入的数S= .15.如图,在平行四边形ABCD中,AP BD⊥,垂足为P,且AP AC⋅=u u u r u u u r.16.对于n N*∈,将n表示为1101102222k kk kn a a a a--=⨯+⨯++⨯+⨯L,当i k=时,1ia=,当01i k≤≤-时,ia为0或1.定义nb如下:在n的上述表示中,当a,1a,2a,…,ka中等于1的个数为奇数时,1nb=;否则0nb=.(1)2468b b b b+++=;(2)记nc为数列{}nb中第m个为0的项与第1m+个为0的项之间的项数,则mc的最大值是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算0891035AB CDP步骤.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间x 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 18.(本小题满分12分)已知函数()sin()f x A x ωϕ=+(x R ∈,0ω>,02πϕ<<)的部分图像如图所示.(Ⅰ)求函数()f x 的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.19.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC BD ⊥. (Ⅰ)证明:BD PC ⊥;(Ⅱ)若2AD =,2BC =,直线PD 与平面PAC 所成的角为30o ,求四棱锥P ABCD -的体积.PABCD20.(本小题满分13分)某公司一下属企业从事某种高科技产品的生产。
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A. B.C.4 D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x (3lnx +1)在点(1,1)处的切线方程为 .14.(5分)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f (x )=的最大值为M ,最小值为m ,则M +m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA . (1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A ∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE 交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选D.3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.1【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选D.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选A6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N (N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O 到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选B.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x 轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C 的实轴长为()A. B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.11.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选D.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=﹣2.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣215.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:316.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n <17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A=,知到准线l的距离,由△ABD的面积S=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p 点A到准线l的距离,∵△ABD的面积S △ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x >0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1 故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D 的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。
2012年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共9小题,每小题5分,满分45分)1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2=x},则M∩N=()A.{﹣1,0,1} B.{0,1} C.{1} D.{0}考点:交集及其运算.专题:计算题.分析:集合M与集合N的公共元素,构成集合M∩N,由此利用集合M={﹣1,0,1},N={x|x2=x}={0,1},能求出M∩N.解答:解:∵集合M={﹣1,0,1},N={x|x2=x}={0,1},∴M∩N={0,1},故选B.点评:本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答.2.(5分)(2012•湖南)复数z=i(i+1)(i为虚数单位)的共轭复数是()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i考点:复数的基本概念.专题:计算题.分析:由z=i(i+1)=i2+i=﹣1+i,能求出复数z=i(i+1)(i为虚数单位)的共轭复数.解答:解:∵z=i(i+1)=i2+i=﹣1+i,∴复数z=i(i+1)(i为虚数单位)的共轭复数是﹣1﹣i.故选A.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.3.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.4.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题5.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.6.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.7.(5分)(2012•湖南)设a>b>1,C<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序号()A.①B.①②C.②③D.①②③考点:不等式比较大小.专题:计算题.分析:利用作差比较法可判定①的真假,利用幂函数y=x c的性质可判定②的真假,利用对数函数的性质可知③的真假.解答:解:①﹣=,∵a>b>1,c<0∴﹣=>0,故>正确;②考查幂函数y=x c,∵c<0∴y=x c在(0,+∞)上是减函数,而a>b>0,则a c<b c正确;③当a>b>1时,有log b(a﹣c)>log b(b﹣c)>log a(b﹣c);正确.故选D.点评:本题主要考查了不等式比较大小,以及幂函数与对数函数的性质,属于基础题.8.(5分)(2012•湖南)在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.考点:解三角形.专题:计算题;压轴题.分析:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB解答:解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B点评:本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题9.