蜂鸣器电路.
- 格式:ppt
- 大小:294.50 KB
- 文档页数:14
蜂鸣器报警工作原理
蜂鸣器报警是一种常见的声音警报装置,它能够发出高频而刺耳的声响,用于各种警示场合。
蜂鸣器报警的工作原理如下:
1. 电源供应:蜂鸣器报警通常使用直流电源供应,一般为3V 到12V的电压。
电源的正极连接到蜂鸣器的正极引脚上,负极连接到负极引脚上。
2. 振荡电路:蜂鸣器内部有一个振荡电路,它由振荡器和驱动器组成。
振荡器产生高频信号,而驱动器将这个信号放大。
这个振荡电路的频率决定了蜂鸣器报警的声音高低。
3. 振膜:蜂鸣器内部还有一个振膜,它是一个薄薄的膜片,通常由金属或塑料材料制成。
振膜与振荡电路连接,接收到振荡电路的信号后,会迅速振动。
4. 发声原理:当振膜振动时,会产生空气的震动,从而产生声音。
振膜的振动频率与振荡电路的频率相同,因此蜂鸣器能够发出与振荡电路频率相匹配的声音。
5. 发声强度控制:蜂鸣器通常具有发声强度控制功能,可以通过改变电流或电压的大小来调节蜂鸣器的声音大小。
这种调节通常通过外部电阻或电路实现。
总之,蜂鸣器报警通过振荡电路产生高频信号,使振膜振动,进而产生声音。
蜂鸣器的声音高低由振荡电路的频率决定,而声音大小可以通过调节电流或电压来实现。
蜂鸣器电路
蜂鸣器俗称喇叭,是广泛应用于各种电子产品的一种元器件,它用于提示、报警、音乐等许多应用场合;
蜂鸣器与家用电器上面的喇叭在用法上也有相似的地方,通常工作电流比较大,电路上的TTL电平基本上驱动不了蜂鸣器,需要增加一个电流放大的电路才可以,这一点与家用电器中的功放有相似之处;
学习板采用了一个很简单的电路来实现蜂鸣器的联接,由上所述,一个管脚很难驱动蜂鸣器发出声音,所以增加了一个三极管来增加通过蜂鸣器的电流,见下方原理图;
蜂鸣器的正极性的一端联接到5V电源上面,另一端联接到三极管的集电极,三极管的基级由单片机的管脚通过一个与非门来控制,当管脚为低时,与非门输出高电平,三极管导通,这样蜂鸣器的电流形成回路,发出声音;当管脚为高时,与非门输出低电平,三极管截止,蜂鸣器不发出声音;在这里与非门是作为非门来用的,这里采用一个非门的作用是为了防止系统上电时峰鸣器发出声音,以为系统复位以后,I/O口输出的是高电平;
用户可以通过程序控制管脚的置低和置高来使蜂鸣器发出声音和关闭;
蜂鸣器的声音大小及音调可以通过调整管脚的置高时间及输出的波形进行控制,这一点可以在调试程序的时候来试验;。
有源蜂鸣器驱动电路制作方法“哇塞,这是啥声音这么好听?”我好奇地问旁边的小伙伴。
小伙伴神秘兮兮地说:“嘿嘿,这是我用有源蜂鸣器做的小玩意儿发出来的声音。
”啥是有源蜂鸣器啊?我满脑袋问号。
小伙伴得意地说:“这你都不知道?有源蜂鸣器可厉害啦,能发出各种声音呢。
”
那有源蜂鸣器的驱动电路咋做呢?首先得准备好材料,像电池啦、电阻啦、三极管啦啥的。
这就跟搭积木似的,得先把零件找齐喽。
然后把这些零件按照一定的顺序连接起来。
电池的正负极可不能接错了,要不然可就完蛋啦。
三极管就像个小开关,控制着电流的通断。
电阻呢,就像个小卫士,保护着电路不会被烧坏。
有源蜂鸣器的驱动电路都能用在啥地方呢?比如说,可以做个小闹钟,每天早上叫你起床。
还可以做个报警器,有坏人来了就响起来。
这多酷啊!就像超级英雄有了自己的武器一样。
我记得有一次,我们参加科技小制作比赛。
有个同学就用有源蜂鸣器做了一个会唱歌的小机器人,可厉害啦。
