重庆大剧院模型风洞试验
- 格式:pptx
- 大小:10.73 MB
- 文档页数:22
钢结构建筑的风洞试验与风力设计钢结构建筑是现代建筑领域的一项重要技术,其广泛应用于高层建筑、桥梁和厂房等工程项目中。
在设计钢结构建筑时,风力是需要考虑的主要因素之一。
为了确保结构的安全性和可靠性,进行风洞试验是不可或缺的。
本文将探讨钢结构建筑的风洞试验和风力设计的重要性,并介绍风洞试验的原理和过程。
一、风洞试验的重要性钢结构建筑在遭受风力荷载时,会受到各种复杂的力学效应,如风压、风振、风荷载和风致振动等。
这些效应可能对建筑物的结构和稳定性产生影响,因此需要进行风洞试验来评估和验证设计方案。
1. 评估结构的稳定性:风洞试验可以模拟实际建筑物在不同风速和风向条件下受到的风力作用,通过测试建筑物的结构响应,评估结构在强风下的稳定性。
这有助于确定结构的最优设计和改进。
2. 确定风荷载:风洞试验还可用于测定风荷载的大小和风荷载分布的变化。
通过测量试验模型所受的风力和压力分布,可以准确计算建筑物所受的风荷载,为结构设计提供依据。
3. 优化风防设计:风洞试验还能够验证和优化建筑物的风防设计措施。
通过观察试验模型的流场和压力分布,可以确定改进建筑物外形或添加风防设施的措施,减小风力对建筑物的影响。
二、风洞试验的原理和过程风洞试验是使用风洞设备对建筑物模型进行试验,以模拟实际风场条件,测定建筑物在不同风速下的风力响应。
1. 风洞试验设备:风洞通常由主风机、边界层装置、试验段和测量设备等组成。
主风机产生空气流动,边界层装置模拟大气边界,并减小建筑物模型所受的边界效应。
试验段是进行风洞试验的主要区域,用于放置建筑物模型。
测量设备用于测量风速、风压和力学响应等参数。
2. 建筑物模型制作:建筑物模型通常由比例缩小的钢结构制成,以模拟实际建筑物的形状和结构。
模型制作需要考虑比例尺、几何形状和材料性能等因素。
模型的尺寸和比例应根据实际风洞试验的要求进行确定。
3. 测试与数据分析:在风洞中,建筑物模型暴露在不同速度和角度的风场中,通过测量设备获取模型受力和响应的数据。
风洞试验在建筑结构设计中的应用在现代社会的高楼林立中,建筑结构设计的重要性不言而喻。
一个稳固的建筑结构不仅能够确保建筑物的安全稳定,还能够提供良好的舒适性和使用效果。
而风洞试验则成为了建筑结构设计中不可或缺的一个环节。
本文将从理论和实践两个方面,探讨风洞试验在建筑结构设计中的应用。
首先要明确的是,风洞试验是一种用于模拟真实环境中的风下对建筑物产生的力的试验方法。
它通过在试验风洞中模拟各种风荷载情况,对建筑结构进行力学性能和风压性能的测试和分析。
在建筑结构设计中,风洞试验主要用于以下几个方面的应用。
第一,风洞试验可以帮助设计师评估建筑结构在不同风荷载条件下的受力情况。
通过测量和分析建筑物受到的风压力和风荷载,设计师可以得到关于建筑物结构特性和稳定性的重要信息。
如此一来,设计师可以根据实际情况进行结构的调整和优化,确保建筑物能够承受风力的作用而不会发生倒塌或者损坏。
第二,风洞试验可以帮助设计师优化建筑结构的气动设计。
在风洞试验中,设计师可以通过调整建筑物外形和细节来改善其气动特性。
比如,通过增加流线型设计或者安装抗风设施,可以减小建筑物受到的风压力,提高其稳定性。
此外,设计师还可以通过风洞试验来评估不同方案的气动效果,找出最优方案并进行改进。
第三,风洞试验可以帮助设计师研究建筑物与周围环境的相互作用。
在现代城市中,建筑物之间的高楼林立,风的流通情况往往受到了很大的影响。
风洞试验可以模拟不同建筑物布局对风流的影响,并帮助设计师找出最佳的建筑布局方案。
同样,风洞试验也可以模拟不同建筑物布局对周围环境的影响,以此来进行城市规划和建筑设计。
除了在建筑结构设计中的应用外,风洞试验还可以应用于其他领域。
比如,风洞试验可以用于航空航天工程中的风阻测试,以提高飞机和火箭的飞行性能。
另外,风洞试验还可以用于汽车工程中的风阻测试,以改善汽车的燃油经济性。
可以说,风洞试验在现代科学技术中具有广泛而重要的应用价值。
综上所述,风洞试验在建筑结构设计中的应用不可忽视。