(5分)(2012•湖南)设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为()A.2B.4C.5D.8考点:函数的单调性与导数的关系;根的存在性及根的个数判断.专题:综合题;压轴题.分析:根据x∈(0,π),且x≠时,(x﹣)f′(x)>0,确定函数的单调性,利用函数的图形,即可得到结论.解答:解:∵x∈(0,π),且x≠时,(x﹣)f′(x)>0,∴x∈(0,),函数单调减,x∈(,π),函数单调增,∵x∈[0,π]时,0<f(x)<1,在R上的函数f(x)是最小正周期为2π的偶函数,在同一坐标系中作出y=sinx和y=f (x)草图象如下,由图知y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为4个.故选:B.点评:本题考查函数的单调性,考查函数的零点,考查函数的周期性与奇偶性,属于基础题.二、填空题(共7小题,满分30分)(10-11为选做题,两题任选一题,12-16为必做题)10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a >0)的一个交点在极轴上,则a=.考点:简单曲线的极坐标方程.专题:计算题.分析:根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2将极坐标方程化成普通方程,利用交点在极轴上进行建立等式关系,从而求出a的值.解答:解:∵曲线C1的极坐标方程为:ρ(cosθ+sinθ)=1,∴曲线C1的普通方程是x+y﹣1=0,∵曲线C2的极坐标方程为ρ=a(a>0)∴曲线C2的普通方程是x2+y2=a2∵曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上∴令y=0则x=,点(,0)在圆x2+y2=a2上解得a=故答案为:点评:本题主要考查了简单曲线的极坐标方程与普通方程的转化,同时考查了计算能力和分析问题的能力,属于基础题.11.(2012•湖南)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为7.考点:优选法的概念.专题:计算题.分析:由题知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点,由分数法的最优性定理可得结论.解答:解:由已知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点由分数法的最优性定理可知F8=33,即通过7次试验可从这33个分点中找出最佳点.故答案为:7.点评:本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(F n﹣1).(2)所有可能的试点总数大于某一(F n﹣1),而小于(F n+1﹣1).用分数法安排试验,一旦确定第一个试点,后续的试点可以用“加两头,减中间”的方法来确定.12.(5分)(2012•湖南)不等式x2﹣5x+6≤0的解集为{x|2≤x≤3}.考点:一元二次不等式的解法.专题:计算题.分析:把不等式的左边分解因式后,根据两数相乘的取符号法则:同号得正,异号得负,转化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.解答:解:不等式x2﹣5x+6≤0,因式分解得:(x﹣2)(x﹣3)≤0,可化为:或,解得:2≤x≤3,则原不等式的解集为{x|2≤x≤3}.故答案为:{x|2≤x≤3}.点评:本题主要考查了一元二次不等式的解法,考查了转化的数学思想,同时考查了计算能力,属于基础题之列.13.(5分)(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n的平均数)考点:茎叶图;极差、方差与标准差.专题:计算题.分析:根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.解答:解:∵根据茎叶图可知这组数据的平均数是=11∴这组数据的方差是[(8﹣11)2+(9﹣11)2+(10﹣11)2+(13﹣11)2+(15﹣11)2]=[9+4+1+4+16]=6.8故答案为:6.8.点评:本题考查一组数据的方差,考查读茎叶图,这是经常出现的一种组合,对于一组数据通常要求这组数据的平均数,方差,标准差,本题是一个基础题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=4.考点:循环结构.专题:计算题.分析:计算循环中x,与i的值,当x<1时满足判断框的条件,退出循环,输出结果即可.解答:解:循环前x=3.5,不满足判断框条件,第1次循环,i=2,x=2.5,第2次判断后循环,i=3,x=1.5,第3次判断并循环i=4,x=0.5,满足判断框的条件退出循环,输出i=4.故答案为:4.点评:本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.15.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.考点:平面向量数量积的运算.专题:计算题;压轴题.分析:设AC与BD交于O,则AC=2AO,在RtAPO中,由三角函数可得AO与AP的关系,代入向量的数量积=||||cos∠PAO可求解答:解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:18点评:本题主要考查了向量的数量积的定义的应用,解题的关键在于发现规律:AC×cos∠OAP=2×AOcos∠OAP=2AP.16.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.三、解答题(共6小题,满分75分)17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件以上顾客数(人)x 30 25 y 10结算时间(分钟/人 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)考点:概率的应用;众数、中位数、平均数.专题:应用题;概率与统计.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,进而可求顾客一次购物的结算时间的平均值;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率求出相应的概率,利用互斥事件的概率公式即可得到结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;顾客一次购物的结算时间的平均值为=1.9(分钟);(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率可得P(A1);P(A2)=;P(A3)=∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.点评:本题考查学生的阅读能力,考查概率的计算,考查互斥事件,将事件分拆成互斥事件的和是解题的关键,属于中档题.18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;复合三角函数的单调性.专题:计算题.分析:(I)先利用函数图象求此函数的周期,从而计算得ω的值,再将点(,0)和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可;(II)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间解答:解:(I)由图象可知,周期T=2(﹣)=π,∴ω==2∵点(,0)在函数图象上,∴Asin(2×+φ)=0∴sin(+φ)=0,∴+φ=π+kπ,即φ=kπ+,k∈z∵0<φ<∴φ=∵点(0,1)在函数图象上,∴Asin=1,A=2∴函数f(x)的解析式为f(x)=2sin(2x+)(II)g(x)=2sin[2(x﹣)+]﹣2sin[2(x+)+]=2sin2x﹣2sin(2x+)=2sin2x﹣2(sin2x+cos2x)=sin2x﹣cos2x=2sin(2x﹣)由﹣+2kπ≤2x﹣≤+2kπ,k∈z得kπ﹣≤x≤kπ+∴函数g(x)=f(x﹣)﹣f(x+)的单调递增区间为[kπ﹣,kπ+]k∈z点评:本题主要考查了y=Asin(ωx+φ)型函数的图象和性质,根据图象求函数的解析式,利用函数解析式求复合三角函数单调区间的方法,属基础题19.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P﹣ABCD的体积.考点:直线与平面垂直的性质;直线与平面所成的角.