那声音,老好听了。
大家都围着他的小机器人,羡慕得不得了。
所以说啊,有源蜂鸣器的驱动电路可好玩啦。
只要你有耐心,有创意,
就能做出很多好玩的东西。
咱可不能错过这么好玩的事儿,赶紧动手试试吧。
蜂鸣器工作原理介绍及并联电阻原理蜂鸣器是一种常见的电子元件,广泛应用于各种电子设备中。
它的作用是发出声音信号,用于警报、提示或提醒等功能。
本文将介绍蜂鸣器的工作原理,并着重探讨蜂鸣器中的并联电阻原理。
蜂鸣器的工作原理蜂鸣器的工作原理基于压电效应或电磁感应效应。
其中,压电式蜂鸣器是应用最广泛的一种。
1. 压电式蜂鸣器的工作原理压电式蜂鸣器由压电陶瓷材料构成,其内部有一电极。
当电极接收到电压信号时,压电陶瓷材料会发生压电效应,使得陶瓷材料发生形变。
这种形变会引起蜂鸣器内部结构的振动,产生声音。
具体而言,压电式蜂鸣器的工作过程如下:当外加正向电压施加到压电蜂鸣器的电极上时,电极与陶瓷间的电场引起了陶瓷的两种变形。
一种是压电形变,即陶瓷的长度和厚度发生微小的变化;另一种是转换形变,即陶瓷的横向挤压和纵向伸张变形。
这种形变通过蜂鸣器的共振结构放大,并由共振结构产生声音效果。
通过调节电压的频率和幅度,我们可以控制蜂鸣器发出的声音频率和音量。
2. 电磁式蜂鸣器的工作原理电磁式蜂鸣器是采用电磁感应原理工作的。
它由一个线圈和一个振动片组成。
当电流通过线圈时,会生成一个磁场。
这个磁场使得振动片受到吸引力,使得振动片与线圈之间的空隙变小。
当输入电流停止或改变方向时,磁场也会发生变化,导致振动片的位置发生改变。
由于振动片的快速振动,产生空气压力的变化,从而发出声音。
通过变化电流的频率和幅度,我们可以调整蜂鸣器发出声音的频率和音量。
并联电阻原理在蜂鸣器的工作过程中,为了控制蜂鸣器发出的声音的音量,常常会使用并联电阻来实现。
并联电阻原理是指将一个或多个阻值相等的电阻与蜂鸣器并联连接。
这时,电流会在并联电阻和蜂鸣器之间分流。
具体而言,如果蜂鸣器的阻抗为R1,外加电压为V,电阻阻抗为R2,则根据并联电阻的特性得出以下关系:V = I × (R1 + R2)其中,I表示电流。
由于并联电路中电流的总和等于电流在不同支路中的分流之和,所以可以通过调节并联电阻的阻值来控制电流大小,从而影响蜂鸣器的音量。
蜂鸣器电路的原理是什么蜂鸣器是一种能够发出连续蜂鸣声的电子元件,广泛应用于电子产品中的报警、提醒和指示等功能。
其电路原理非常简单,主要由振荡电路和驱动电路两部分组成。
1. 振荡电路:振荡电路是蜂鸣器电路的核心部分,负责产生振荡频率,使蜂鸣器发出声音。
这一部分通常由一个振荡器组成,振荡器由一个电感和一个电容器构成。
当电流通过电感时,会产生磁场,而当电流停止或改变方向时,磁场会崩溃并产生电流。
这样,电感器会不断变化的电流,从而形成一个周期性的振荡。
振荡电路通过调整电感和电容的数值,可以确定振荡频率,即蜂鸣器发出声音的频率。
2. 驱动电路:驱动电路主要负责控制振荡电路的工作状态,包括开关和调节振荡频率。
在蜂鸣器电路中,一般采用三极管作为开关元件。
当输入电压通过驱动电路时,三极管会工作在饱和和截止两个状态之间,实现对振荡电路的控制。
当驱动电路处于饱和状态时,振荡电路中的电流会被导通,这时蜂鸣器会发出声音。
而当驱动电路处于截止状态时,振荡电路中的电流会被切断,蜂鸣器停止发声。
