2020中考数学新高分大一轮复习全国版《精练:第5课时 一次方程(组)》
- 格式:docx
- 大小:144.44 KB
- 文档页数:4
论船舶自动化设备的信息化保障技术1. 引言1.1 船舶自动化设备的重要性船舶自动化设备在现代船舶运营中扮演着至关重要的角色。
随着科技的进步和航运行业的发展,船舶的自动化程度越来越高,船舶自动化设备的重要性也日益凸显。
船舶自动化设备可以提高船舶的运行效率和安全性。
传统的手动操作容易受到人为因素的影响,而自动化设备可以减少人为错误,提高操作的准确性和可靠性。
这不仅可以减少事故的发生概率,还可以提高船舶的运输效率和效益。
船舶自动化设备可以节约人力成本和提高船员的工作舒适度。
船舶自动化设备可以代替部分重复性、繁杂的工作,减轻船员的工作负担,提高工作效率,降低工作强度,使船员可以更专注于处理紧急情况和重要任务。
船舶自动化设备的重要性不言而喻,它不仅可以提高船舶运行的效率和安全性,还可以节约成本、提高工作效率,为船舶运营带来诸多好处。
随着科技的不断发展和航运行业的不断进步,船舶自动化设备的发展前景将更加广阔。
1.2 信息化保障技术的必要性信息化保障技术的必要性在船舶自动化设备领域中显得尤为重要。
随着科技的不断发展和船舶自动化设备的广泛应用,信息化保障技术的必要性日益凸显。
信息化保障技术能够提高船舶自动化设备的安全性。
通过信息化保障技术的应用,可以建立起完善的安全保障系统,及时预警和处理各类安全隐患,有效降低船舶运行中发生事故的概率。
信息化保障技术可以提升船舶自动化设备的智能化水平。
通过信息化技术,船舶自动化设备可以实现数据的自动采集、分析和处理,提高设备的智能化程度,优化设备运行的效率和性能。
信息化保障技术还能够改善船舶自动化设备的维护管理。
通过信息化技术的应用,可以实现设备的远程监控和诊断,及时发现和解决设备故障,提高设备的可靠性和稳定性,减少设备的损坏和维修成本。
信息化保障技术在船舶自动化设备中的应用是必不可少的。
它不仅可以提升船舶自动化设备的安全性和智能化水平,还能改善设备的维护管理,为船舶领域的发展和进步提供有力支持。
第二章方程(组)与不等式(组)第5讲一次方程与方程组A组基础题组一、选择题1.在如图所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A.27B.51C.69D.722.(2017泰山一模)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )A.54-x=20%×108B.54-x=20%(108+x)C.54+x=20%×162D.108-x=20%(54+x)二、填空题3.(2017长沙)方程组-的解是.三、解答题4.(2017岱岳一模)解方程组-.5.市政府建设一项水利工程,某运输公司承担运送总量为106 m3的土石方任务,该公司有甲、乙两种型号的卡车共100辆,甲型号的卡车平均每天可以运送土石方80 m3,乙型号的卡车平均每天可以运送土石方120 m3,计划100天完成运输任务.(1)该公司甲、乙两种型号的卡车各有多少辆?(2)如果该公司用原有的100辆卡车工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,在甲型号的卡车数量不变的情况下,公司至少应增加多少辆乙型号的卡车?B组提升题组一、选择题1.(2017滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D.2×22x=16(27-x)二、解答题2.解方程:--=5.3.威海市时代服装店2017年四月份用6 000元购进A,B两种新式服装,按标价售出后可获毛利润3 800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A种服装按标价的八折出售,B种服装按标价的七折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?第二章方程(组)与不等式(组)第5讲一次方程与方程组A组基础题组一、选择题1.D 设第一个数为x,则第二个数为(x+7),第三个数为(x+14).故三个数的和为x+x+7+x+14=3x+21.当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意框出表中竖列上相邻的三个数的和不可能是72.故选D.2.B 根据题意可得方程:54-x=20%(108+x).故选B.二、填空题3.答案解析-+ 得4x=4,解得x=1,将x=1代入 中得y=0.所以方程组的解为.三、解答题4.解析-+ 得3x=9,解得x=3,把x=3代入 中得y=-2,所以方程组的解为-.5.解析(1)设该公司甲种型号的卡车有x辆,乙种型号的卡车有y辆,依题意有(解得.答:该公司甲型号的卡车有50辆,乙型号的卡车有50辆.(2)设公司增加z辆乙型号的卡车,依题意有40×(80×50+120×50 +50×[80×50+120×(50+z ]≥106,解得z≥16,∵z为整数,∴公司至少应增加17辆乙型号的卡车.B组提升题组一、选择题1.D x名工人可生产螺栓22x个,(27-x)名工人可生产螺母16(27-x)个,由于螺栓数目的2倍与螺母数目相等,因此2×22x=16(27-x).二、解答题2.解析去分母得2x-3(30-x)=60,去括号得2x-90+3x=60,移项合并同类得5x=150,解得x=30.3.解析(1)设购进A种服装x件,B种服装y件,则(-(-解得.答:购进A种服装50件,B种服装30件.(2)由题意得(100×80%-60 ×50+(160×70%-100 ×30-3 800=1000+360-3 800=-2 440(元).答:这批服装打折全部售完后,服装店比按标价出售少收入2 440元.。