专题:计算题;证明题.分析:(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD⊥PC;(2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC 所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求S ABCD,V P﹣ABCD.解答:解:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD;又AC⊥BD,PA,AC是平面PAC内的两条相交直线,∴BD⊥平面PAC,而PC⊂平面PAC,∴BD⊥PC;(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,∴∠DPO是直线PD和平面PAC所成的角,∴∠DPO=30°,由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD.∵四边形ABCD是等腰梯形,AC⊥BD,∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(4+2)=3,于是S ABCD=×(4+2)×3=9.在等腰三角形AOD中,OD=AD=2,∴PD=2OD=4,PA==4,∴V P﹣ABCD=S ABCD×PA=×9×4=12.点评:本题考查直线与平面垂直判定定理与性质性质定理,考查直线与平面所成的角的应用与锥体体积,突出对分析、推理与计算能力的考查与应用,属于中档题.20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n+1与a n的关系式;(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).考点:数列的应用;根据实际问题选择函数类型.专题:计算题;综合题.分析:(Ⅰ)由题意可求得a1=2000(1+50%)﹣d,a2=a1(1+50%)﹣d=,…从而归纳出a n+1=a n ﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=…=a1﹣d[1+++…+],利用等比数列的求和公式可求得a n=(3000﹣3d)+2d,再结合题意a m=4000,即可确定企业每年上缴资金d的值.解答:解:(Ⅰ)由题意得:a1=2000(1+50%)﹣d=3000﹣d,a2=a1(1+50%)﹣d=a1﹣d=4500﹣d,…a n+1=a n(1+50%)﹣d=a n﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=a n﹣2﹣d﹣d=…=a1﹣d[1+++…+]整理得:a n=(3000﹣d)﹣2d[﹣1]=(3000﹣3d)+2d.由题意,a m=4000,即(3000﹣3d)+2d=4000.解得d==,故该企业每年上缴资金d的值为时,经过m(m≥3)年企业的剩余资金为4000万元.点评:本题考查数列的应用,着重考查归纳思想的运用,求得a n+1=a n﹣d是关键,递推关系的综合应用是难点,突出转化与运算能力的考查,属于难题.21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E 的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.解答:解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或()或()点评:本题考查椭圆的标准方程,考查直线与圆相切,解题的关键是确定k1,k2是方程的两个实根,属于中档题.22.(13分)(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;压轴题.分析:(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g(t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.解答:解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.点评:本题考查导数的应用,涉及最大值、最小值的求法以及恒成立问题,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数.。
2012年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共9小题,每小题5分,满分45分)1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2=x},则M∩N=()A.{﹣1,0,1} B.{0,1} C.{1} D.{0}考点:交集及其运算.专题:计算题.分析:集合M与集合N的公共元素,构成集合M∩N,由此利用集合M={﹣1,0,1},N={x|x2=x}={0,1},能求出M∩N.解答:解:∵集合M={﹣1,0,1},N={x|x2=x}={0,1},∴M∩N={0,1},故选B.点评:本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答.2.(5分)(2012•湖南)复数z=i(i+1)(i为虚数单位)的共轭复数是()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i考点:复数的基本概念.专题:计算题.分析:由z=i(i+1)=i2+i=﹣1+i,能求出复数z=i(i+1)(i为虚数单位)的共轭复数.解答:解:∵z=i(i+1)=i2+i=﹣1+i,∴复数z=i(i+1)(i为虚数单位)的共轭复数是﹣1﹣i.故选A.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.3.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.4.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题5.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.6.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.7.(5分)(2012•湖南)设a>b>1,C<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序号()A.①B.①②C.②③D.①②③考点:不等式比较大小.专题:计算题.分析:利用作差比较法可判定①的真假,利用幂函数y=x c的性质可判定②的真假,利用对数函数的性质可知③的真假.解答:解:①﹣=,∵a>b>1,c<0∴﹣=>0,故>正确;②考查幂函数y=x c,∵c<0∴y=x c在(0,+∞)上是减函数,而a>b>0,则a c<b c正确;③当a>b>1时,有log b(a﹣c)>log b(b﹣c)>log a(b﹣c);正确.故选D.点评:本题主要考查了不等式比较大小,以及幂函数与对数函数的性质,属于基础题.8.(5分)(2012•湖南)在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.考点:解三角形.专题:计算题;压轴题.分析:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB解答:解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B点评:本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题9.(5分)(2012•湖南)设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为()A.2B.4C.5D.8考点:函数的单调性与导数的关系;根的存在性及根的个数判断.专题:综合题;压轴题.分析:根据x∈(0,π),且x≠时,(x﹣)f′(x)>0,确定函数的单调性,利用函数的图形,即可得到结论.解答:解:∵x∈(0,π),且x≠时,(x﹣)f′(x)>0,∴x∈(0,),函数单调减,x∈(,π),函数单调增,∵x∈[0,π]时,0<f(x)<1,在R上的函数f(x)是最小正周期为2π的偶函数,在同一坐标系中作出y=sinx和y=f (x)草图象如下,由图知y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为4个.故选:B.点评:本题考查函数的单调性,考查函数的零点,考查函数的周期性与奇偶性,属于基础题.