列车风洞试验综述1列车风洞模型试验系统1.1风洞的基本类型及基本原理当对列车的空气动力学特性进行试验研究时,直接而真实的方法是在线实车试验,但进行一次试验需要耗费大量的人力、物力、财力,组织一次试验很不容易,得到的数据有限,加之自然条件千变万化,如环境的风速和风向不可控制等,重复性难以保证,而且,实车试验需在列车制造出来后才能进行,用于研制新车代价太高,因此实车试验一般以验证、评估、考核试验为主,兼顾研究性试验。
于是,人们就想用模型试验来代替实车试验。
风洞是能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是进行空气动力实验最常用、最有效的工具。
风洞模型试验是研究列车气动特性中应用最广泛的手段之一。
它具有试验理论和试验手段成熟、测量精密,气流参数如速度、压力等易于控制,并且基本不受天气变化的影响等优点。
为了满足不同类型空气动力试验的要求,现代风洞的种类繁多。
风洞通常按照试验段气流的马赫数来分类,有低速风洞(Ma<0.3)、亚音速风洞(0.3<Ma<0.8)、跨音速风洞(0.8<Ma<1.5)、超音速风洞(1.5<Ma<4.5)、高超音速风洞(4.5<Ma<10)、极高速风洞(Ma>10)等。
列车模型风洞试验一般在低速风洞中进行。
低速风洞按通过试验段气流循环形式来分,有直流式和回流式两种基本类型。
按试验段结构不同,低速风洞又有“开口”和“闭口”之别。
直流式风洞的特点是把通过试验段的气流排在风洞外部,如图1。
回流式风洞的特点是通过试验段的气流经循环系统再返回试验段,如图2。
图1 直流式风洞图2回流式风洞对列车在空气中的等速直线运动,按照运动的相对性原理,在空气动力特性研究中,可以认为列车静止不动,与列车速度大小相同方向相反的空气流过列车,列车上承受的空气动力与类车运动在静止的空气中承受的空气动力完全相同。
《桥梁风工程》之——风洞试验技术主要内容简介第一章风洞试验的理论基础——相似性(概述、相似性基本要求、无量纲参数的来源、基本缩尺考虑)1.1 概述理论流体力学——物理实验——数值模拟(风工程研究的“三大手段”);桥梁、建筑结构在结构设计方面,只要求结构在风荷载作用下具有足够的强度、刚度和稳定性即可,即确保桥梁结构、建筑结构的安全性、舒适性和耐久性即可;(这区别于航空器的设计——力求其周围运动空气对其的阻力最小),主要关注绕尖角的流动和分离流动,因此,称为“钝体空气动力学”。
个别建筑、桥梁已开展了实际结构的实测。
Fig.1 Research methods of Wind Engineering of Bluff Body1932年,Flachsbart O.“建筑物气动特性的模拟应当在具有与自然风相似的风洞气流中进行”。
几何缩尺——经济性和方便性由于缩尺几何引出了物理相似的一系列问题,相似性准则是风洞试验的理论基础。
应该说明的是,由于模型的几何缩尺,导致部分物理现象不能准确反映,如雷诺数效应。
因此,在实际设计模型试验时,需要进行一系列权衡,确保主要问题能模拟即可。
(科学与艺术结合!)1.2 模型相似性在分析一切物理问题,特别是需要通过实验进行研究的问题时,通常需要确定一组无量纲的控制参数。
该组无量纲参数通常是根据描述所研究物理系统的偏微分方程得到的,用一个具有对应量纲的参考值遍除所有关键变量,使之无量纲化,于是得到大量的无量纲组合参数,它们就是控制系统的物理特性的因子。
如果这些控制参数组从一种情况(原型物)到另一种情况(模型)保持不变,则自然保证了相似性。
具体风洞试验相似性无量纲参数推导见下。
假设一个物体浸在流动的流体中,在物体上某处形成的作用力F 只是下列六个参数的函数:即密度ρ、流速V 、某个特征尺寸D 、某个频率n 、流体粘性系数μ和重力加速度g 。
即ξεδγβαμρg n D V F d= (1)式中:ξεδγβα,,,,,为待定指数。
风洞试验建筑风洞试验就是对于外形比较复杂的风致敏感建筑,现行荷载规范中没有可供借鉴的体型系数,采用一定比例缩小的刚性模型,研究风荷载对于建筑的荷载作用。
在刚性模型表面密布气孔,采用一定的风速作用于模型,根据各气孔承担的风压力,折算出此处的平均压力系数(=荷规中体型系数x高度变化系数)。
