人教版小学六年级数学总复习资料
- 格式:doc
- 大小:39.00 KB
- 文档页数:10
六、应用题(一)一般应用题1、小明同妈妈去粮店买大米和面粉,共用去18.8元,大米每千克0.32元,面粉每千克0.36元,买了25千克大米,买了面粉多少千克?2、向阳小学一年级同学做好事102件,六年级做的好事件数是一年级的3倍,一年级和六年级做的好事一共多少件。
3、养路队要修50千米的一条路,已经修了6天,每天修5千米,剩下的每天修4千米,还要几天修完?(二)计划数与实际数应用题1、学校食堂运来一批煤,计划每天用250千克,可以烧40天。
由于改进炉灶,每天节省5千克,这批煤可以烧多少天?2、学校食堂运来一批煤,计划每天用250千克,可以烧40天。
由于改进炉灶,这批煤比原计划多烧10天,实际每天烧多少千克煤?3、装订小组计划装订一批书,每小时装订180本,10小时可以装订完。
如果每小时比原计划多装订20本,几小时可以装订完?4、一个生产小组要加工汽车配件。
原计划每天加工200个,15天完成任务。
实际每天加工了250个。
这样比原计划提前几天完成任务?(三)典型应用题〈1〉平均数应用题平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数1、五年级两个班参加植树活动。
一班37人,共植树132棵;二班35人,共植树120棵:〈1〉五年级平均每班植树多少棵?〈2〉五年级平均每人植树多少棵?2、先锋号机帆船出海捕鱼。
上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨。
这条船平均每天捕鱼多少吨?3、有三个数。
甲、乙的平均数是21.5,乙、丙的平均数是22.5,甲、丙的平均数是16,这三个数各是多少?5、小红五年级期末考试中三科的平均成绩是91分,其中语文成绩88分、数学成绩91分,求综合科的成绩是多少分?6、五(2)班第一小组7名同学测量身高,153㎝的有2人,152㎝的有1人,149㎝的有2人,147㎝的有2人。
这个小组的平均身高是多少?7、彩云广告公司员工工资情况表(1)这组数据的中位数和众数各是多少?(2)这个公司的员工平均工资是多少?(保留整数)〈2〉归一应用题和归总应用题(正反比例应用题)归一应用题:1、某自行车厂10天制造150辆自行车,照这样计算。
六年级上册数学复习资料人教版六年级上册数学复习资料人教版1圆的认识一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形;只有3条对称轴的图形是:等边三角形;只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。
或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。
发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
(完整版)人教版六年级数学总复习资料
本文档是人教版六年级数学总复资料的完整版,旨在帮助学生全面复数学知识。
目录
1. 数的认识
2. 数的读写与数的大小比较
3. 数的运算
4. 简便计算法
5. 乘法
6. 除法
7. 解方程和表示思想方法
8. 长度单位
9. 面积与体积
10. 角与直线的认识
11. 同、异角的认识
12. 三角形与四边形
13. 分数的认识与运算
14. 概率
15. 数据的整理和分析
内容概述
本文档涵盖六年级数学各个模块的核心知识点。
每个模块都包含了相关概念、方法和例题,以帮助学生加深对数学知识的理解。
本文档的复资料是从人教版六年级数学教材中提炼出来的,结构简明清晰,适合学生进行系统性的复。
使用建议
学生可以按照目录中的顺序逐个模块进行复,先理解每个模块的基本概念和方法,然后通过例题进行练,加深对知识点的掌握。
建议学生在复过程中积极思考,加深对数学思维的培养。
可以利用课余时间进行复,逐步提高对数学知识的掌握和运用能力。
注意事项
本文档中的知识点都是经过精心整理和筛选的,但仍需注意一些重要的细节。
在研究过程中,遇到不理解的地方可以查阅相关教材进行进一步研究和理解。
建议学生在复过程中多做笔记,方便回顾和巩固知识。
结语
本文档是人教版六年级数学总复习资料的完整版,提供了全面的知识点和例题,旨在帮助学生系统复习数学知识,夯实基础,迎接考试。
希望同学们能够认真阅读、理解和运用本文档中的内容,取得优异的成绩!祝大家学习进步!。
六年级上册知识回顾一、位置1.列与行的意义:竖排叫做列,横排叫做行2.列与行的表示方法:可以用数字,也可以用字母表示3.用数对表示物体的位置用数对表示位置时,先数出物体所在列数,再数出物体所在行数(列,行)沙场点兵1:一个点在图上的位置可用(4、6)表示,如果这个点向左平移2个单位,其位置应表示为(,)2、请在下图的括号里用数对表示出三角形各个顶点的位置(6分)二、分数乘法1.分数乘整数分数乘整数,用分数的分子和整数相乘的积作分子,分母不变@分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
2.分数乘分数分数乘分数,用分子相乘的积作分子,分母相乘的积作分母@分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
交叉约分时,一般不在原式上进行约分。
3.分数乘法的混合运算和简便运算。
(1)整数乘法的交换律、结合律、分配律,对于分数乘法同样适用。
交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配律:(a+b)*c=a*c+b*c考点:求一个数的几分之几的问题(2)倒数乘积是1的两个数互为倒数。
a.互为是指相互依存;b.互为倒数是指倒数是相互依存的,一个数不能称之为倒数。
三、分数除法1.分数除以整数计算方法:(1)用分子和整数相除的商作分子,分母不变;(2)分数除以整数,等于分数乘这个整数的倒数2.一个数除以分数一个数除以分数,等于这个数乘这个分数的倒数3.分数除法的混合运算在一个分数混合运算算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算二级运算,再算一级运算(算式中,如果有小数,可把小数化成分数再计算)考点:已知一个数的几分之几是多少,求这个数的应用题4.比和比的应用(1)比的意义:两个数相除又叫做两个数的比。