蜂鸣器的工作原理可以简单概括为:驱动电路控制振荡电路的工作状态,振荡电路产生振荡频率,驱动蜂鸣器发出声音。
通过控制驱动电路的状态,可以实现蜂鸣器的开关和调节声音频率的功能。
除了基本的振荡电路和驱动电路,蜂鸣器电路还可能包括其他辅助元件,如电阻、电容和二极管等。
这些辅助元件的作用是为了改变振荡电路中的电流大小、调节声音音量或产生特殊的声音效果。
总结起来,蜂鸣器电路的工作原理就是通过振荡电路产生振荡频率,并通过驱动电路控制蜂鸣器的工作状态,从而实现发出声音的功能。
这种简单而可靠的电路结构,使蜂鸣器成为了广泛应用于电子产品中的一种重要元件。
如何正确连接并使用电子电路中的蜂鸣器蜂鸣器是一种常见的电子组件,它可用于产生声音信号。
在电子电路中,正确连接和使用蜂鸣器是至关重要的。
本文将介绍如何正确连接并使用电子电路中的蜂鸣器,以确保其正常工作。
一、蜂鸣器的类型和工作原理蜂鸣器主要有无源蜂鸣器和有源蜂鸣器两种类型。
无源蜂鸣器是一种压电传感器,需要外部驱动电路才能发出声音。
有源蜂鸣器则集成了驱动电路,可以直接使用。
无源蜂鸣器的工作原理是通过施加交变电场使压电晶体振动,从而产生声波。
有源蜂鸣器则利用内部振荡电路产生声音,并通过一个或多个引脚进行控制。
二、连接蜂鸣器的基本方法无论是无源蜂鸣器还是有源蜂鸣器,连接到电子电路中的方法基本相同。
首先,我们需要确定蜂鸣器的正负极性。
通常蜂鸣器上会有标记,标明正极或长脚。
将正极连接到正电源(如Vcc),将负极连接到负电源(如GND)。
三、使用无源蜂鸣器的注意事项使用无源蜂鸣器时,我们需要额外的驱动电路来提供交变电场。
一个常见的驱动电路是使用震荡器(如555定时器)和其他必要的电子元件。
在连接无源蜂鸣器时,需要确保提供足够的电流和电压。
根据蜂鸣器的规格,选择合适的电流限制电阻以保护蜂鸣器,并确保工作在安全范围内。
四、使用有源蜂鸣器的注意事项有源蜂鸣器通常具有内部的振荡电路,因此可以直接连接到电子电路中。
在使用有源蜂鸣器时,我们需要注意输出电流和控制方式。
有源蜂鸣器通常有多个引脚,包括电源引脚(如Vcc和GND)以及控制引脚。
根据蜂鸣器规格,将电源引脚正确连接到电源,将控制引脚连接到适当的控制信号。
五、应用示例蜂鸣器在各种电子设备中都有广泛的应用。
以下是一个简单的示例,展示如何正确连接和使用蜂鸣器。
首先,将蜂鸣器的正极连接到3.3V的电源,负极连接到GND,确保极性正确。
然后,将控制引脚连接到一个可编程的微控制器引脚。
在编程上,我们可以使用适当的控制信号来触发蜂鸣器发声。
例如,通过设置引脚为高电平或低电平,或使用 PWM(脉冲宽度调制)信号来控制发声频率和音量。
蜂鸣器电路及其原理蜂鸣器是一种一体化结构的电子讯响器,在电路中用字母“H”或“HA”(旧标准用“FM”、“LB”、“JD”等)表示。
蜂鸣器采用直流电压供电,其能发出单调的或者某个固定频率的声音,如嘀嘀嘀,嘟嘟嘟等。
蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型,通常在计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件使用。
下面为大家介绍的是蜂鸣器的工作原理。
蜂鸣器的工作原理电路原理图使用SH69P43 为控制芯片,使用4MHz 晶振作为主振荡器。
PORTC.3/T0 作为I/O 口通过三极管Q2 来驱动蜂鸣器LS1,而PORTC.2/PWM0 则作为PWM 输出口通过三极管Q1 来驱动蜂鸣器LS2。