风洞试验一般出两个报告,《风洞测压试验报告》和《风致振动分析报告》,《风洞测压试验报告》给出平均压力系数和极值压力,平均压力系数=体型系数X高度变化系数,主要用于整体结构计算,考察整体结构在风荷载作用下的受力状况,发现敏感部位;极值压力=体型系数X高度变化系数X阵风系数X基本风压,主要用于维护结构风力较大部位的计算。
《风致振动分析报告》给出等效静力风荷载,作为结构设计的风荷载取值,可以直接使用。
关键是理清各分区数值的正负号、合理归并方便施加荷载。
报告中一般假定,作用于测量表面向板内的压力,为正值,背离测量表面向板外的吸力,为负值。
对于开敞的结构,比如体育场(以下都以体育场为例来说明),通常给出,作用于外表面的值和内表面的值。
外表面为正值,表示风对板有向板内的压力,即向体育场内部的压力;外表面为负值,表示风对板有向板外的吸力,即向体育场外部的吸力;内表面为正值,表示风对板有向板内的压力,即向体育场外部的压力;内表面为负值,表示风对板有向板外的吸力,即向体育场内部的吸力;要得到作用于体育场的向内的最大作用力,应该是取同一风向下,等效静力风荷载外表面的正值和内表面的负值绝对值相加;作用于体育场的向外的最大作用力,应该为同一风向下,等效静力风荷载外表面的负值和内表面的正值绝对值相加。
然后综合得到某个分区某个风向下,向体育场内和向体育场外的最大值作为此分区此方向下的风荷载取值,就是可以直接施加的荷载值,单位kN/m2。
另一种表述为用外表面的数值减去内表面的数值,带着正负号,那么若外表面为正,内表面为负,得到正值,即向内的最大压力;若外表面为负,内表面为负,得到负值,即向外的最大吸力;若内外表面数值等号,其作用方向相反,则抵消部分作用力,变小,不必考虑。
风洞试验模拟分析风洞试验是一种重要的工程测试手段,通过模拟真实环境中的风场条件,对飞行器、建筑结构等进行性能测试和优化设计。
本文将对风洞试验的模拟分析过程进行详细介绍。
一、试验目的与背景风洞试验的目的是为了评估飞行器或建筑结构在各种气动条件下的飞行性能、稳定性和安全性。
通过对模型进行风洞试验,可以获取气动载荷分布、气动力矩、空气动力特性等重要参数,从而为设计和改进提供依据。
在航空航天、汽车工程、建筑设计等领域,风洞试验都起着重要的作用。
二、试验模型制备在风洞试验中,首先需要制备试验模型。
试验模型应该准确地反映实际的外形和尺寸。
模型的制备通常包括以下几个步骤:1. 确定模型比例:根据试验需求和试验设备的尺寸,确定试验模型与实际对象的比例。
2. 确定材料:选择适合的材料来制作模型,常见的材料包括塑料、复合材料和金属等。
3. 制造模型:借助3D打印、铣床等加工设备,根据设计图纸将模型逐步制造出来。
4. 安装控制设备:根据试验需求,安装传感器、操纵装置等控制设备,以便获取实时的数据。
三、试验设备与实验流程在风洞试验中,除了试验模型外,还需要风洞设备和测量设备来实现模拟分析。
1. 风洞设备:风洞是进行风洞试验的关键设备,根据试验需求选择不同类型的风洞,如闭式风洞、开式风洞等。
风洞应具备稳定的压强、温度和气流速度控制能力。
2. 测量设备:测量设备用于获取模型在试验过程中的各项参数,包括气动力、气动载荷、速度和压力分布等。
常见的测量设备包括测力传感器、话筒、压力传感器等。
3. 试验流程:在进行风洞试验时,需要按照预定的试验计划和流程进行操作。
首先进行预热和校准,然后进行静态和动态试验,最后进行数据处理和分析。
四、数据处理与分析风洞试验得到的数据需要进行处理和分析,以便得到有用的结论和指导意见。
1. 数据处理:通过采集的数据进行滤波、去除干扰和误差,确保数据的准确性和可靠性。
2. 数据分析:根据试验结果,进行数据分析和对比,得到气动性能参数、飞行特性和性能指标。
风洞实验报告风洞实验,听起来是不是超级酷?就好像进入了一个神秘的科学世界。
我还记得第一次听说风洞实验的时候,那是在一个阳光明媚的午后,我在图书馆偶然翻到一本介绍航空航天的书,里面提到了风洞实验,一下子就勾起了我的好奇心。
风洞,简单来说,就是一个能产生人造风的大管子。
可别小瞧这管子,它能帮助我们搞清楚好多关于物体在空气中运动的秘密。
这次咱们要讲的风洞实验,主要是为了研究一个新设计的飞机模型的空气动力学性能。
实验开始前,那准备工作可真是繁琐又精细。
先得把这个飞机模型小心翼翼地安装在风洞内部的支架上,确保它稳稳当当,不会有一丝晃动。