2020年中考数学一轮复习培优训练:《一次函数》1.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.2.如图,A(﹣2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(﹣2,1)为AB的中点,直线CD交x轴于点F.(1)求直线CD的函数关系式;(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;(3)求点E坐标;(4)点P是直线CE上的一个动点,求PB+PF的最小值.3.如图,一次函数y=x+2的图象与x轴和y轴分别交于点A和B,直线y=kx+b经过点B与点C(2,0).(1)点A的坐标为;点B的坐标为;(2)求直线y=kx+b的表达式;(3)在x轴上有一动点M(t,0),过点M做x轴的垂线与直线y=x+2交于点E,与直线y=kx+b交于点F,若EF=OB,求t的值.(4)当点M(t,0)在x轴上移动时,是否存在t的值使得△CEF是直角三角形?若存在,直接写出t的值;若不存在,直接答不存在.4.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2 (1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.5.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.6.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0)、B(0,6),过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的解析式;(2)求直线l的解析式;(3)若△CBE与△ABO相似,求点E的坐标.7.如图,直线y=kx+6与x轴、y轴分别相交于点E、F,点E的坐标为(﹣8,0),点A 的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.8.如图(含备用图),在直角坐标系中,已知直线y=kx+3与x轴相交于点A(2,0),与y 轴交于点B.(1)求k的值及△AOB的面积;(2)点C在x轴上,若△ABC是以AB为腰的等腰三角形,直接写出点C的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB 的面积相等时,求点P的坐标.9.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=2x+3与x轴交于点A、与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.10.在平面直角坐标系xoy中,直线AB交x轴于点A,交y轴于点B,tan∠OAB=1,点A 的坐标是(4,0).(1)如图1,求直线AB的解析式;(2)如图2,点P在第一象限内,连接OP,过点P作PC⊥OP交BA延长线于点C,且OP=PC,过点C作CD⊥x轴于点D,连接PD,设点C的横坐标为t,△OPD的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BE⊥y轴,连接CE、PE,若∠PEB+∠POD =45°,CE=5AD时,求S的值.11.在平面直角坐标系上,已知点A(8,4),AB⊥y轴于B,AC⊥x轴于C,直线y=x交AB于D.(1)直接写出B、C、D三点坐标;(2)若E为OD延长线上一动点,记点E横坐标为a,△BCE的面积为S,求S与a的关系式;(3)当S=20时,过点E作EF⊥AB于F,G、H分别为AC、CB上动点,求FG+GH 的最小值.12.直线y=﹣x+4与x轴、y轴分别交于A、B两点,C是OB的中点,D是线段AB上一点.(1)求点A、B的坐标;(2)若四边形OEDC是菱形,如图1,求△AOE的面积;(3)若四边形OEDC是平行四边形,如图2,设点D的横坐标为x,△AOE的面积为S,求S关于x的函数关系式.13.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.14.如图1,将矩形OABC放置在平面直角坐标系中,已知A(4,0)、C(0,3),将其绕点A顺时针旋转,得到矩形O'AB'C,旋转一周后停止.(1)当边O'A所在直线将矩形分成面积比为5:1的两部分时,求O'A所在直线的函数关系式.(2)在旋转过程中,若以C,O',B',A四点为顶点的四边形是平行四边形,求点O'的坐标.(3)取C'B'中点M,连接CM,在旋转过程中,当CM取得最大值时,直接写出△ABM 的面积.15.如图,在平面直角坐标系中,直线y=kx+b经过点A(4,0)、B(0,2),点P是x轴正半轴上的动点,过点P作PC⊥x轴,交直线AB于点C,以OA、AC为边构造平行四边形OACD.设点P的横坐标为m.