2017届中考数学一轮复习课后作业反比例函数
- 格式:doc
- 大小:272.50 KB
- 文档页数:8
反比例函数K的几何意义专题试卷一、选择题1、如图1,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A、逐渐增大B、不变C、逐渐减小D、先增大后减小2、如图2,已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A、16B、20C、24D、283、如图3,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A、36B、12C、6D、3图1 图2 图34、如图4,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A、2B、4C、5D、85、如图5,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为() A、4 B、6 C、8 D、126、如图6,A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为B,向y轴作垂线,垂足为C,则四边形OBAC的面积为()A、6B、5C、10D、﹣5图4 图5 图67、如图7,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A、2B、3C、4D、58、如图8,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y=(x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A、4 ﹣B、4C、2D、2图7 图8二、填空题9、如图9,已知点P (6,3),过点P 作PM⊥x 轴于点M ,PN⊥y 轴于点N ,反比例函数y= 的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k=________.10、如图10,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 ________.11、如图11,在平面直角坐标系中,反比例函数(x >0)的图象交矩形OABC的边AB 于点D ,交边BC 于点E ,且BE=2EC .若四边形ODBE 的面积为6,则k=________ .图9 图10 图1112、如图12,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l∥y 轴,且直线l 分别与反比例函数(x >0)和(x >0)的图象交于P 、Q 、两点,若S △POQ =14,则k 的值为________ .13、如图13,Rt△ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 反向延长线交y 轴负半轴于E ,反比例函数(x >0)的图像经过点A ,若S △BEC =10,则k 等于________.14、如图14,双曲线y=经过Rt△OMN 斜边ON 上的点A ,与直角边MN 相交于点B ,已知OA=2AN ,△OAB 的面积为6,则k 的值是________图12 图13 图1415、反比例反数y=(x >0)的图象如图15所示,点B 在图象上,连接OB 并延长到点A ,使AB=OB ,过点A 作AC∥y 轴交y=(x >0)的图象于点C ,连接BC 、OC ,S △BOC =3,则k=________ .16、如图16,矩形ABCD 的顶点A ,B 的坐标分别是A (﹣1,0),B (0,﹣2),反比例函数y=的图象经过顶点C ,AD 边交y 轴于点E ,若四边形BCDE 的面积等于△ABE 面积的5倍,则k 的值等于________ .17、如图17,在平面直角坐标系中,△ABC 的边AB∥x 轴,点A 在双曲线y=(x <0)上,点B 在双曲线y=(x >0)上,边AC 中点D 在x 轴上,△ABC 的面积为8,则k= ________.图15 图16 图1718、如图18所示,反比例函数y= (k≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________19、如图19,点A ,B 在反比例函数y= (k >0)的图象上,AC⊥x 轴,B D⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是________20、如图20,在平面直角坐标系xOy 中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B ,C 在反比例函数(x >0)的图象上,则△OAB 的面积等于________ .图18 图19 图20 21、如图21,直线l⊥x 轴于点P ,且与反比例函数y 1(x >0)及y 2=(x>0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2=________. 22、如图22,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数y= (x <0)的图象经过点A ,若S △ABO = ,则k 的值为________.23、如图23,反比例函数y= (k≠0)的图象经过A ,B 两点,过点A 作AC⊥x 轴,垂足为C ,过点B 作BD⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC=CD ,四边形BDCE 的面积为2,则k 的值为________.