二、填空题(共7小题,满分30分)(10-11为选做题,两题任选一题,12-16为必做题)10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a >0)的一个交点在极轴上,则a=.考点:简单曲线的极坐标方程.专题:计算题.分析:根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2将极坐标方程化成普通方程,利用交点在极轴上进行建立等式关系,从而求出a的值.解答:解:∵曲线C1的极坐标方程为:ρ(cosθ+sinθ)=1,∴曲线C1的普通方程是x+y﹣1=0,∵曲线C2的极坐标方程为ρ=a(a>0)∴曲线C2的普通方程是x2+y2=a2∵曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上∴令y=0则x=,点(,0)在圆x2+y2=a2上解得a=故答案为:点评:本题主要考查了简单曲线的极坐标方程与普通方程的转化,同时考查了计算能力和分析问题的能力,属于基础题.11.(2012•湖南)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为7.考点:优选法的概念.专题:计算题.分析:由题知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点,由分数法的最优性定理可得结论.解答:解:由已知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点由分数法的最优性定理可知F8=33,即通过7次试验可从这33个分点中找出最佳点.故答案为:7.点评:本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(F n﹣1).(2)所有可能的试点总数大于某一(F n﹣1),而小于(F n+1﹣1).用分数法安排试验,一旦确定第一个试点,后续的试点可以用“加两头,减中间”的方法来确定.12.(5分)(2012•湖南)不等式x2﹣5x+6≤0的解集为{x|2≤x≤3}.考点:一元二次不等式的解法.专题:计算题.分析:把不等式的左边分解因式后,根据两数相乘的取符号法则:同号得正,异号得负,转化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.解答:解:不等式x2﹣5x+6≤0,因式分解得:(x﹣2)(x﹣3)≤0,可化为:或,解得:2≤x≤3,则原不等式的解集为{x|2≤x≤3}.故答案为:{x|2≤x≤3}.点评:本题主要考查了一元二次不等式的解法,考查了转化的数学思想,同时考查了计算能力,属于基础题之列.13.(5分)(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n的平均数)考点:茎叶图;极差、方差与标准差.专题:计算题.分析:根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.解答:解:∵根据茎叶图可知这组数据的平均数是=11∴这组数据的方差是[(8﹣11)2+(9﹣11)2+(10﹣11)2+(13﹣11)2+(15﹣11)2]=[9+4+1+4+16]=6.8故答案为:6.8.点评:本题考查一组数据的方差,考查读茎叶图,这是经常出现的一种组合,对于一组数据通常要求这组数据的平均数,方差,标准差,本题是一个基础题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=4.考点:循环结构.专题:计算题.分析:计算循环中x,与i的值,当x<1时满足判断框的条件,退出循环,输出结果即可.解答:解:循环前x=3.5,不满足判断框条件,第1次循环,i=2,x=2.5,第2次判断后循环,i=3,x=1.5,第3次判断并循环i=4,x=0.5,满足判断框的条件退出循环,输出i=4.故答案为:4.点评:本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.15.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.考点:平面向量数量积的运算.专题:计算题;压轴题.分析:设AC与BD交于O,则AC=2AO,在RtAPO中,由三角函数可得AO与AP的关系,代入向量的数量积=||||cos∠PAO可求解答:解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:18点评:本题主要考查了向量的数量积的定义的应用,解题的关键在于发现规律:AC×cos∠OAP=2×AOcos∠OAP=2AP.16.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.三、解答题(共6小题,满分75分)17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件以上顾客数(人)x 30 25 y 10结算时间(分钟/人 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)考点:概率的应用;众数、中位数、平均数.专题:应用题;概率与统计.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,进而可求顾客一次购物的结算时间的平均值;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率求出相应的概率,利用互斥事件的概率公式即可得到结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;顾客一次购物的结算时间的平均值为=1.9(分钟);(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率可得P(A1);P(A2)=;P(A3)=∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.点评:本题考查学生的阅读能力,考查概率的计算,考查互斥事件,将事件分拆成互斥事件的和是解题的关键,属于中档题.18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;复合三角函数的单调性.专题:计算题.分析:(I)先利用函数图象求此函数的周期,从而计算得ω的值,再将点(,0)和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可;(II)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间解答:解:(I)由图象可知,周期T=2(﹣)=π,∴ω==2∵点(,0)在函数图象上,∴Asin(2×+φ)=0∴sin(+φ)=0,∴+φ=π+kπ,即φ=kπ+,k∈z∵0<φ<∴φ=∵点(0,1)在函数图象上,∴Asin=1,A=2∴函数f(x)的解析式为f(x)=2sin(2x+)(II)g(x)=2sin[2(x﹣)+]﹣2sin[2(x+)+]=2sin2x﹣2sin(2x+)=2sin2x﹣2(sin2x+cos2x)=sin2x﹣cos2x=2sin(2x﹣)由﹣+2kπ≤2x﹣≤+2kπ,k∈z得kπ﹣≤x≤kπ+∴函数g(x)=f(x﹣)﹣f(x+)的单调递增区间为[kπ﹣,kπ+]k∈z点评:本题主要考查了y=Asin(ωx+φ)型函数的图象和性质,根据图象求函数的解析式,利用函数解析式求复合三角函数单调区间的方法,属基础题19.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P﹣ABCD的体积.考点:直线与平面垂直的性质;直线与平面所成的角.专题:计算题;证明题.分析:(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD⊥PC;(2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC 所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求S ABCD,V P﹣ABCD.解答:解:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD;又AC⊥BD,PA,AC是平面PAC内的两条相交直线,∴BD⊥平面PAC,而PC⊂平面PAC,∴BD⊥PC;(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,∴∠DPO是直线PD和平面PAC所成的角,∴∠DPO=30°,由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD.∵四边形ABCD是等腰梯形,AC⊥BD,∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(4+2)=3,于是S ABCD=×(4+2)×3=9.在等腰三角形AOD中,OD=AD=2,∴PD=2OD=4,PA==4,∴V P﹣ABCD=S ABCD×PA=×9×4=12.点评:本题考查直线与平面垂直判定定理与性质性质定理,考查直线与平面所成的角的应用与锥体体积,突出对分析、推理与计算能力的考查与应用,属于中档题.20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n+1与a n的关系式;(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).考点:数列的应用;根据实际问题选择函数类型.专题:计算题;综合题.分析:(Ⅰ)由题意可求得a1=2000(1+50%)﹣d,a2=a1(1+50%)﹣d=,…从而归纳出a n+1=a n ﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=…=a1﹣d[1+++…+],利用等比数列的求和公式可求得a n=(3000﹣3d)+2d,再结合题意a m=4000,即可确定企业每年上缴资金d的值.解答:解:(Ⅰ)由题意得:a1=2000(1+50%)﹣d=3000﹣d,a2=a1(1+50%)﹣d=a1﹣d=4500﹣d,…a n+1=a n(1+50%)﹣d=a n﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=a n﹣2﹣d﹣d=…=a1﹣d[1+++…+]整理得:a n=(3000﹣d)﹣2d[﹣1]=(3000﹣3d)+2d.由题意,a m=4000,即(3000﹣3d)+2d=4000.解得d==,故该企业每年上缴资金d的值为时,经过m(m≥3)年企业的剩余资金为4000万元.点评:本题考查数列的应用,着重考查归纳思想的运用,求得a n+1=a n﹣d是关键,递推关系的综合应用是难点,突出转化与运算能力的考查,属于难题.21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E 的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.解答:解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或()或()点评:本题考查椭圆的标准方程,考查直线与圆相切,解题的关键是确定k1,k2是方程的两个实根,属于中档题.22.(13分)(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;压轴题.分析:(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g(t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.解答:解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.点评:本题考查导数的应用,涉及最大值、最小值的求法以及恒成立问题,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数.。
D C B A图1湖南省2012年高考试题数学(文科)分值:150分 时量:120分钟 考试日期:2012-06-07一、选择题:本大题共9个小题,每小题5分,共45分. 1.设集合2{1,0,1},{|}M N x x x =-==,则M N = ( ) A .{1,0,1}- B .{0,1} C .{1} D .{0} 2.复数(1)(z i i i =+为虚数单位)的共轭复数是( ) A .1i -- B .1i -+ C .1i - D .1i +3.命题“若4απ=,则tan 1α=”的逆否命题是 ( ) A .若4απ≠,则tan 1α≠ B .若4απ=, 则tan 1α≠C .若tan 1α≠,则4απ≠D .若tan 1α≠,则4απ=4.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 ( )5.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,i x)(1,2,,)i y i n = ,用最小二乘法建立的回归直线方程为 0.8585.71y x =-,则下列结论中不正确的是( )A. y 与x 具有正的线性相关关系B. 回归直线方程过样本点的中心(,)x yC. 若该大学某女生身高增加1cm,则其体重约增加0.85kgD. 若该大学某女生身高为170cm,则可断定其体重为58.79kg6.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -=D .2212080x y -= 7.设1,0a b c >><,给出下列三个结论:①c ca b>;②c c a b <;③log ()log ()b a a c b c ->-.其中所有的正确结论的序号是 ( )A. ①B. ①②C.②③D.①②③图3CBAPO图4 8.在ABC ∆中,2,60AC BC B == ,则BC 边上的高等于( ) A B C D9.设定义在R 上函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导函数.当[0,]x ∈π时,0()1f x <<;当(0,)x ∈π且2x π≠时,()()02x f x π'->.则函数()sin y f x x =-在[2,2]-ππ上的零点个数为 ( )A .2B .4C .5D .8二、填空题:本大题共7个小题,考生作答6个小题,每小题5分,共30分,把答案填写在题中的横线上. (一)选做题(请在第10、11两题中任选一题作答,如果全做,则按前一题记分)10.在极坐标系中,曲线1:cos sin )1C ρθθ+=与曲线2:(0)C a a ρ=>的一个交点在极轴上,则a = .11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,试验范围定为29 o C ~63oC,精确度要求±1oC.用分数法时行优选时,能保证找到最佳培养温度需要的最少试验次数为 . (二)必做题(12〜16题)12.不等式2560x x -+≤的解集为 .13.图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 .(注:方差2222121[()()()]n s x x x x x x n =-+-++-,其中x 为12,,,n x x x14.如果执行如图3所示的程序框图,输入 4.5x =,则输出的数i = . 15.如图4,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅ 16.对于*n N ∈,将n 表示为1101102222k k k k n a a a a --=⨯+⨯++⨯+⨯ ,当i k =时,1i a =,当0i ≤≤1k -时,i a 为0或1.定义n b 如下:在n 的上述表示中,当012,,,,k a a a a 中等于1的个数为奇数时,1n b =,否则0n b =. (1)2468b b b b +++= ;(2)记m c 为数列{}n b 中第m 个为0项与第1m +个为0的项之间的项数,则m c 的最大值是 .图5三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如上表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)..18.(本小题满分12分)已知函数()sin()(,0,0)2f x A x x R ωϕωϕπ=+∈><<的部分图象 如图5所示.(Ⅰ)求函数()f x 的解析式; (Ⅱ)求函数()((1212g x f x f x ππ=--+的单调递增区间.19.(本小题满分12分)如图6,在四棱锥P ABCD -中,PA ⊥底面ABCD , 底面四边形ABCD 是等腰梯形,,AD BC AC BD ⊥ . (Ⅰ)证明:BD PC ⊥;(Ⅱ)若4,2AD BC ==,直线PD 与平面PAC 所成的角为30 , 求四棱锥P ABCD -的体积.PDCBA图620.(本小题满分13分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元.(Ⅰ)用d 表示12,a a ,并写出1n a +与n a 的关系式;(Ⅱ)若公司希望经过(3)m m ≥年使企业的剩余资金为40000万元,试确定企业每年上缴资金d 的值(用m 表示).21.