(1)若四边形OACD恰是菱形,请求出m的值;(2)在(1)的条件下,y轴上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=﹣x﹣…①,则点E(0,﹣),直线AD的表达式为:y=﹣3x+2…②,联立①②并解得:x=1,即点D(1,﹣1),点B、E、D的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S=MB×y C=×5×1=,△BMCS △BPN =S △BCM ==NB ×k =NB , 解得:NB =,故点N (﹣,0)或(,0).2.解:(1)∵四边形 ABOD 为正方形,A (﹣2,2)、 ∴AB =BO =OD =AD =2, ∴D (0,2), ∵C 为 AB 的中点, ∴BC =1,∴C (﹣2,1),设直线 CD 解析式为 y =kx +b (k ≠0), 则有,解得∴直线 CD 的函数关系式为 y =x +2;(2)∵C 是 AB 的中点, ∴AC =BC ,∵四边形 ABOD 是正方形, ∴∠A =∠CBF =90°, 在△ACD 和△BCF 中,∴△ACD ≌△BCF (ASA ), ∴CF =CD , ∵CE ⊥DF , ∴CE 垂直平分 DF , ∴DE =FE , ∴∠EDC =∠EFC , ∵AD ∥BF , ∴∠EFC =∠ADC ,∴∠ADC=∠EDC;(3)由(2)可BF=AD=2,且BC=1,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴△BCF∽△BEC,=,∴=,∴BE=∴OE=OB﹣BE=2﹣=∴E点坐标为(﹣,0);(4)如图,连接BD交直线CE于点P.由(2)可知点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,∴PB+PF的最小值为BD的长,∵B(﹣2,0),D(0,2),∴BD=2,∴PB+PF的最小值为2.3.解:(1)∵一次函数y=x+2的图象与x轴和y轴分别交于点A和B,∴令y=0,则x=﹣3;令x=0,则y=2,∴点A的坐标为(﹣3,0),点B的坐标为(0,2),故答案为:(﹣3,0),(0,2)(2)∵直线y=kx+b经过点B与点C(2,0).∴解得:∴直线y=kx+b的表达式为y=﹣x+2.(3)∵ME⊥x轴,∴点M、E、F的横坐标都是t,∴点E(t,t+2),点F(t,﹣t+2)∴EF=|t|,∵EF=OB=2,∴2=|t|∴t=±(4)当点M在点C左边时,点E与点A重合时,∴∠CEF=90°,∴△CEF是直角三角形,∴t=﹣3;当点M在点C右边,且∠ECF=90°时,∵∠ECF=90°,∴∠ECM+∠FCM=90°,且∠ECM+∠CEF=90°,∴∠CEF=∠FCM,且∠CMF=∠CME=90°,∴△CME∽△FMC,∴,∴(t﹣2)2=(t+2)(t﹣2)∴t=2(不合题意舍去),t=12综上所述:t=﹣3或t=12时,△CEF是直角三角形.4.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.5.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(,),又∵点D在直线y=﹣2x+1上,∴﹣2×=,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).6.解:(1)∵一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,∴,解得,,∴一次函数y=kx+b的表达式为y=x+6;(2)如图1,直线l与y轴的交点为D,∵BC⊥l,∴∠BCD=90°=∠BOC,∴∠OBC+∠OCB=∠OCD+∠OCB,∴∠OBC=∠OCD,∵∠BOC=∠COD,∴△OBC∽△OCD,∴,∵B(0,6),C(2,0),∴OB=6,OC=2,∴,∴OD=,∴D(0,﹣),∵C(2,0),设直线l的函数解析式为y=mx+n,,得∴直线l的解析式为y=;(3)∵△CBE与△ABO相似,∴当△CBE1∽△OAB时,则,∵点A(﹣9,0)、B(0,6),点C(2,0),∴OA=9,OB=6,OC=2,∵∠BOD=90°,∴BC=,∴,解得,CE1=,设点的E1坐标为(a,),则且a>0,解得,a=6,∴点E1坐标为(6,);当△CBE2∽△OBA时,则,∵点A(﹣9,0)、B(0,6),点C(2,0),∴OA=9,OB=6,OC=2,∵∠BOD=90°,∴BC=,∴,解得,CE2=3,设点的E2坐标为(c,),则且c>0,解得,c=11,则点E2坐标为(11,3);由上可得,E点坐标为或(11,3).7.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.8.解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B(0,3),OB=3.当y=0时,﹣x+3=0,∴x=2,∴A(2,0),OA=2,∴S△AOB=OA•OB=×2×3=3.(2)如图2,①当AB=BC时,点C与点A(2,0)关于y轴对称,故C(﹣2,0)符合题意;②当AB=AC时,由A(2,0),B(0,3)得到AB==,由AC=AC′=得到C′(+2,0)、C″(2﹣,0).综上所述,符合条件的点C的坐标是(﹣2,0)或(+2,0)或(2﹣,0);(3)∵M(3,0),∴OM=3,∴AM=3﹣2=1.由(1)知,S△AOB=3,∴S△PBM =S△AOB=3;①当点P在x轴下方时,S△PBM =S△P AM+S△ABM=+•AM•|y P|=+×1×|y P|=3,∴|y P|=3,∵点P在x轴下方,∴y P=﹣3.