理科历年高考圆锥曲线题目
- 格式:doc
- 大小:763.50 KB
- 文档页数:11
圆锥曲线9.已知双曲线中心在原点且一个焦点为 F (、、7 , 0),直线y = X 一1与其相交于M、N两点,MN中点的横坐标为_ -,则此双曲线的方程是32 222A∙X一y =1 B.X一y =13 4432 222C∙X一y=I D.X一y=I5 22521.(本小题满分14分)已知常数a • 0,向量C = (0,a),i =(1,0),经过原点O以c::;-u i为方向向量线与经过定点A(0, a)以i -2弋为方向向量的直线相交于点P ,其中■ ∙R.试问:是否存在两个定点E、F ,使得I PE I ∙I PF |为定值.若存在,求出E、F的坐标;若不存在,说明理由•2 24.设P是双曲线笃一丫1上一点,双曲线的一条渐近线方程为3x-2y=0, F1、F2a 9分别是双曲线的左、右焦点,若| PF1 |=3 ,则| PF2 I=A.1 或5B.6C.7D.922.(本小题满分14分)椭圆的中心是原点0,它的短轴长为2..2 ,相应于焦点F(c, 0)(c . 0)的准线I与X轴相交于点A, |0F ^2| FA| ,过点A的直线与椭圆相交于P、Q两点•⑴求椭圆的方程及离心率;⑵若OPOQ=O ,求直线PQ的方程;⑶设AP= ∙AQ (,∙1),过点P且平行于准线I的直线与椭圆相交于另一点M ,证明:FM - - FQ.2 25.设双曲线以椭圆—=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线25 9的渐近线的斜率为4 1 3A. -2B.C.D.3 2 421.(本小题满分14分)抛物线C的方程为y = ax (a :::0),过抛物线C上一点P(X o,y°)(x° = 0)作斜率为«,k2的两条直线分别交抛物线C于A(X1,yj、B(X2,y2)两点(P、A、B三点互不相同),且满足k2::;'^k1= 0(人0且■謚-1).⑴求抛物线C的焦点坐标和准线方程;⑵设直线AB上一点M ,满足B^^ ■ MA ,证明线段PM的中点在y轴上;⑶当怎=1时,若点P的坐标为(1,-1),求.PAB为钝角时点A的纵坐标y1的取值范围.2.如果双曲线的两个焦点分别为F i(-3 , 0)、F2(3 , 0),一条渐近线方程为Y= F2x ,那么它的两条准线间的距离是A6、3 B. 4 C. 2 D. 122.(本题满分14分)2 2如图,以椭圆务 a b 0的中心O为圆心,分别以a和b为半径作大圆和小a b圆•过椭圆右焦点F(C,0)(c ∙b)作垂直于X轴的直线交大圆于第一象限内的点 A •连结OA交小圆于点B •设直线BF是小圆的切线.⑴证明c2 ab ,并求直线BF与y轴的交点M的坐标;——∙==J. ———≡⅛A⑵设直线BF交椭圆于P、Q两点,证明OPOQ= 1b2•22 24.设双曲线 W =1(a 0 , b 0)的离心率为 .3 ,且它的一条准线与抛物线a by 2=4x 的准线重合,则此双曲线的方程为1AF 2丄F 1F 2 ,原点O 到直线AF 1的距离为一 OR .3⑴证明a = ■... 2b ; ⑵设Q 1,Q 2为椭圆上的两个动点, OQ-OQ 2 ,过原点O 作直线Q 1Q 2的垂线OD ,垂足为D ,求点D 的轨迹方程.2 2A .X ■一12 2422.(本小题满分 2 2 设椭圆x2■爲a 2b 2 B.14分)2 2 ⅛48 96C.2 2X ■一空=1 3 3D.2 2—13 6= 1(a b 0)的左、右焦点分别为F I 、F 2 ,2 25.设椭圆笃•一y 1 m 1上一点P到其左焦点的距离为 3 ,到右焦点的距离为1,m m -1则P点到右准线的距离为1 2万A.6B.2C. -D. ——2 713.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2 = 0 与圆C相交于A,B两点,且AB =6,则圆C的方程为____________________________ .21.(本小题满分14分)已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是5x -2^—0.⑴求双曲线C的方程;⑵若以k k = 0为斜率的直线I与双曲线C相交于两个不同的点M , N ,且线段MN的81 ,求k的取值范围.垂直平分线与两坐标轴围成的二角形的面积为22 29.设抛物线V 2=2x 的焦点为F ,过点M(、. 3,0)的直线与抛物线相交于A ,B 两点,S 「BCF _ 与抛物线的准线相交于 C , BF =2 ,则ΔBCF 与AACF 的面积之比S ACF1 2 A. 4 521.