(本小题满分13分)在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为22:420C x y x +-+= 的圆心.(Ⅰ)求椭圆E 的方程;(Ⅱ)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线12l l 、,当直线12l l 、都与圆C 相切时,求点P 的坐标.22.(本小题满分13分)已知函数()x f x e ax =-,其中0a >.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k ,证明:存在012(,)x x x ∈,使0()f x k '=成立.图5参考答案一.选择题 B,A,C,C; D,A,D,B,B 二.填空题10.2; 11. 7 ; 12. {|23}x x ≤≤; 13. 6.8 ; 14. 4 ; 15. 18 ; 16.(1) 3 ; (2) 2 . 三.解答题17.【解】(Ⅰ)由已知得251055y ++=,所以20y =,所以1003025201015x =----=………2分该超市调查的100位顾客一次购物的结算时间的平均值为:115 1.530225 2.5203101.9100x ⨯+⨯+⨯+⨯+⨯==(分钟)……………………………………5分所以估计该超市所有顾客一次购物的结算时间的平均值为1.9分钟.………………………6分 (Ⅱ)设A 表示事件“一位顾客一次购物的结算时间不超过2分钟”,又顾客一次购物结算时间为1分钟、1.5分钟、2分钟的事件分别为123A A A 、、;…………………………………………7分 依题意,将频率视为概率,则123153303251(),(),()10020100101004P A P A P A ======………8分 因为123A A A A = ,且123,,A A A 是互为互斥事件,…………………………………………10分 所以,123123()()()()()P A P A A A P A P A P A ==++ ……………………………………11分33172010410=++=………………………………………………………………12分 18.【解】(Ⅰ)由图象可知,2()1212T 11π5π=-=π,则22Tω==π,……………………………………2分又点5(,0)12π在函数图象上,所以5sin()06A ϕπ+=,即5sin()06ϕπ+=又因为02ϕπ<<,所以554663ϕπππ<+<,从而56ϕπ+=π,即6ϕπ=…………………………………………4分 又点(0,1)在函数图象上,所以sin 16A π=,得2A =.故函数()f x 的解析式为()2sin(2)6f x x π=+.……………………6分(Ⅱ)()2sin[2()]2sin[2()]2sin 22sin(21261263g x x x x x πππππ=-+-++=-+所以1()sin 22(sin 22)sin 222sin(2)23g x x x x x x x π=-+==-……………9分由222232k x k ππππ-≤-≤π+,得5,1212k x k k Z πππ-≤≤π+∈所以函数()g x 的单调递增区间是5[,],1212k k k Z πππ-π+∈…………………………………12分PODCBA 图619.【解】(Ⅰ)证明:因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥;又AC BD ⊥,且,PA AC 是平面PAC 内的两条相交直线,所以BD ⊥平面PAC ,又PC ⊂平面PAC ,所以BD PC ⊥.…………………………………6分;(Ⅱ)设AC BD O = ,连接PO ,由(Ⅰ)知BD ⊥平面PAC ,所以DPO ∠是直线PD 与平面PAC 所成的角.从而30DPO ∠= ………………………………………………8分 也所以Rt DOP ∆中,2PD OD =,又因为四边形ABCD 是等腰梯形,AC BD ⊥, 所以AOD BOC ∆∆、均为等腰直角三角形, 又4,2AD BC ==,所以AO OD OB OC ====从而4PD PA =,………………………………………………………10分211922ABCD S AC BD =⨯=⨯=梯形, 也所以四棱锥P ABCD -的体积11941233V S PA =⨯⨯=⨯⨯=.……………………………12分20. 【解】(Ⅰ)由题意得12000(150%)3000a d d =+-=-,………………………………………2分21135(150%)450022a a d a d d =+-=-=-,…………………………………………………4分易知*13()2n n a a d n N +=-∈……………………………………………………………………6分(Ⅱ)由(Ⅰ)知,13(*)2n n a a d n N +=-∈,所以*132(2)()2n n a d a d n N +-=-∈,又因为1230003a d d -=-,……………………………8分1*132(2)()()2n n a d a d n N --=-∈,即1*3(30003)()2()2n n a d d n N -=-+∈…………………10分由题意得4000m a =,即13((30003)240002m d d --+=.解得13[()2]10001000(32)2(3)332()12m m m m mm d m +-⨯-==≥--…………………………………………12分 故企业每年上缴资金d 的值为11000(32)32m m m m+--时,经过(3)m m ≥年企业的剩余资金为4000万元. ………………………………………………………………………………………………13分21. 【解】(Ⅰ)由22420x y x +-+=得22(2)2x y -+=,故圆C 的圆心坐标为(2,0)C .…………1分从而可设椭圆E 的方程为22221(0)x y a b a b+=>>,依题意得2c =,…………………………3分且12c e a ==,所以22224,12a c b a c ===-=,故椭圆E 的方程为2211612x y +=……………5分 (Ⅱ)如图所示,设点00(,)P x y ,直线0:()(1,2)i oi l y y k x x i -=-=;由题知,d ==,……………………………7分化简得,2220000[(2)2]2(2)20i i x k x y k y --+-+-=, 所以12,k k 是方程2220000[(2)2]2(2)20x k x y k y --+-+-=的两个实根,于是202200(2)20,8[(2)2]0,x x y ⎧--≠⎪⎨∆=-+->⎪⎩由于点P 在圆C外,所以2200(2)2x y -+>恒成立,…………10分 即02x ≠且22122021(2)22y k k x -==--,得2200(2)22x y -=+……①……………………11分 又因为点P 在椭圆E 上,故220011612x y +=……② 由①②式解得,02x =-时,03y =±;当0185x =时,0y=……………………………12分所以P 点坐标为(2,3)-或(2,3)--或18(5或18(5.……………………………13分22. 【解】(Ⅰ)注意到(0)1f =,所以对一切x R ∈,()1f x ≥恒成立,即()(0)f x f ≥.……………1分所以由函数的最小值含义知,min ()(0)1f x f ==,………………………………………………2分又因为()0xf x e a '=-=时,得ln (0)x a a =>,且ln x a <时,()0f x '<,函数()f x 单调递减,当ln x a >时,()0f x '>,函数()f x 单调递增; 所以当且仅当ln x a =时,函数min ()(ln )f x f a =………………………………………………4分 也所以ln 0a =,即1a =.所以a 的取值集合为{1}…………………………………………………………………………6分(Ⅱ)由题知,21212121()()x x f x f x e e k a x x x x --==---.又由(Ⅰ)知,()x f x e a '=- 所以要证存在012(,)x x x ∈,使0()f x k '=成立.即证存在012(,)x x x ∈,使21021x x x e e e x x -=-成立. 也即证存在012(,)x x x ∈,使02121()()0x x xx x e e e ---=成立.又令()g x =2121()()x xx x x e e e ---,其中210x x ->,所以函数()g x 在R 上单调递增,又11212112()()()x x xg x x x e e e x x =-+-<,且1122()()0xg x x x e '=->,所以函数1()g x 在2(,)x -∞上的递增,所以222122()()0x x xg x x x e e e <-+-=;又21222112()()()x x xg x x x e e e x x =-+-<,且2221()()0xg x x x e '=->,所以函数2()g x 在1(,)x +∞上的递增,所以111211()()0x x xg x x x e e e >-+-=,综上可知,函数()g x =2121()()x x xx x e e e ---在12(,)x x 存在唯一零点0x ,即存在012(,)x x x ∈,使02121()()0x x xx x e e e ---=成立.所以原命题成立.。