图21 图22 图2324、如图,点A 是反比例函数y 1= (x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数y 2= (x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为________.25、如图,等腰△ABC 中,AB=AC ,BC∥x 轴,点A ,C 在反比例函数y= (x >0)的图象上,点B 在反比例函数y= (x >0)的图象上,则△ABC 的面积为________.26、如图,已知A 是双曲线y= (x >0)上一点,过点A 作AB∥y 轴,交双曲线y=﹣(x >0)于点B ,过点B 作BC⊥AB 交y 轴于点C ,连接AC ,则△ABC 的面积为________.27、如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是________28、如图,点P(3a,a)是反比例函y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为________.29、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.30、如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y轴上,B (4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线经过点E,则k=;答案解析部分一、单选题1、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:设点P的坐标为(x ,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO )•BO=(x+AO )•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.2、【答案】B【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】解:作PM⊥x轴,PN⊥y轴.则△APN∽△BPM∴=∴P纵坐标比横坐标是3:1,设P的横坐标是x,则纵坐标是3x.3x=即:x2=4∴x=2∴P的坐标是:(2,6)∴PB方程y=﹣2x+2PA方程y=x+5∴A的坐标是(0,5)连接OP,三角形OPA面积=5,三角形OPB面积=15,∴四边形AOBP的面积为20.故选B.【分析】作PM⊥x轴,PN⊥y轴.则△APN∽△BPM,即可得到P纵坐标比横坐标是3:1,从而求得P的坐标,进而求得面积.3、【答案】D【考点】反比例函数系数k的几何意义,等腰直角三角形【解析】【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y= 的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD = a2﹣b2= (a2﹣b2)= ×6=3.故选D.【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.4、【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:∵y= ,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.5、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:连结OC,如图,∵AB⊥y轴于点B,AB=3BC,∴S△AOB=3S△BOC,∴S△BOC = ×12=4,∴ |k|=4,而k>0,∴k=8.故选C.【分析】连结OC,如图,根据三角形面积公式,由AB=3BC得到S△AOB=3S△BOC,可计算出S△BOC=4,再根据反比例函数比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.6、【答案】B 【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴,∴S矩形OBAC=|k|=5.故选B.【分析】由“点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴”结合反比例函数系数k的几何意义,即可得出四边形OBAC的面积.7、【答案】C【考点】反比例函数的性质,反比例函数系数k的几何意义【解析】【解答】解:∵点A是反比例函数y= 图像上一点,且AB⊥x轴于点B,∴S△AOB = |k|=2,解得:k=±4.∵反比例函数在第一象限有图像,∴k=4.故选C.【分析】根据点A在反比例函数图像上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图像即可确定k值.8、【答案】D【考点】反比例函数系数k的几何意义,扇形面积的计算【解析】【解答】解:连接AB,BC,∵点A在反比例函数y= (x>0)的图象上,∴S△AOB = ×4 =2 ,∴ OB•AB=2 ,∵点C为OA中点,∴BC= OA=AC,∴△ABC是等边三角形,∴∠OAB=60°,∴ =tan60°= ,∴OB= AB,∴ • AB•AB=2 ,∴AB=2,∴S扇形= = = ,∴S阴影=S△AOB﹣S扇形=2 ﹣,故选D.【分析】连接AB,根据反比例函数系数k的几何意义得出S△AOB =2 ,根据点C 为OA中点,得出AB= OA,即可求得∠OAB=60°,根据面积求得AB的长,然后求得扇形的面积,即可求得阴影的面积.二、填空题9、【答案】6【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y= 得,点A的纵坐标为,点B的横坐标为,即AM= ,NB= ,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6× ﹣×3× =12,解得:k=6.故答案为:6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.10、【答案】9【考点】反比例函数系数k的几何意义,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD 的面积=3×4﹣×3×4=9;故答案为:9.