(本小题满分14分)2 2X V 已知椭圆 — 2 -1(a b 0)的两个焦点分别为 F I (-c , 0)和F 2(c , O)(C 0),过 a ba2点E( ,0)的直线与椭圆相交于 A ,B 两点,且F 1A∕∕F 2B , F 1A =2 F 2B .C ⑴求椭圆的离心率; ⑵求直线AB 的斜率; ⑶设点C 与点A 关于坐标原点对称,直线 F 2B 上有一点H(m , n )(m = 0)在 AF 1C 的B. C. D. 外接圆上,求—的值.m5.已知双曲线χ^--y2 ≡1(a0 , b .0)的一条渐近线方程是 a b在抛物线y 2=24x 的准线上,则双曲线的方程为2A. X- 2一 y =1B.2X2y =1 36 1089 27222 2C. X 丄=1D.X y =1 108 3627 920.(本小题满分12分)2 2⑴求椭圆的方程;⑵设直线l 与椭圆相交于不同的两点 A , B .已知点A 的坐标为(-a , 0),点Q (0, y 0) 在线段AB 的垂直平分线上,且 QAQB= 4 ,求y 。
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线9.已知双曲线中心在原点且一个焦点为F(、_7 ,0),直线y X 1与其相交于M、N两点,MN中点的横坐标为22,则此双曲线的方程是2A.—3B.2C.—5D.21.(本小题满分14分)0),经过原点O以’ i为方向向量的直线与经已知常数a0,向量(0, a) , i (1,过定点A(0,a)以r 2 c为方向向量的直线相交于点P,其中R.试问:是否存在两个定点E、F,使得|PE| |PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.2 24.设P是双曲线字七1上一点,双曲线的一条渐近线方程为3x 2y 0,F1、F2分别是双曲线的左、右焦点,若| PR | 3,则|PF2|22.(本小题满分14分)椭圆的中心是原点O,它的短轴长为2 2,相应于焦点F(c,0)(c 0)的准线I与x轴相交于点A,|OF | 2|FA|,过点A的直线与椭圆相交于P、Q两点.⑴求椭圆的方程及离心率;⑵若OP OQ 0,求直线PQ的方程;2J 1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的9渐近线的斜率为4 A. 2 B.- 3C.1 3 D.2 421.(本小题满分14分)抛物线C 的方程为y ax 2(a 0),过抛物线C上一点P (x 。
,y °)(x ° 0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A (x 1, yj 、B (X 2, y 2)两点(P 、A 、B 三点互不相同),且满足 k 2k , 0(0且1).⑴求抛物线C 的焦点坐标和准线方程;⑵设直线AB 上一点M ,满足丽 MA ,证明线段PM 的中点在y 轴上;⑶当 1时,若点P 的坐标为(1, 1),求PAB 为钝角时点A 的纵坐标y ,的取值范围.2.如果双曲线的两个焦点分别为F, 3,0)、F 2(3,0),一条渐近线方程为y 2x ,那么 它的两条准线间的距离是A. 6 3B. 4C. 2D. 122.(本题满分14分)1 ),过点P 且平行于准线I 的直线与椭圆相交于另一点 M ,证明:F Q .2 5.设双曲线以椭圆— 25 A Q (⑶设2 2如图,以椭圆却詁1a b 0的中心0为圆心,分别以a和b 为半径作大圆和小圆过椭圆右焦点F(c , 0)(c b)作垂直于x 轴的直线交大圆于第一象限内的点 A •连结0A 交小圆于点B •设直线BF 是小圆的切线.⑴证明c 2 ab ,并求直线BF 与y 轴的交点M 的坐标;线重合,则此双曲线的方程为2 A.— 2二 1B.2x 2L 1 C.2^2x 2y 1 D.2x 2工112 2448 963 33 622.(本小题满分14分)2 2设椭圆X2 占1(a b 0)的左、右焦点分别为F -、F 2, A 是椭圆上的一点,AF 2 F -F ?, a b1原点O 到直线AF 1的距离为—OF 13⑴证明a ,2b ; ⑵设Q 1, Q 2为椭圆上的两个动点,OQ 1 OQ 2 ,过原点O 作直线Q 1Q 2的垂线OD ,垂足为D , 求点D 的轨迹方程.2 25.设椭圆 笃 -41 m 1上一点P 到其左焦点的距离为3,到右焦点的距离为1,则Pm m 1点到右准线的距离为⑵设直线BF 交椭圆于P 、Q 两点,证明24.设双曲线冷ab 21(a 0 , b 0)的离心率为、、3 ,且它的一条准线与抛物线y 2 4x 的准13.