当y=﹣3时,代入y=﹣x+3得,﹣3=﹣x+3,解得x=4.∴P(4,﹣3);②当点P在x轴上方时,S△PBM =S△APM﹣S△ABM=•AM•|y P|﹣=×1×|y P|﹣=3,∴|y P|=9,∵点P在x轴上方,∴y P=3.当y=9时,代入y=﹣x+3得,9=﹣x+3,解得x=﹣4.∴P(﹣4,9).9.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CB D=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=2x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣,0),(0,3),∴AO=,BO=3,∴BD=,CD=3,∴点C的坐标为(﹣3,),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣3x﹣;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(,),又∵点D在直线y=﹣2x+1上,∴﹣2×=﹣,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).10.解:(1)∵点A的坐标是(4,0),∴OA=4,∵tan∠OAB=1,∴∠OAB=45°,∴OB=OA=1,∴B(0,4),设直线AB的解析式为y=kx+b,,解得:,∴直线AB的解析式为y=﹣x+4;(2)过P作PH⊥OB于H,延长CD交HP于G,∵CD⊥x轴,HP∥x轴,∴CD⊥HP,∴∠G=90°,∴四边形HODG是矩形,OH=DG,∴∠HPO+∠CPG=90°,∠HPO+∠HOP=90°,∴∠HOP=∠CPG,OP=PC,∴△HOP≌△GPC(AAS),∴HP=CG,OH=PG=DG,∵点C的横坐标为t,∴CD=t﹣4,设DG=m,则CG=HG﹣PG=t﹣m,∴m﹣t﹣4=t﹣m,∴m=2,∴PN=2,∵S=OD•PN=t;(3)延长EB,OP交于K,过P作PH⊥OB于H,由(2)知,OH=BH=2,PH∥BK,∴OP=PK,连接OC,CK,∵OP=PC,∴∠POC=∠PCO=∠OKC=45°,∴PC=PK,OC=CK,延长EP交CK于T,∵∠PEB+∠POD=45°,∠DOC+∠POD=45°,∴∠DOC=∠PEB,∵∠OCK=∠ODC=90°,∴∠DOC=∠DCK,∠CQK=∠ODC=90°,OC=CK,∴△KCQ≌△COD(AAS),∴QK=CD=AD,∠DCK=∠PEB,∴∠PTK=90°,∴CT=TK,∴EC=EK,∵∠CAD=45°,∴AD=DC=4﹣t,∵CE=5AD=5(t﹣4),EQ=EK﹣QK=4(t﹣4),由勾股定理得,CQ=3(t﹣4),∵CQ=QD+CD=t,∴3(t﹣4)=t,解得:t=6,∴S=6.11.解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=∠COB=90°,∴四边形ABOC是矩形,∵A(8,4),∴AB=OC=8,AC=OB=4,∴B(0,4),C(8,0),∵直线y=x交AB于D,∴∠BOD=45°,∴OB=DB=4,∴D(4,4).(2)由题意E (a ,a ),∴S =S △OBE +S △OEC ﹣S △OBC =×4×a +×8×a ﹣×4×8=6a ﹣16.(3)当S =20时,20=6a ﹣16, 解得a =6, ∴E (6,6), ∵EF ⊥AB 于F , ∴F (6,4),如图二中,作点F 关于直线AC 的对称点F ′,作F ′H ⊥BC 于H ,交AC 于G .此时FG +GH 的值最小.∵∠ABC =∠F ′BH ,∠BAC =∠F ′HB , ∴△ABC ∽△HBF ′, ∴=,∵AC =4,BC ==4,BF ′=AB +AF ′=8+2=10,∴=,∴F ′H =2, ∴FG +GH 的最小值=F ′H =2.12.解:(1)∵直线y =﹣x +4与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =4, 当y =0时,x =4∴点A(4,0),点B(0,4)(2)如图,过点D作DH⊥BC于点H,∵OA=4,OB=4∴tan∠ABO=∴∠ABO=60°∵C是OB的中点,∴BC=OC=2,∵四边形OEDC是菱形,∴OC=OD=DE=2∴CD=BC,∠CBD=60°∴△BCD是等边三角形∴BD=2,∵DH⊥BC,∠ABO=60°∴BH=1,HD=BH=∴当x=时,y=3∴D(,3)=×4×(3﹣2)=2∴S△AOE(3)由点D是线段AB上一点,设点D(x,﹣x+4)∵四边形OEDC是平行四边形∴OC=DE=2,∴点E(x,﹣x+2)当﹣x+2>0,即0<x<2时,S=×(﹣x+2)=﹣2x+4当﹣x+2<0,即2<x≤4∴S=×4×(x﹣2)=2x﹣413.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE =2,∠BCO =30°,BE ⊥OC ∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP , ∴AP =BP ,∠APB =30°,∵∠APE +∠BPE =30°,∠BCE =30°=∠BPE +∠PBC , ∴∠APE =∠PBC , ∵∠AOE =∠BCO =30°,∴∠AOP =∠BCP =150°,且∠APE =∠PBC ,P A =PB ∴△OAP ≌△CPB (AAS ) ∴OP =BC =4, ∴点P (﹣4,0)综上所述:点P 坐标为(4,0)或(﹣4,0) 14.