这就像是给一个小宝宝安置一个超级舒适的摇篮,稍有不慎,小宝宝就会哭闹不停。
模型上还布满了各种传感器,就像给它穿上了一层密密麻麻的“电子铠甲”,这些传感器能精确地测量出模型在风的作用下受到的力和产生的变化。
风洞启动啦!呼呼呼的风声响起,就像一场狂风交响曲。
随着风速逐渐增加,飞机模型开始在风中颤抖、摇摆。
通过那些传感器,我们能看到各种数据像瀑布一样涌出来。
比如升力、阻力、压力分布等等。
有个特别有趣的细节,当时风速加到一定程度的时候,模型的某个部位居然出现了轻微的抖动,就像人在寒风中打哆嗦一样。
这可把我们紧张坏了,赶紧检查是不是模型安装出了问题,还是设计本身有缺陷。
经过一番仔细排查,原来是一个小零件的安装角度稍微有点偏差,调整之后,一切又恢复了正常。
从实验数据来看,这个飞机模型的表现还算不错。
在低速时,升力和阻力的比例比较理想,说明它在起飞和降落阶段应该会比较稳定。
但是在高速时,某些部位的压力分布不太均匀,可能会影响飞行的效率和稳定性。
这就好比一个运动员,短跑还行,但长跑的时候体力分配不均匀,就容易累垮。
经过这次风洞实验,我们对这个飞机模型有了更深入的了解,也为后续的改进提供了有力的依据。
就像给它做了一次全面的体检,知道了哪里健康,哪里需要“治疗”。
风洞实验可不只是在航空航天领域大显身手哦!在汽车设计中,能让汽车的外形更符合空气动力学,降低风阻,节省燃油;在体育用品设计中,比如自行车、滑雪板,能让运动员在比赛中更加“风驰电掣”;甚至在建筑设计中,能让高楼大厦在大风中屹立不倒。
风洞试验方案一、引言风洞试验是航空航天领域中的重要技术手段,能够对飞行器的气动性能进行研究和验证。
然而,由于试验条件的复杂性、试验设备的高昂成本以及试验过程中的各种难题,使得风洞试验成为一项难度很大的任务。
本文旨在探讨一种适合飞行器气动性能试验的风洞试验方案,以提高试验效率和准确度。
二、实验目的本实验的目的是研究飞行器的气动特性,主要包括以下方面:1. 建立飞行器模型,并评估其尺寸与实际飞行器相符合的程度;2. 测量飞行器在不同风速下的升力、阻力以及侧向力等气动性能参数;3. 根据试验结果对飞行器进行优化。
三、实验方案为了达到上述实验目的,本文提出如下方案:1. 建立良好的飞行器几何模型。
通过三维建模软件建立真实的飞行器模型。
考虑到试验尺寸、风洞内工作范围以及模型制作和运输的便利性等多方面因素,本实验选用了1:30的比例缩小模型;2. 选用适当的风洞。
大型高速风洞的通常限制测试时间,对于初步试验,风速较低的低速风洞则能比较好地满足实验要求。
考虑到试验成本和实验设计较为简单的情况下,本实验选用测试速度为20m/s的低速风洞进行试验;3. 试验测试点与数据处理。
在风洞内设置飞行器模型放置平台及测试点,测试点选取升降面尾缘、机身前沿、驾驶舱前缘、机身下表面三分之一处和机头径向一定距离处,共计五个测试点。
完成试验后,将数据采集并进行处理,得到飞行器的气动参数,并进行分析;4. 试验结果分析与优化。
通过试验结果,研究飞行器的气动力系数,并在此基础上对模型进行优化,以满足飞行器高速飞行的实际需求。
四、实验注意事项1. 风洞试验前应进行试验设备和试验物的检查,确保试验物固定牢固、无影响试验数据的杂物;2. 试验进行过程中记得定期清理风洞内部及模型表面灰尘和杂质,确保气流的纯净;3. 在试验开始前需要进行模型气动力系数标定,获得准确的计算结果;4. 在试验过程中,要注意风洞工作范围、失速区域以及特殊气动效应,并进行充分的分析研究。
1)石家庄铁道大学风洞实验室参数2)湖南大学风洞实验室湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。
该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高 m,试验段风速0~60 m /s 连续可调。
高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有关的桥梁节段模型试验、局部构件抗风性能试验。