已知圆C 的圆心与抛物线y 2 4x 的焦点关于直线y x 对称,直线4x 3y 2 0与圆C 相交于A , B 两点,且AB 6,则圆C 的方程为 ________________ 21.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是斤(3,0),一条渐近线的方程是 5x 2y 0.⑴求双曲线C 的方程;⑵若以k k 0为斜率的直线丨与双曲线C 相交于两个不同的点M , N ,且线段MN 的垂直9.设抛物线y 2 2x 的焦点为F ,过点MC.3,0)的直线与抛物线相交于 A ,B 两点,与抛21.(本小题满分14分)0)的直线与椭圆相交于 A ,B 两点,且F 1A//F 2B , F 1A 2 F 2B⑴求椭圆的离心率;C. D.2、7平分线与两坐标轴围成的三角形的面积为7,求k 的取值范围.物线的准线相交于C ,BFA.-B. 2,则 BCF 与ACF 的面积之比C. S BCF S ACFD.2已知椭圆a2y_ b 2 1(a b 0)的两个焦点分别为 R ( c ,0)和F 2(C , 0)(c 20),过点 E (—,⑵求直线AB 的斜率;⑶设点C 与点A 关于坐标原点对称,直线F 2B 上有一点H (m , n )(m 0)在 AFQ 的外接圆 上,求£的值.m2爲1(a 0,b 0)的一条渐近线方程是y 、、3x ,它的一个焦点在抛物b2仏1 3620.(本小题满分12分)11.已知抛物线C 的方程为y 2 8x .若斜率为1的直线经过抛物线 C 的焦点,且与圆2x 4y 2 r 2(r 0)相切,贝U r _________ .18.(本小题满分13分)2 5.已知双曲线笃a线y 2 24x 的准线上,则双曲线的方程为2 A.— 36 2 丄1 108B.2乂 1 272 C.-108 2 2已知椭圆笃每1(a ba b 0)的离心率e 于'连接椭圆的四个顶点得到的菱形的面积为4.⑴求椭圆的方程;⑵设直线I 与椭圆相交于不同的两点 A ,B .已知点A 的坐标为(a ,0),点Q (0,y 。
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
2 3 5 35 23 2 高考数学试题分类详解——圆锥曲线一、选择题x 2y 2 1. 设双曲线- = 1(a >0,b >0)的渐近线与抛物线 y=x 2 +1 相切,则该双曲线的离心率等于( a 2 b 2C )(A ) (B )2(C ) (D )2. 已知椭圆C : x2+ 2 = 1 的右焦点为 F ,右准线为l ,点 A ∈ l ,线段 AF 交C 于点 B ,若 2FA = 3FB ,则| AF |=(A). (B). 2 (C). (D). 33. 过双曲线 x 2 - y 2= 2 1 (a > 0, b > 0) 的右顶点 A 作斜率为- 1的直线,该直线与双曲线的两条渐近线 a b 21的交点分别为 B , C .若 AB = BC ,则双曲线的离心率是 () 2A. B . C . D . 4. 已知椭圆 x 2 + y 2= 1 (a > b > 0) 的左焦点为 F ,右顶点为 A ,点 B 在椭圆上,且 BF ⊥ x 轴,a2b 2直线 AB 交 y 轴于点 P .若 AP = 2PB ,则椭圆的离心率是()A.3 C. 3B.2D. 1 2 5. 点 P 在直线l : y = x -1 上,若存在过 P 的直线交抛物线 y = x 2 于 A , B 两点,且| PA =| AB | ,则称点 P 为“点”,那么下列结论中正确的是 ( )A. 直线l 上的所有点都是“点”B. 直线l 上仅有有限个点是“点”C. 直线l 上的所有点都不是“点”D. 直线l 上有无穷多个点(点不是所有的点)是“点”6. 设双曲线 x 2a 2 - y 2b 2 = 1的一条渐近线与抛物线 y=x2 +1 只有一个公共点,则双曲线的离心率为().1 610y5 36 A.5 B. 5 C.D. 427. 设斜率为 2 的直线l 过抛物线 y 2 = ax (a ≠ 0) 的焦点 F,且和 y 轴交于点 A,若△OAF(O 为坐标原点)的面积为 4,则抛物线方程为( ).A. y 2 = ± 4xB. y 2 = ± 8xC. y 2 = 4xD. y 2 = 8xx 2 - y 2 8. 双曲线63= 1 的渐近线与圆(x - 3)2 + y 2 = r 2 (r > 0) 相切,则 r=(A ) (B )2(C )3(D )69. 已知直线 y = k (x + 2)(k > 0) 与抛物线 C: y 2 = 8x 相交 A 、B 两点,F 为 C 的焦点。
历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。