解:(1)∵矩形OABC 中,A (4,0),C (0,3) ∴∠OAB =∠B =90°,BC =OA =4,AB =OC =3 ∵O 'A 所在直线将矩形分成面积比为5:1的两部分 ∴小的部分面积为矩形面积的①如图1,当直线O 'A 交OC 边于点D ,则S △AOD =S 矩形OABC ∴OA •OD =OA •OC ∴OD =OC =1 ∴D (0,1)设直线O 'A 关系式为:y =kx +b ∴解得:∴直线O 'A 关系式为:y =﹣x +1②如图2,当直线O 'A 交BC 边于点E ,则S △ABE =S 矩形OABC ∴AB •BE =AB •BC ∴BE =BC =∴CE=BC=∴E(,3)设直线O'A关系式为:y=kx+b∴解得:∴直线O'A关系式为:y=﹣x+9综上所述,O'A所在直线的函数关系式为y=﹣x+1或y=﹣x+9.(2)①若四边形AO'CB'为平行四边形,则O'与O重合,还没开始旋转,不符合题意.②若四边形CO'B'A为平行四边形,如图3,过点O'作O'F⊥x轴于点F,交BC于点G,O'A交BC于E∴四边形OFGC是矩形∴OF=CG,FG=OC=3∵CO'∥AB',且CO'=AB'∴CO'=AB=3,∠CO'E=∠O'AB'=∠ABE=90°在△CO'E与△ABE中,∴△CO'E≌△ABE(AAS)∴CE=AE,O'E=BE设CE=a,则O'E=BE=4﹣a∵Rt△CO'E中,CO'2+O'E2=CE2∴32+(4﹣a)2=a2解得:a=∴CE=,O'E=∴sin∠O'CE=,cos∠O'CE=∵Rt△CO'G中,sin∠O'CE=,cos∠O'CE=∴O'G=CO'=,OF=CG=CO'=∴O'F=O'G+FG=+3=∴O'(,)③若四边形CAO'B'为平行四边形,如图4,过点O'作O'F⊥x轴于点F,CB'交x轴于点H∵CB'∥AO',且CB'=AO'∴CB'=AO'=BC=4,∠CB'A=∠O'AB'=∠B=90°,∠AHB'=∠O'AF 在Rt△ABC与Rt△AB'C中∴Rt△ABC与Rt△AB'C(HL)∴∠ACB=∠ACB'∵BC∥OA∴∠ACB=∠OAC∴∠ACB'=∠OAC∴CH=AH设OH=h,则CH=AH=4﹣h∵Rt△COH中,CO2+OH2=CH2∴32+h2=(4﹣h)2解得:a=∴OH=,CH=,∴sin∠CHO=,cos∠CHO=∵∠O'AF=∠AHB'=∠CHO∴sin∠O'AF=,cos∠O'AF=∴O'F=AO'=,AF=AO'=∴OF=OA+AF=4+∴O'(,﹣)综上所述,点O'的坐标为(,)或(,﹣).(3)如图5,∵∠B'=90°,AB'=3,B'M=C'B'=2∴AM=∴点M在以A为圆心、为半径长的圆上运动∴当点M运动到线段CA延长线上时,CM最长,如图6过M作MN⊥AB于BA延长线上的点N∴MN∥BC∴△AMN∽△ACB∴∵AC=∴MN==AB•MN=∴S△ABM15.解:(1)∵A(4,0)、B(0,2),∴OA=4,OB=2,∴AP=4﹣m,∵PC∥OB,∴△OAB∽△P AC,∴,即,∴PC=2﹣,∴AC=,∵四边形OACD恰是菱形,∴OA=AC,即|4﹣m|=4,解得,m=;(2)存在,设点Q的坐标为(0,n),当m=时,如图1所示∵四边形OACD恰是菱形,∴∠ODC=∠CAO,∵∠CDO+∠OQC=180°,∠OQC+∠BQC=180°,∴∠BQC=∠BAO,∵∠QBC=∠ABO,∴△BQC∽△BAO,∴,∵AC=AO=4,AB=,∴BC=AB﹣AC=2﹣4,∴BQ==10﹣4,∴2﹣n=10﹣4,∴n=4﹣8,∴Q(0,4﹣8).当m=时,如图2所示,∵四边形OACD恰是菱形,∴∠ODC=∠CAO,∵∠C DO+∠OQC=180°,∠OAC+∠OAB=180°,∴∠OQC=∠BAO,∵∠AOB=∠POQ=90°,∴△PQO∽△BAO,∴,即,解得,n=或,此时,Q(0,)或(0,).综上,Q点的坐标为(0,4﹣8)或(0,)或(0,).。
第5讲:一元一次方程及其应用一、复习目标1、准确地理解方程、方程的解、解方程和一元一次方程等概念。
2、熟练地掌握一元一次方程的解法。
3、能以一元一次方程为工具解决一些简单的实际问题。
二、课时安排1课时三、复习重难点1、根据具体问题中的数量关系列出一元一次方程并求解。
2、寻找等量关系,直接、间接设元。
四、教学过程(一)知识梳理一元一次方程解的概念1、什么是方程?方程和等式的区别是什么?2.什么是一元一次方程?它的标准形式和最简形式是什么?一元一次方程是只指含有未知数,且未知数的最高次数是的方程。
它的标准形式是:它的最简形式是:3.什么是方程的解,什么是解方程?解一元一次方程的一般步骤有哪些?它的根据是什么?1、:不要漏乘分母为1的项。
2、:注意符号全套资料联系QQ/微信:14032256583、:①将含有未知数的项移到等式的一边;将常数项移到另一边;②注意“变号”4、(乘法分配律的逆用)5、:除以一个数等于乘以这个数的倒数。