【分析】先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD 的面积,即可求出四边形AOCD的面积.11、【答案】3【考点】反比例函数系数k的几何意义【解析】【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.12、【答案】-20【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题【解析】【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.【分析】由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k 的值.13、【答案】20【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=10,即BC×OE=20=BO×A B=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于20.故答案为:20.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.14、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:作AC⊥x轴于C,如图,设A点坐标为(2a ,),∵OA=2AN,∴OC=2CM,∴OM=3a,∴B点坐标为(3a ,),∵S△AOB+S△BOM=S△AOC+S梯形ABMC,而△OAB的面积为6,S△BOM=S△AOC,∴S梯形ABMC=6,∴(+)•a=6,∴k=.故答案为.【分析】作AC⊥x轴于C,如图,设A点坐标为(2a ,),由于OA=2AN,则OC=2CM,所以OM=3a,根据反比例函数图象上点的坐标特征得到B点坐标为(3a ,),则S△AOB+S△BOM=S△AOC+S梯形ABMC,根据反比例函数y=(k≠0)系数k的几何意义得到S△BOM=S△AOC,所以S梯形ABMC=6,利用梯形的面积公式得到(+)•a=6,解得k=.15、、【答案】4【考点】反比例函数系数k的几何意义【解析】【解答】解:如图:延长AC交x轴于D点,设B点坐标为(a ,),由AB=OB,得A(2a ,),D(2a,0).由AB=OB,得S△ABC=S△BOC=3,S△COD =OD•CD=k.由三角形面积的和差,得S△AOD﹣S△COD=S△AOC,即×2a×﹣k=6.解得k=4.故答案为:4.【分析】根据线段中点的性质,可得A点坐标,根据三角形的中线分三角形所得两个三角形的面积相等,可得S△ABC=S△BOC=3,根据反比例函数的定义,可得△COD的面积,根据三角形面积的和差,可得关于k的方程,根据解方程,可得答案.16、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=, BC=BG+CG=+=∴∴===3,∴BF=3EO=, CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k 的值.17、【答案】-3【考点】反比例函数系数k的几何意义【解析】【解答】解:设A点坐标为(x1,),B点的坐标为(x2,),∵AB∥x轴,边AC中点D在x轴上,∴△ABC边AB上的高为2×(﹣)=﹣,∵△ABC的面积为8,∴AB×(﹣)=8,即(x2﹣x1)×(﹣)=8解得=﹣,∵=,∴=,∴=﹣,∴k=﹣3.故答案为:﹣3.【分析】运用双曲线设出点A及点B的坐标,确定三角形的底与高,利用△ABC的面积为8列出式子求解.再运用A,B点的纵坐标相等求出k.18、【答案】2【考点】反比例函数系数k的几何意义【解析】【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE= ,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC= ,∵矩形OABC的面积为8,∴OA•OC=2m• =8,∴k=2,故答案为:2.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC= ,根据矩形的面积列方程即可得到结论.本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.19、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE, S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及解多元高次方程组,解题的关键是得出关于m、n、k的三元二次方程组.本题属于中档题,难度不大,解决该题型题目时,巧妙的利用面积间的关系找出两点坐标间的关系是关键.20、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C 的横坐标为,B 的横坐标为,∴OD=,OE=,∴DE=﹣=,∴AE=DE=,∴OA=+=,∴S△OAB =OA•BD=××2x=.故答案为.【分析】作BD⊥x轴于D,CE⊥x轴于E,则BD∥CE,得出===,设CE=x,则BD=2x,根据反比例函数的解析式表示出OD=,OE=,OA=,然后根据三角形面积求得即可.21、【答案】4【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题【解析】【解答】解:∵反比例函数y1= (x>0)及y2= (x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP = k1, S△OBP = k2.∴S△OAB=S△OAP﹣S△OBP = (k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【分析】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB= 1 2 (k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP = k1, S△OBP = k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.22、【答案】-3【考点】反比例函数系数k的几何意义【解析】【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴ =tan∠AOB= ,∴设点A的坐标为(﹣3a,a).