(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当时,求双曲线离心率4332≤≤λ的取值范围。
e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。
圆锥曲线经典大题1.过点A (-4,0)的动直线l 与抛物线G :*2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC→=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值围.2.如图,(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅.〔Ⅰ〕求动点P 的轨迹C 的方程。
〔Ⅱ〕过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . 〔1〕1MA AF λ=,2MB BF λ=,求12λλ+的值; 〔2〕求MA MB ⋅的最小值. 3.设点F 是抛物线G :*2=4y 的焦点.〔1〕过点P 〔0,-4〕作抛物线G 的切线,求切线的方程;〔2〕设A ,B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,分别延长AF ,BF 交抛物线G 于C ,D 两点,求四边形ABCD 面积的最小值.4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.〔Ⅰ〕求证:A M B ,,三点的横坐标成等差数列;〔Ⅱ〕当M 点的坐标为(22)p -,时,AB = 5.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,假设112OF AF +=0〔其中O 为坐标原点〕. 〔1〕求椭圆M 的方程;〔2〕设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径〔E 、F 为直径的两个端点〕,求PF PE ⋅的最大值.6.双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率2e =,顶点到渐近线的距离为5。
(I ) 求双曲线C 的方程;(II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,假设1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值围。
历届高考中的“椭圆”试题精选、选择题:(2002春招北京文、理)已知椭圆的焦点是 F 1、F 2、P 是椭圆上的一个动点. 使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支(D )抛物线(2004福建文、理)已知F 1、F 2是椭圆的两个焦点, 过R 且与椭圆长轴垂直的直线交椭圆于二、填空题:则该椭圆的离心率 e ___________________ .10. (2006上海理)已知椭圆中心在原点,一个焦点为 倍,则该椭圆的标准方程是 ___________________________11. (2007江苏)在平面直角坐标系 xOy 中,已知 ABC 顶点A( 4,0)和C(4,0),顶点B 在椭2 2圆』L 1上,则弘A sinC ________________________25 9 sin B12.(2001春招北京、内蒙、安徽文、理) 椭圆x 2 4y 2 4长轴上一个顶点为 A 以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________ .-历届高考中的“双曲线”试题精选1.(2007 (A )安徽文)椭圆X 22(B ) 342. (2008 上海文 ) A . 4(2005广东) 4y 2)设p 是椭圆B . 52x25 1的离心率为(2(C )2y 16C. 8若焦点在x 轴上的椭圆B.(2006全国n 卷文、理)点,且椭圆的另外一个焦点在(B) 6 2(D )-31上的点. x 2D. 2yC.已知△ ABC 勺顶点B BC 边上,则△(C 4 3 (A ) 2 3 (2003北京文)如图,直线l : x 2y 2 F 1和一个顶点B,该椭圆的离心率为(1 25 2, 5 A. B . - C .D .-5 555若F" F 2是椭圆的两个焦点, 1011的离心率为一,则m=(2D.-3X 22C 在椭圆_ + y = 1上,顶点 ABC 勺周长是()D ) 120过椭圆的左焦点)则PF 』| PF ?