(2)比的符号为“:”比由前项、比号、后项、比值组成如15 :10=15/10=3/2(3)比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变考点:按比例分配来解决实际应用题沙场点兵 1.( )比12多31 ;24千克比( )少31。
六年级数学上册总复习小学六年级数学上册知识点汇总第一单元:位置1、用数对确定点的位置,第一个数表示列,第二个数表示行。
如(3,5)表示(第三列,第五行)2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、分数乘法的意义:1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:65×41表示求65的四分之一是多少。
二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
四、分数混合运算的运算顺序和整数的运算顺序相同。
五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法)一个数的几分之几= 一个数×几分之几1、找单位“1”:在分数句中分数的前面; 或“占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分数前是“的”:单位“1”的量×分数=具体量(3)分数前是“多或少”的意思:单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)七、倒数1、倒数的意义:乘积是1的两个数互为倒数。
小学数学总复习资料常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷3常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
(四)百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。
4. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5. 分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。
求“鸡”和“兔”各多少只的一类应用题。
通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数兔子只数=(总腿数-2×总头数)÷2如果假设全是兔子,可以有下面的式子:鸡的只数=(4×总头数-总腿数)÷2兔的头数=总头数-鸡的只数例鸡兔同笼共50 个头,170 条腿。
问鸡兔各有多少只?兔子只数(170-2 ×50 )÷2 =35 (只)鸡的只数50-35=15 (只)4 出勤率发芽率=发芽种子数/试验种子数×100%小麦的出粉率= 面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%职工的出勤率=实际出勤人数/应出勤人数×100%5 工程问题:数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率工作总量÷工作效率和=合作时间6 纳税纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额……)的比率叫做税率。
* 利息存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间--第二章度量衡一长度(一) 什么是长度:长度是一维空间的度量。
(二) 长度常用单位* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)(三) 单位之间的换算* 1毫米=1000微米* 1厘米=10 毫米* 1分米=10 厘米* 1米=1000 毫米* 1千米=1000 米二面积(一)什么是面积面积,就是物体所占平面的大小。
对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位* 平方毫米* 平方厘米* 平方分米* 平方米* 平方千米(三)面积单位的换算* 1平方厘米=100 平方毫米* 1平方分米=100平方厘米* 1平方米=100 平方分米* 1公倾=10000 平方米* 1平方公里=100 公顷三体积和容积(一)什么是体积、容积体积:就是物体所占空间的大小。
容积:箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位1 体积单位* 立方米* 立方分米* 立方厘米2 容积单位* 升* 毫升(三)单位换算1 体积单位* 1立方米=1000立方分米* 1立方分米=1000立方厘米2 容积单位* 1升=1000毫升* 1升=1立方米* 1毫升=1立方厘米-第三章代数初步知识一、用字母表示数(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vt v=s/t t=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bc b=a/c c=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c二、简易方程(一)方程和方程的解1方程:含有未知数的等式叫做方程。
注意方程是等式,又含有未知数,两者缺一不可。
方程和算术式不同。
算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
三、解方程解方程,求方程的解的过程叫做解方程。
五比和比例1比的意义和性质(1)比的意义两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。