∵S△ABO = O B•AD= ,∴OB= .在Rt△ADB中,∠ADB=90°,AD= a,AB=OB= ,∴BD2=AB2﹣AD2= ﹣3a2, BD= .∵OD=OB+BD=3a,即3a= + ,解得:a=1或a=﹣1(舍去).∴点A的坐标为(﹣3,),∴k=﹣3× =﹣3 .故答案为:﹣3 .【分析】过点A作AD⊥x轴于点D,由∠AOB=30°可得出= ,由此可是点A的坐标为(﹣3a,a),根据S△ABO = 结合三角形的面积公式可用a表示出线段OB的长,再由勾股定理可用含a的代数式表示出线段BD的长,由此即可得出关于a的无理方程,解方程即可得出结论.本题考查了反比例函数图象上点的图象特征、三角形的面积公式以及解无理方程,解题的关键是根据线段间的关系找出3a=+ .本题属于中档题,难度不大,解决该题型题目时,根据特殊角的三角函数值设出点的坐标,再由线段间的关系找出关于a的方程是关键.23、【答案】-【考点】反比例函数系数k的几何意义,平行线分线段成比例【解析】【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE= BD= b,CD= DO= a∵四边形BDCE的面积为2∴ (BD+CE)×CD=2,即(b+ b)×(﹣a)=2∴ab=﹣将B(a,b)代入反比例函数y= (k≠0),得k=ab=﹣故答案为:﹣【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE 的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.本题主要考查了反比例函数系数k的几何意义,解决问题的关键是运用数形结合的思想方法进行求解.本题也可以根据△OCE与△ODB相似比为1:2求得△BOD的面积,进而得到k的值.24、【答案】5【考点】反比例函数系数k的几何意义【解析】【解答】解:延长BA,与y轴交于点C,∵AB∥x轴,∴BC⊥y轴,∵A是反比例函数y1= (x>0)图象上一点,B为反比例函数y2= (x>0)的图象上的点,∴S△AOC = ,S△BOC = ,∵S△AOB=2,即﹣=2,解得:k=5,故答案为:5【分析】此题考查了反比例函数k的几何意义,熟练掌握反比例函数k的几何意义是解本题的关键.延长BA,与y轴交于点C,由AB与x轴平行,得到BC垂直于y 轴,利用反比例函数k的几何意义表示出三角形AOC与三角形BOC面积,由三角形BOC面积减去三角形AOC面积表示出三角形AOB面积,将已知三角形AOB面积代入求出k的值即可.25、【答案】【考点】反比例函数系数k的几何意义,等腰三角形的性质【解析】【解答】解:设点B的坐标为(,m),则点C的坐标为(,m),∵AB=AC,BC∥x轴,∴点A的坐标为(,m),∴S△ABC = BC•(y A﹣y B)= ×(﹣)×(m﹣m)= .故答案为:.【分析】设点B的坐标为(,m),则点C的坐标为(,m),根据等腰三角形的性质找出点A的坐标,再利用三角形的面积公式即可得出结论.26、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AE⊥y轴于E,设AB交x轴于D,∵AB∥y轴,∴AB⊥x轴,∵BC⊥AB,∴四边形ABCE是矩形,∵A是双曲线y= (x>0)上一点,∴S四边形ADOE=2,∵B在双曲线y=﹣(x>0)上,∴S四边形BDOC=1,∴△ABC的面积= S矩形ABCE = ;故答案为:.【分析】过A作AE⊥y轴于E,设AB交x轴于D,得到四边形ABCE是矩形,根据反比例函数系数k的几何意义即可得到结论.27、【答案】﹣2【考点】等腰直角三角形,反比例函数图象上点的坐标特征【解析】【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y= 的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵ ,∴△COD≌△OAE(AAS),∴OD=AE= ,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a• =﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE= ,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.28、【答案】y=【考点】反比例函数图象的对称性【解析】【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2 .∵点P(3a,a)是反比例函y= (k>0)与⊙O的一个交点.∴3a2=k.=r∴a2= ×(2 )2=4.∴k=3×4=12,则反比例函数的解析式是:y= .故答案是:y= .【分析】根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.29、【答案】3【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y 轴,∴设A(m,),B(m,),∴AB= ﹣= ,∴S▱ABCD = •m=3,故答案为:3.【分析】由AB∥y轴可知,A、B两点横坐标相等,设A(m,),B(m,),求出AB的长,再根据平行四边形的面积公式进行计算即可.30、【答案】【考点】反比例函数的性质【解析】【解答】解:B点的坐标为(4,3),则OA=CB=4,OC=AB=3,易知OBD≌OBA,则∠D=∠OAB=90°,BD=OC=3.四边形OABC是矩形,则∠OCB=90°,即∠OCB=∠D.因为∠OEC=∠BED,所以OEC≌ BED,CE=DE.令CE=DE=x,则有: CE+BE=x+ =4,解得x= .E点的坐标为(,3).双曲线过点E,则k= ×3= .故答案为.【分析】双曲线过点E,关键是求出E点的坐标,已知B点的坐标是(4,3),显然E点和B点的纵坐标是相同的,即E点的纵坐标是3。
2017年中考数学备考专题复习反比例函数(含解析)2017年中考数学备考专题复习反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习反比例函数(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习反比例函数(含解析)的全部内容。