等 A 是椭圆的一个焦如果延长F i P 到Q,A 、B 两点,若△ ABF 是正三角形,^2爲(A ) (B ) -338. (2007重庆文)已知以F 1 个交点,则椭圆的长轴长为( 则这个椭圆的离心率是( ) 2 (22 2),F 2 (2,0 )为焦点的椭圆与直线 x < 3y 4 0有且仅有 ) (C ) (-2,0 26(C ) 2、、79.(2008 全国I 卷文)在厶 ABC 中,A 90o , ta nB•若以A , B 为焦点的椭圆经过点 C ,F (- 2 3 , 0),且长轴长是短轴长的 2、选择题:(2005全国卷n文, 2004春招北京文、理)2.2x3(2006全国I卷文、A 1B .4(A) y理)4(B) y -x9双曲线mx2(2000春招北京、安徽文、理)双曲线双曲线的离心率是((C)4x24. ( (2007全国I文、理) )2 2(A)x_ 14 125. (2008辽宁文)6. ( 2005全国卷2双曲线—43y 2x(D)1的渐近线方程是()1的虚轴长是实轴长的2y~2a2已知双曲线的离心率为2,2(B)—12已知双曲线9y2)B.IIIuuuur UUULTMF 1 MF 2 0,则点C.文、理)已知双曲线M到x轴的距离为(B. 532 27 . (2008福建文、理)双曲线务占a b9x42倍,则m ()1的两条渐近线互相垂直,那么该焦点是(-4 ,2 2(0 2x_ y_ 110 60) , (4, 0),则双曲线方程为2 2(0冬上16 101(m 0)的一个顶点到它的一条渐近线的距离为D. 42—1的焦点为F1、F2,点M在双曲线上且2)C.兰31 (a>0, b> 0)点,且| PR | 2 | PF2 |,则双曲线离心率的取值范围为(A. (1,3)B. (1,3] c. (3,)2 2x r8.(2007安徽理)如图,F1和F2分别是双曲线—2a b 的两个焦点为F I,F2,若P为其上的一)D. [3,1(a 0,b 0)的两个焦点,A和B是以O为圆心,以OF」为半径的圆与该双曲线左支的两个交点,且厶F2AB是等边三角形,(A) .3 (B) ,5 则双曲线的离心率为(二(D)1 32(C)二、填空题:9. ( 2008安徽文)10. (2006上海文)2 _—一1的离心率是3。
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
圆锥曲线
9.已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M N 、两
点,MN 中点的横坐标为23
-,则此双曲线的方程是 A.14322=-y x B.13
42
2=-y x C.12522=-y x D.15
22
2=-y x 21.(本小题满分14分)
已知常数0a >,向量(0)c a =,,(1i =,0),经过原点O 以c i λ+为方向向量的直线与经过定点(0)A a ,以2i c λ-为方向向量的直线相交于点P ,其中R λ∈.试问:是否存在两个定点E F 、,使得||||PE PF +为定值.若存在,求出E F 、的坐标;若不存在,说明理由.
4.设P 是双曲线192
22=-y a
x 上一点,双曲线的一条渐近线方程为320x y -=,1F 、2F 分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF
A.1或5
B.6
C.7
D.9
22.(本小题满分14分)
椭圆的中心是原点O ,它的短轴长为22,相应于焦点(F c ,0)(0)c >的准线l 与x 轴相交于点A ,||2||OF FA =,过点A 的直线与椭圆相交于P 、Q 两点.
⑴求椭圆的方程及离心率;
⑵若0OP OQ ⋅=,求直线PQ 的方程;
⑶设AP AQ λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明:FM
FQ λ=-.
5.设双曲线以椭圆19
252
2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为
A.2±
B.34±
C.21±
D.4
3± 21.(本小题满分14分)
抛物线C 的方程为)0(2<=a ax y ,过抛物线C 上一点0(P x ,00)(0)y x ≠作斜率为1k ,2k 的两条直线分别交抛物线C 于1(A x ,1)y 、2(B x ,2)y 两点(P 、A 、B 三点互不相同),且满足)10(012-≠≠=+λλλ且k k .
⑴求抛物线C 的焦点坐标和准线方程;
⑵设直线AB 上一点M ,满足MA BM λ=,证明线段PM 的中点在y 轴上; ⑶当1λ=时,若点P 的坐标为(1,1)-,求PAB ∠为钝角时点A 的纵坐标1y 的取值范围.