2012年普通高等学校夏季招生全国统一考试数学文史类(全国卷新课标)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=2.复数3i2iz-+=+的共轭复数是()A.2+i B.2-iC.-1+i D.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线112y x=+上,则这组样本数据的样本相关系数为()A.-1 B.0 C.12D.14.设F1,F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.12B.23C.34D.455.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC 内部,则z=-x+y的取值范围是()A.(1-B.(0,2)C.(1,2) D.(0,1+6.如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A .A +B 为a 1,a 2,…,a N 的和 B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )A .B .C .D . 9.已知ω>0,0<φ<π,直线π4x =和5π4x =是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A .π4B .π3C .π2D .3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||A B =C 的实轴长为( )A .B .C .4D .811.(文)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,2) B .(2,1)C .(1,)D .2)12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为__________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =__________.15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b ||b |=__________. 16.设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M +m =__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C sin C -b -c=0.(1)求A ;(2)若a =2,△ABC b ,c .18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2))的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.20.设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.22.选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3 ).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.1.B由题意可得,A={x|-1<x<2},而B={x|-1<x<1},故B A.2.D3i(3i)(2i)55i1i2i(2i)(2i)5z-+-+--+====-+++-,故z的共轭复数为-1-i.3.D样本相关系数越接近1,相关性越强,现在所有的样本点都在直线112y x=+上,样本的相关系数应为1.4.C设直线32ax=与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c ,232a F M c =-,故22312cos6022a c F M P F c-︒===,解得34c a =,故离心率34e =.5. A 由顶点C 在第一象限且与A ,B 构成正三角形可求得点C 坐标为(1+2),将目标函数化为斜截式为y =x +z ,结合图形可知当y =x +z 过点C 时z取到最小值,此时min 1z =-y =x +z 过点B 时z 取到最大值,此时z max =2,综合可知z 的取值范围为(1-2).6.C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数.7.B 由三视图可推知,几何体的直观图如下图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为11(63)3932⨯⨯⨯⨯=.8.B 设球O 的半径为R,则R ==34π3V R ==球.9. A 由题意可知函数f (x )的周期5ππ2()2π44T =⨯-=,故ω=1,∴f (x )=sin(x +φ).令x +φ=k π+π2,将π4x =代入可得φ=k π+π4,∵0<φ<π,∴π4ϕ=.10. C 设双曲线的方程为22221x y aa-=,抛物线的准线为x =-4,且||4A B =可得A (-4,,B (-4,-,将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.11. B 由0<x ≤12,且log a x >4x >0,可得0<a <1,由1214log 2a=,可得2a =.令f (x )=4x,g (x )=log a x ,若4x <log a x ,则说明当102x <≤时,f (x )的图象恒在g (x )图象的下方(如下图所示),此时需2a >.综上可得a 的取值范围是2,1).12. D ∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=115-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.13.答案:4x -y -3=0解析:因为y ′=3ln x +4,故y ′|x =1=4,所以曲线在点(1,1)处的切线方程为y -1=4(x -1),化为一般式方程为4x -y -3=0.14.答案:-2解析:由S 3=-3S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.15.答案:解析:∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos45°2|b |,|2a -b |2=4-4×2|b |+|b |2=10,∴=b16.答案:2 解析:222(1)sin 2sin ()111x xx x f x x x +++==+++,设22sin ()1x x g x x +=+,则g (-x )=-g (x ),∴g (x )是奇函数.由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.17.解:(1)由a cos C a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0. 因为B =π-A -C ,A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=.又0<A <π,故π3A =.(2)△ABC 的面积1sin 2S bc A ==,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为1085<17()8517n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4.②利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.19.