1反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是( )A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3,y3)是反比例函数y= 上的三点,若x1<x2<x3 , y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2—OB2=( )A、—2B、2C 、—D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k2的值为()A 、—B 、—C、—3D、—67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m>0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O13与此图象交于点P,则点P的纵坐标是( )A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB 在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A 、B 、C 、D 、412、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2 , y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________。
第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。
一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
反比例函数课后作业1、函数y=(m 2-m )132 m m x是反比例函数,则( )A .m≠0 B.m≠0且m≠1 C.m=2 D .m=1或22、如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,AB ∥x 轴,BC ∥y 轴,反比例函数y=x 2与y=-x2的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是( ) A .2 B .4 C .6 D .83、已知反比例函数y=x6,当1<x <3时,y 的最小整数值是( ) A .3 B .4 C .5 D .6 4、已知反比例函数y=-x2,下列结论不正确的是( ) A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则0>y >-25、如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=x6在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( )A .36B .12C .6D .36、如图,点A 、C 为反比例函数y=xk(x <0)图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为23时,k 的值为( ) A .4 B .6 C .-4 D .-67、如图,在平面直角坐标系中,一条直线与反比例函数y=x8(x >0)的图象交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数y=x2(x>0)的图象交于两点D 、E ,连接DE ,则四边形ABED 的面积为8、如图,点A 、B 是双曲线y=x6上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为9、如图,点A ,B 在反比例函数y=xk(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是10、如图,以平行四边形ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数y=xk的图象交BC 于点D ,连接AD ,求:△ABD 的面积.11、(1)点(3,6)关于y 轴对称的点的坐标是 .(2)反比例函数y =x 3关于y 轴对称的函数的解析式为 (3)求反比例函数y =xk(k≠0)关于x 轴对称的函数的解析式.12、如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,且OA=3,OC=2,将矩形OABC 向上平移4个单位得到矩形O 1A 1B 1C 1.(1)若反比例函数y=x k 1和y=xk2的图象分别经过点B 、B 1,求k 1和k 2的值; (2)将矩形O 1A 1B 1C 1向左平移得到O 2A 2B 2C 2,当点O 2、B 2在反比例函数y=xk 3的图象上时,求平移的距离和k 3的值.参考答案1、解析:依据反比例函数的定义求解即可.解:由题意知:m 2-3m+1=-1,整理得 m 2-3m+2=0,解得m 1=1,m 2=2. 当m=l 时,m 2-m=0,不合题意,应舍去. ∴m 的值为2. 故选C2、解析:根据反比例函数的对称性可得阴影部分的面积等于长是8,宽是2的长方形的面积,据此即可求解.解:阴影部分的面积是4×2=8. 故选D .3、解析:根据反比例函数系数k >0,结合反比例函数的性质即可得知该反比例函数在x >0中单调递减,再结合x 的取值范围,可得出y 的取值范围,取其内的最小整数,本题得解.解:在反比例函数y=x6中k=6>0, ∴该反比例函数在x >0内,y 随x 的增大而减小, 当x=3时,y=36=2;当x=1时,y=16=6. ∴当1<x <3时,2<y <6. ∴y 的最小整数值是3. 故选A .4、解析:根据反比例函数的性质:当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大进行分析即可.