另外在PORTA.3 和PORTA.2 分别接了两个按键,一个是PWM 按键,是用来控制PWM 输出口驱动蜂鸣器使用的;另一个是PORT 按键,是用来控制I/O 口驱动蜂鸣器使用的。
连接按键的I/O口开内部上拉电阻。
先分析一下蜂鸣器。
所使用的蜂鸣器的工作频率是2000Hz,也就是说蜂鸣器的驱动信号波形周期是500μs,由于是1/2duty 的信号,所以一个周期内的高电平和低电平的时间宽度都为250μs。
软件设计上,将根据两种驱动方式来进行说明。
a)蜂鸣器工作原理:PWM 输出口直接驱动蜂鸣器方式由于PWM 只控制固定频率的蜂鸣器,所以可以在程序的系统初始化时就对PWM 的输出波形进行设置。
首先根据SH69P43 的PWM 输出的周期宽度是10 位数据来选择PWM 时钟。
系统使用4MHz 的晶振作为主振荡器,一个tosc 的时间就是0.25μs,若是将PWM 的时钟设置为tosc 的话,则蜂鸣器要求的波形周期500μs 的计数值为500μs/0.25μs=(2000)10=(7D0)16,7D0H 为11 位的数据,而SH69P43 的PWM输出周期宽度只是10 位数据,所以选择PWM 的时钟为tosc 是不能实现蜂鸣器所要的驱动波形的。
蜂鸣器工作原理介绍及并联电阻原理不知道您有没有过这样的经历,就是在家里找东西的时候,怎么都找不到,急得满头大汗。
突然,听到一阵“滴滴滴”的声音,原来是手机的闹钟响了,提醒您该做什么事情了。
这“滴滴滴”的声音,就是由蜂鸣器发出来的。
那蜂鸣器到底是怎么工作的呢?咱们一起来瞧瞧。
蜂鸣器呀,就像是一个会唱歌的小喇叭,但它唱歌的方式可有点特别。
简单来说,蜂鸣器分为两种,一种是电磁式蜂鸣器,另一种是压电式蜂鸣器。
先来说说电磁式蜂鸣器。
它的工作原理就好像是一个小小的电磁起重机。
里面有一个线圈,当有电流通过这个线圈的时候,就会产生磁场。
这个磁场就像一只无形的大手,会拉动一个铁片或者铁针,让它们不停地振动,从而发出声音。
您可以想象一下,这就像是有个看不见的大力士在推着铁片来回晃动,于是就有了“嗡嗡嗡”的声音。
再讲讲压电式蜂鸣器。
这玩意儿的原理就更神奇啦!它里面有一种特殊的材料,叫做压电陶瓷。
当给压电陶瓷加上电压的时候,它就会因为压电效应而发生变形,产生振动,进而发出声音。
这种感觉就好像是给一个调皮的小孩一点刺激,他就忍不住跳起来一样。
说完蜂鸣器,咱们再聊聊并联电阻的原理。
您有没有试过同时打开好几盏灯?如果有,那您其实已经在不知不觉中用到了并联电阻的原理啦。
在一个电路中,如果把电阻像排队一样一个接一个地连起来,这叫串联。
但如果把电阻像树枝分叉一样分别连接在电路的两端,这就是并联。
并联电阻有个很有趣的特点,就是各个电阻两端的电压是相等的。
比如说,家里的几个灯泡并联在电路中,每个灯泡两端的电压都是 220 伏,它们都能正常发光。
那并联电阻到底有啥用呢?比如说,我们想增加电路的总电流,就可以通过并联电阻来实现。
想象一下,电路就像是一条马路,电阻就像是马路上的车辆。
如果只有一条车道,能通过的车就少;但如果多开几条并行的车道,能通过的车不就多了嘛,这电流也就增大了。
还有哦,并联电阻可以起到分流的作用。
就像水流通过几条不同的水管,每条水管里流过的水就会少一些,电阻也是这样,电流会根据电阻的大小分配到不同的支路上。