等式的性质等式有哪些性质,并以字母形式表示出来 等式性质1:如果a=b ,那么: a+c=等式性质2:如果a=b ,那么:ac= ,a/c= (c ≠0) (二)题型、方法归纳考点一、考查一元一次方程解的概念技巧归纳:1、主要是在考查方程的解的定义的基础上求方程中参数的值2、未知数的系数化为 1,就是在方程两边同时除以未知数的系数或同时乘未知数的系数的倒数.考点二 含字母系数的一元一次方程技巧归纳:含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a 、b 的值没有明确给出时,则要对a 、b 的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x =ba当a =0,b =0时,方程的解为无数个;当a =0,b≠0时,方程无解.考点三、求增长率问题技巧归纳:在解这一类题目时关键要找好“单位1”考点四、打折销售问题技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.考点五、利用一元一次方程技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.(三)典例精讲例1已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是解析:由题意知道方程的解是x=m,根据方程的解的定义,把m x =代入方程234=-m x 得:234=-m m ,所以2=m .例2.已知关于 x 的方程 2x +a -9=0 的解是 x =2,则 a 的值为 ( D) A. 2 B. 3 C. 4 D.5例3、若 x =2 是关于 x 的方程 2x +3m -1=0 的解,则 m 的值为______-1_____. 例4 解关于x 的方程: 2a(a -4)x +4(a +1)x -2a =a 2+4x原方程整理得:a(2a-4)x=a(a+2)①当a≠0,a≠2时方程有唯一解,x2 24aa+ =-②当a=0时,方程有无数个解;③当a=2时,方程无解.含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=ba;当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.全套资料联系QQ/微信:1403225658例5 2009年全国教育计划支出1980亿元,比2008年增加380亿元,则2009年全国教育经费增长率为。
中考数学一轮训练:一次方程(组)及其应用一、选择题1. 一列长150米的火车以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需的时间是()A.60秒B.30秒C.40秒D.50秒2. 若某数的3倍与这个数的2倍的和是30,则这个数为()A.4 B.5 C.6 D.73. 若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A.-1 B.0C.1 D.1 34. (2020·绵阳)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差45钱;若每人出七钱,还差3钱.问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱5. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x人,那么下面所列方程正确的是()A.(1+8%)x+(1+11%)(4200-x)=4200×10%B.8%x+11%(4200-x)=4200×(1+10%)C.8%x+(1+11%)(4200-x)=4200×10%D.8%x+11%(4200-x)=4200×10%6. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( )A .6400元B .3200元C .2560元D .1600元7. 已知⎪⎪⎪⎪⎪⎪2-23x =4,则x 的值是( ) A .-3B .9C .-3或9D .以上结果都不对 8. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .盈利B .亏损C .不盈不亏D .与售价a 有关二、填空题9. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则该商品的进价是 元.10. 在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯.”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.11. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.12. 某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.13. (2020·无锡)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.14. 在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,依题意可列方程为__________________.15. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.16. 若方程2x+4=0与关于x的方程3(x+a)=a-5x有相同的解,则a=________.三、解答题17. 解方程组:18. 一项道路工程,甲队单独施工需8天完成,乙队单独施工需12天完成.