解:A 、图象必经过点(-1,2),说法正确,不合题意;B 、k=-2<0,每个象限内,y 随x 的增大而增大,说法错误,符合题意;C 、k=-2<0,图象在第二、四象限内,说法正确,不合题意;D 、若x >1,则-2<y <0,说法正确,不符合题意; 故选:B5、解析:设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a+b ,a-b ). ∵点B 在反比例函数y=x6的第一象限图象上, ∴(a+b )×(a-b )=a 2-b 2=6. ∴S △OAC -S △BAD =21a 2-21b 2=21(a 2-b 2)=21×6=3. 故选D .6、解析:设点C 的坐标为(m ,m k ),则点E (21m ,mk 2),A (21m ,m k2),根据三角形的面积公式可得出S △AEC =-83k=23,由此即可求出k 值. 解:设点C 的坐标为(m ,m k ),则点E (21m ,mk 2),A (21m ,m k2),∵S △AEC =21BD•AE=21(21m-m )•(m k 2-m k 2)=-83k=23,∴k=-4. 故选C .7、解析:根据点A 、B 在反比例函数y=x 8(x >0)的图象上,可设出点B 坐标为(m8,m ),再根据B 为线段AC 的中点可用m 表示出来A 点的坐标,由AD ∥x 轴、BE ∥x 轴,即可用m 表示出来点D 、E 的坐标,结合梯形的面积公式即可得出结论.解:∵点A 、B 在反比例函数y=x8(x >0)的图象上, 设点B 的坐标为(m 8,m ), ∵点B 为线段AC 的中点,且点C 在x 轴上, ∴点A 的坐标为(m4,2m ). ∵AD ∥x 轴、BE ∥x 轴,且点D 、E 在反比例函数y=x2(x >0)的图象上, ∴点D 的坐标为(m 1,2m ),点E 的坐标为(m2,m ). ∴S 梯形ABED =21(m 4−m 1+m 8−m 2)×(2m-m )=29.故答案为:298、解析:由A ,B 为双曲线上的两点,利用反比例系数k 的几何意义,求出矩形ACOG 与矩形BEOF 面积,再由阴影DGOF 面积求出空白面积之和即可.解:∵点A 、B 是双曲线y=x6上的点, ∴S 矩形ACOG =S 矩形BEOF =6, ∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6-2-2=8, 故答案为:89、解析:根据三角形面积间的关系找出2S △ABD =S △BAC ,设点A 的坐标为(m ,mk ),点B 的坐标为(n ,nk ),结合CD=k 、面积公式以及AB=2AC 即可得出关于m 、n 、k 的三元二次方程组,解方程组即可得出结论.解:∵E 是AB 的中点, ∴S △ABD =2S △ADE ,S △BAC =2S △BCE ,又∵△BCE 的面积是△ADE 的面积的2倍, ∴2S △ABD =S △BAC . 设点A 的坐标为(m ,m k ),点B 的坐标为(n ,nk ), 则有m −n =k,m k =−2n k ,mk n k m k n m 2)()(22=-+-, 解得:k =273, m =27,n=-7,或k =-273, m =-27(舍去),n=7(舍去). 故答案为:273 10、解析:先根据平行四边形的性质求出B 点坐标,进而可得出反比例函数的解析式,利用待定系数法求出直线BC 的解析式,求出D 点坐标,根据三角形的面积公式即可得出结论.解:∵四边形ABCD 是平行四边形,A 、C 的坐标分别是(2,4)、(3,0), ∴B (5,4).∵点A 在反比例函数y=xk上, ∴k=8,∴反比例函数的解析式为:y=x8. 设直线BC 的解析式为y=kx+b (k≠0),把点B (5,4),C (3,0)代入5k +b =4,3k +b =0,解得k =2,b =−6 ∴直线BC 的解析式为y=2x-6. 解方程组y =2x −6,y =x8得x =4,y =2或x =−1, y =−8(舍去), ∴D (4,2),即点D 为线段BC 的中点, ∴S △ABD =21×3×2=3 11、解析:(1)此题只需根据“两点关于y 轴对称,纵坐标不变,横坐标互为相反数”即可得到对称点的坐标;(2)此题只需根据“两反比例函数关于y 轴对称,比例系数k 互为相反数”即可求得关于y 轴对称的函数的解析式;(3)此题只需根据“两反比例函数关于x 轴对称,比例系数k 互为相反数”即可求得关于x 轴对称的函数的解析式.解:(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(-3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数; 则k=-3, 即反比例函数y =x 3关于y 轴对称的函数的解析式为y=-x3; (3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y =x k (k≠0)关于x 轴对称的函数的解析式为:y=-xk . 故答案为:(-3,6)、y=-x312、解析:(1)将B (3,2)代入y=x k 1,即可求出k 1的值;将B 1(3,6)代入y=xk2,即可求出k 2的值;(2)设将矩形O 1A 1B 1C 1向左平移a 个单位得到O 2A 2B 2C 2,根据向左平移,横坐标相减,纵坐标不变得到点O 2(-a ,4),B 2(3-a ,6),由点O 2、B 2在反比例函数y=xk 3的图象上,得出k 3=-4a=6(3-a ),解方程即可求出a 与k 3的值.解:(1)∵矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,且OA=3,OC=2, ∴B (3,2), ∵反比例函数y=xk 1的图象分别经过点B , ∴k 1=3×2=6;∵将矩形OABC 向上平移4个单位得到矩形O 1A 1B 1C 1, ∴B 1(3,6), ∵反比例函数y=xk 2的图象经过点B 1, ∴k 2=3×6=18;(2)设将矩形O 1A 1B 1C 1向左平移a 个单位得到O 2A 2B 2C 2, 则O 2(-a ,4),B 2(3-a ,6), ∵点O 2、B 2在反比例函数y=xk 3的图象上, ∴k 3=-4a=6(3-a ), 解得a=9,k 3=-36.。