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC , CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC1平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°, 所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC1平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1. 由题意得1112111322V +=⨯⨯⨯=.又三棱柱ABC -A 1B 1C 1的体积V =1, 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||F A =.由抛物线定义可知A 到l 的距离=||d FA =.因为△ABD 的面积为,所以1||2B D d ⋅=,即122p ⋅=解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |,所以∠ABD =30°,m 的斜率为3或3-.当m 3时,由已知可设n :y 3x +b ,代入x 2=2py ,得x 23-2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-.因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于k <1e 1xx +-+x (x >0).①令g (x )=1e 1xx +-+x ,则22e 1e e 2()1e 1e 1xx xxxx x g'x --(--)=+=(-)(-).由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增. 而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点. 故g ′(x )在(0,+∞)上存在唯一的零点. 设此零点为α,则α∈(1,2). 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.22.证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1,B(1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].24.解:(1)当a=-3时,25,2, ()1,23,25, 3.x xf x xx x-+≤⎧⎪=<<⎨⎪-≥⎩当x≤2时,由f(x)≥3,得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3,得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1}∪{x|x≥4}.(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|4-x-(2-x)≥|x+a|-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0. 故满足条件的a的取值范围为[-3,0].。
2012年湖南高考数学试题(文科)
一、选择题:本大题共9小题,每小题5分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={-1,0,1},N={x|x2=x},则M∩N=
A.{-1,0,1}
B.{0,1}
C.{1}
D.{0}
2.复数z=i(i+1)(i为虚数单位)的共轭复数是
A.-1-i
B.-1+i
C.1-i
D.1+i
3.命题“若α=,则tanα=1”的逆否命题是
A.若α≠,则tanα≠1
B. 若α=,则tanα≠1
C. 若tanα≠1,则α≠
D. 若tanα≠1,则α=
4.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能
...是
5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,
则下列结论中不正确
...的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg
6. 已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为
A -=1
B -=1
C -=1
D -=1
7 . 设a>b>0 ,C<0 ,给出下列三个结论
①>②<③log b(a-c)>log a (b-c)
其中所有的正确结论的序号是
A ①
B ①②
C ②③
D ①②③
8 . 在△ABC中,AC=,BC=2 B =60°则BC边上的高等于
A B C D
9. 设定义在R上的函数f(x)是最小正周期2π的偶函数,f(x)的导函数,当X∈[0,π] 时,
0<f(x)<1;当x∈(0,π)且x≠时,(x- )f’(x)>0 ,则函数y=f(x)-sinx在[-2
π,2π] 上的零点个数为
A 2
B 4
C 的
D 8
二,填空题,本大题共7小题,考生作答6小题。
每小题5分共30分,把答案填在答题卡中对应题号后的横线上
(一)选做题,(请考生在第10,,1两题中任选一题作答,如果全做,则按前一题记分)
10.在极坐标系中,曲线C1:与曲线C2:ρ=a(a>0)的一个焦点在极轴上,则a=_______.
11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃。
精确度要求±1℃。
用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______.
(二)必做题(12~16题)
12.不等式x2+5x+6≤0的解集为______.
13.图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.
(注:方差,其中为x1,x2,…,x n的平均数)
14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=
15.如图4,在平行四边形ABCD中,AP⊥BD,垂足为P,且=
16.对于,将n表示为,当
i=k时,a i=1,,a k中等于1的个数为奇数是,b n=1;否则b n=0
a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0。
(1)b2+b4+b6+b8=__;
(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是___。
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。
已知这100位顾客中的一次购物量超过8件的顾客占55%。
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过
...2分钟的概率。
(将频率视为概率)
18.(本小题满分12分)
已知函数的部分图像如图5所示。
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数的单调递增区间。
19.(本小题满分12分)
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD。
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积。
20.(本小题满分13分)
某公司一下属企业从事某种高科技产品的生产。
该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%。
预计以后每年自己呢年增长率与第一年的相同。
公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产。
设第n年年底企业上缴资金后的剩余资金为a n万元。
(Ⅰ)用d表示a1,a2,并写出a n+1与a n的关系式;
(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示)。
21.(本小题满分13分)
在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0
的圆心。
(Ⅰ)求椭圆E的方程
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2。
当直线l1,l2都与圆C
相切时,求P的坐标。
22.(本小题满分13分)
已知函数f(x)=e x-ax,其中a>0。
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f‘(x0)=K恒成立。