现在甲、乙两队共同施工4天,由于甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 某校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,那么其余学生票价可享受半价优惠.”乙旅行社说:“包括校长在内全部按全票价的六折付款.”若甲、乙两家旅行社的全票价均为240元,设学生人数为x.(1)分别计算两家旅行社的收费(用含x的式子表示);(2)当学生人数是多少时,两家旅行社的收费一样?21. 根据下列条件列出方程:(1)x的5倍比x的2倍大12;(2)x的23比x的倒数小5;(3)x的5倍减去4等于x的6倍加上1;(4)x的20%与15的差的一半等于-2.22. 张亮同学在解关于y的方程3y-a4-5y-7a6=1去分母时,忘记将方程右边的1乘12,从而求得方程的解为y=10,现请你帮助张亮同学求出原方程的解.2020-2021 中考数学一轮训练:一次方程(组)及其应用-答案一、选择题1. 【答案】D[解析] 设这列火车完全通过隧道所需的时间是x秒,则15x=600+150,解得x=50,故这列火车完全通过隧道所需的时间是50秒.2. 【答案】C[解析] 设这个数为x,则3x+2x=30,解得x=6.故选C.3. 【答案】A[解析] 因为x=2是关于x的方程2x+3m-1=0的解,所以2×2+3m-1=0,解得m=-1.故选A.4. 【答案】C【解析】设合伙人数为x,羊价为y元.根据“若每人出五钱,还差45钱;若每人出七钱,还差3钱.”可得,54573x yx y+=⎧⎨+=⎩,解得21150xy=⎧⎨=⎩.故选项C正确.5. 【答案】D6. 【答案】B[解析] 设小明前年买理财产品的钱数是x元.由题意得4.5%x×2=288,解得x=3200.即小明前年买理财产品的钱数为3200元.7. 【答案】C [解析] 由⎪⎪⎪⎪⎪⎪2-23x =4,得2-23x =4或2-23x =-4,解得x =-3或x =9.故选C.8. 【答案】B [解析] 设第一件服装的进价为x 元,依题意得x(1+20%)=a.设第二件服装的进价为y 元,依题意得y(1-20%)=a ,所以x(1+20%)=y(1-20%),整理得3x =2y.该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x(元),即赔了0.1x 元.二、填空题9. 【答案】200010. 【答案】3 [解析] 设顶层的红灯有x 盏,则依题意可列方程x +2x +4x +8x +16x +32x +64x =381.合并同类项,得127x =381.系数化为1,得x =3.11. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.12. 【答案】1 10013. 【答案】8【解析】根据题意可设绳长为x ,则13x -4=14x -1,则x =36,则井深8尺.14. 【答案】30x +8=31x -26 [解析] “人数”不变,可用两种方法表示人数.15. 【答案】6 [解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.16. 【答案】8[解析] 由2x+4=0得x=-2.把x=-2代入3(x+a)=a-5x,得3(-2+a)=a+10,解得a=8.三、解答题17. 【答案】解:∵∴①-②,得:6y=18,解得y=3,把y=3代入①,可得:3x+12=36,解得x=8,∴原方程组的解是18. 【答案】解:设乙队还需x天才能完成,则(112+18)×4+x12=1,解得x=2.答:乙队还需2天才能完成.19. 【答案】解:(1)设买了x本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x+8(40-x)=300-68+13.解得x=25.40-x=15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)甲旅行社的收费为12·240x +240=(120x +240)元;乙旅行社的收费为610×240(x +1)=(144x +144)元.(2)解方程120x +240=144x +144,得x =4.故当学生人数为4时,两家旅行社的收费一样.21. 【答案】解:(1)5x -2x =12. (2)23x =1x -5.(3)5x -4=6x +1.(4)12(20%x -15)=-2.22. 【答案】4352解:方程3y -a 4-5y -7a 6=1.张亮同学去分母时方程右边的1忘记乘12,则原方程变为3(3y -a)-2(5y -7a)=1,此时方程的解为y =10,代入得3(30-a)-2(50-7a)=1.去括号,得90-3a -100+14a =1.移项、合并同类项,得11a =11.解得a =1.将a =1代入方程3y -a 4-5y -7a 6=1,得3y -14-5y -76=1.去分母,得3(3y -1)-2(5y -7)=12.去括号,得9y -3-10y +14=12.移项、合并同类项,得y =-1.即原方程的解为y =-1.。
第5课时 一次方程(组)
知能优化训练
中考回顾
1.(2019山东菏泽中考)已知{x =3,
y =-2是方程组{ax +by =2,bx +ay =-3的解,则a+b 的值是( )
A.-1
B.1
C.-5
D.5
2.(2019四川眉山中考)已知关于x ,y 的方程组{x +2y =k -1,
2x +y =5k +4
的解满足x+y=5,则k 的
值为 .