2.如果双曲线的两个焦点分别为1(3F -,0)、2(3F ,0),一条渐近线方程为x y 2=,那么它的两条准线间的距离是
A.36
B.4
C.2
D.1
22.(本题满分14分) 如图,以椭圆()0122
22>>=+b a b
y a x 的中心O 为圆心,分别以a 和b 为半径作大圆和小圆.过椭圆右焦点(F c ,0)()c b >作垂直于x 轴的直线交大圆于第一象限内的点A .连结OA 交小圆于点B .设直线BF 是小圆的切线.
⑴证明ab c =2,并求直线BF 与y 轴的交点M 的坐标;
⑵设直线BF 交椭圆于P 、Q 两点,证明2
12OP OQ b ⋅=.
4.设双曲线22
221(0x y a a b
-=>,0)b >的离心率为,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为 A.2211224x y -= B.22
14896
x y -= C.222133x y -= D.22136x y -= 22.(本小题满分14分) 设椭圆22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,A 是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113
OF .
⑴证明a =;
⑵设1Q ,2Q 为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.
5.设椭圆()111
22
22>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 A.6 B.2 C.21 D.7
72 13.已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称,直线0
234=--y x 与圆C 相交于A ,B 两点,且6=AB ,则圆C 的方程为___________.
21.(本小题满分14分)
已知中心在原点的双曲线C 的一个焦点是1(3F -,0),一条渐近线的方程是025=-y x .
⑴求双曲线C 的方程;
⑵若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为2
81,求k 的取值范围.
9.设抛物线22y x =的焦点为F
,过点M ,0)的直线与抛物线相交于A ,B 两点,
与抛物线的准线相交于C ,2BF =,则BCF ∆与ACF ∆的面积之比BCF ACF
S S ∆∆= A.45 B.23 C.47 D.12
21.(本小题满分14分) 已知椭圆22
221(0)x y a b a b
+=>>的两个焦点分别为1(F c -,0)和2(F c ,0)(0)c >,过点2
(a E c
,0)的直线与椭圆相交于A ,B 两点,且12//F A F B ,122F A F B =. ⑴求椭圆的离心率;
⑵求直线AB 的斜率;
⑶设点C 与点A 关于坐标原点对称,直线2F B 上有一点(H m ,)(0)n m ≠在1AFC ∆的外接圆上,求
n m
的值.
5.已知双曲线22
221(0x y a a b
-=>,0)b >的一条渐近线方程是y =,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 A.22136108x y -= B.22
1927
x y -= C.22110836x y -= D.22
1279
x y -= 20.(本小题满分12分)
已知椭圆22
221(0x y a b a b
+=>>)的离心率e =,连接椭圆的四个顶点得到的菱形的面积为4.
⑴求椭圆的方程;
⑵设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(a -,0),点(0Q ,0)y 在线段AB 的垂直平分线上,且4QA QB =,求0y 的值.
11.已知抛物线C 的方程为2
8y x =.若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.
18.(本小题满分13分)
在平面直角坐标系xOy 中,点a P (,)b (0)a b >>为动点,1F 、2F 分别为椭圆22
221x y a b
+=的左右焦点.已知12F PF ∆为等腰三角形. ⑴求椭圆的离心率e ;
⑵设直线2PF 与椭圆相交于A ,B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.
12.已知抛物线的方程为2
2y px =,其中0>p ,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若||||MF EF =,点M 的横坐标是3,则=p _________.
19.(本小题满分14分) 设椭圆22
221(0)x y a b a b
+=>>的左、右顶点分别为B A ,,点P 在椭圆上且异于B A ,两点,O 为坐标原点.
⑴若直线AP 与BP 的斜率之积为2
1-,求椭圆的离心率; ⑵若OA AP =,证明直线OP 的斜率k 满足3>k .
5.已知双曲线22
221(0x y a a b
-=>,)0>b 的两条渐近线与抛物线22(0)px p y =>的准线分
别交于A 、B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆则=p A.1 B.
32
C.2
D.3 18.(本小题满分13分)
设椭圆22221(0)x y a b a b
+=>>的左焦点为F ,过点F 且与x 轴垂直的直线
⑴求椭圆的方程;
⑵设A 、B 分别为椭圆的左右顶点,过点F 且斜率为k 的直线与椭圆交于C 、D 两点.若··8AC DB AD CB +=,求k 的值.。