3.(2018山东滨州中考)若关于x ,y 的二元一次方程组{3x -my =5,2x +ny =6
的解是{x =1,
y =2,则关于
a ,
b 的二元一次方程组{3(a +b )-m (a -b )=5,
2(a +b )+n (a -b )=6
的解是 .
a =3
2,
b =-12
4.(2019甘肃武威中考)小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元.
x 元,y 元,
根据题意可得,{
12y +20x =112,12x +20y =144,
解得{x =2,
y =6.
答:中性笔和笔记本的单价分别是2元,6元.
模拟预测
1.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 ( )
A.2
B.3
C.4
D.5
2.已知方程组{2x +y =5,
x +3y =5,
则x+y 的值为( )
A.-1
B.0
C.2
D.3
3.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的
长、宽分别为x cm,y cm,则下列方程组正确的是( )
A.{
x -2y +y =6,x +3y =14 B.{x +3y =14,
x +2y =6
C.{x +3y =14,2x -y =6
D.{x +3y =14,x +y =6
4.若关于x ,y 的二元一次方程组{x +y =5k ,
x -y =9k
的解也是二元一次方程2x+3y=6的解,则k
的值为( ) A.-3
4 B.3
4 C.43
D.-4
3
5.已知方程组{ax +2by =3,
2bx +ay =-7
的解x ,y 满足x+y=2,则代数式a+2b 的值为 .
2
6.定义运算“*”,规定x*y=ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3= .
7.已知关于x ,y 的方程组{x +y =5,
4ax +5by =-22
与{2x -y =1,ax -by -8=0有相同的解,则(3a+2b )2 017的
值为 .
1
8.(2019海南模拟)某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,购买这两种树苗共用去21 000元.求甲、乙两种树苗各购买了多少株.
方法一)设购买甲种树苗x 株,乙种树苗y 株,由题意得,{x +y =800,
24x +30y =21 000,
解得
{
500,
y =300.
答:购买甲种树苗500株,乙种树苗300株.
(方法二)设甲种树苗购买了x 株,根据题意得,24x+30(800-x )=21 000,解得x=500, 800-500=300(株).
答:购买甲种树苗500株,乙种树苗300株.
9.古运河是扬州的母亲河,为了打造古运河风光带,现有一段长为180 m 的河道整治任务由A,B 两个工程队先后接力完成.A 工程队每天整治12 m,B 工程队每天整治8 m,共用时20天.
(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:
甲:{x +y =
12x +8y =
乙:{x +y = ,x 12+y 8
= .
根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 的意义,然后在方框中补全甲、乙两名同学所列的方程组.
甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示 .
(2)求A,B 两工程队分别整治河道多少米.(写出完整的解答过程)
甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数.
乙:x 表示A 工程队整治河道的米数,y 表示B 工程队整治河道的米数.
甲:{
x +y =
12x +8y =乙:{x +y =x
12+y 8
=
(2)若解甲的方程组{x +y =20,12x +8y =180.①
②
①×8,得8x+8y=160. ③
②-③,得4x=20.∴x=5.
把x=5代入①得y=15,∴12x=60,8y=120. 答:A,B 两工程队分别整治河道60 m 和120 m . 若解乙的方程组{x +y =180,x 12+y 8=20.
④
⑤
⑤×12,得x+1.5y=240. ⑥
⑥-④,得0.5y=60.∴y=120. 把y=120代入④,得x=60.
答:A,B 两工程队分别整治河道60 m 和120 m .。