试验速度相对较低的试验段(低速试验段)长15 m、模型试验区横截面宽 m、高 m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。
3)大连理工大学风洞实验室介绍大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。
风洞气动轮廓长m,宽m,最大高度为;试验段长18m,横断面宽3m,高,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。
4)中国建筑科学研究院实验室介绍风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m××21m,最高风速18m/s。
拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。
风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。
风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。
实验模型的制作1.工程背景与概况本次实验旨在研究一拟建高层玻璃幕墙结构建筑的表面风压分布情况,为玻璃幕墙的设计强度、施工工艺和材料选用提供依据。
该高层建筑,高41层(120米),水平面为L 形,底部4层或作商用,上部37层为办公用房,整体采用钢结构,立面采用玻璃幕墙装饰。
基于该建筑的以上特点,风荷载成为其侧向控制荷载。
2.模型设计与加工建筑模型的设计与加工,应遵循“相似准则”,以实际高层建筑为原型,采用1:200的缩尺比,绘制完成建筑模型图、构件加工图,加工得到实物模型,具体步骤如下:(1)建筑模型图以拟建高层玻璃慕青结构建筑为原型,以1:200的缩尺比对长宽高三个方向进行等比例缩小,得到模型的各个立面图及俯视平面图。
同时,为满足测量建筑表面风压系数的需要,应对需要布置测压管的位置进行标记。
测压管的布置采取水平向均匀布点、竖直向取特征位置布点的方法,在模型顶面和四面共布置了234个测点,在图中以“十”字标记。
(2)构件加工图模型加工材料为4.5mm 厚的有机玻璃,首先在考虑材料厚度的前提下设计实验模型的拼装方法,再按照拼装方法计算各拼装构件的尺寸,最终获得各拼装构件的加工图及试验模型拼装说明图,以AutoC A D 文件输出。
(3)机械加工将设计好的构件加工图纸导入数控车床的控制系统中,以4.5mm 厚的有机玻璃板为原料在数控车床上加工出期望的拼装构件,并按照设计的数目在标记的测压管位置打出测压孔。
3.测压管的安装与编号模型拼装之前需要在其表面埋入内径为ϕ1mm的黄铜管,通过内径为ϕ1.4mm的乙烯树脂管与黄铜管及压力扫描阀进行紧密连接,再接到压力传感测量模型表面各测压点的风压。
测压管的安装步骤如下:(1)埋置测压管将测压管(内径为ϕ1mm的黄铜管)埋入有机玻璃构件上预先打好的测孔中,用502胶水粘接,为防止502胶水通过测孔渗入测压管中而将其堵塞,应该首先在模型表面粘上一层透明胶纸,要求测压管与模型表面保持垂直且平齐。
风洞试验玻璃幕墙风荷载是玻璃幕墙设计诸荷载(作⽤)中最重要的⼀项。
它的取值直接影响玻璃幕墙的安全,尤其是体型复杂的⾼层建筑玻璃幕墙的设计风荷载更要慎重采⽤。
《玻璃幕墙⼯程技术规范》JGl02—2003规定:“玻璃幕墙的风荷载标准值可按风洞试验结果确定;玻璃幕墙⾼度⼤于200m或体型、风荷载环境复杂时,宜进⾏风洞试验确定风荷载。
”风压是速度压,风速只是代表在⾃由⽓流中某点的风速,房屋建筑设计时不能直接以该风速作为结构荷载,因为房屋本⾝并不是理想地使原来的⾃由风流停滞,⽽是让⽓流以不同⽅式在房屋表⾯绕过,因此房屋对⽓流形成某种⼲扰,要完全从理论上确定⽓流影响的物体表⾯的压⼒,⽬前还是做不到。
⼀般都是通过试验的⽅法确定风作⽤在建筑物表⾯所引起的压⼒(吸⼒)与来流风压的⽐值,即风荷载体型系数,它表⽰建筑物表⾯在稳定风压作⽤下的静态压⼒分布规律,主要与建筑物的体型与尺度有关(荷载规范共列出38种基本体型),当周围有较多⾼层建筑时,这⼀群体对风产⽣特定的群体⼲扰因⽽形成了特定的风环境,对所设计的⾼层建筑也会产⽣影响,受到群体⼲扰影响时,对称的截⾯形状会出现并不对称的风压分布,特别是上游和下游建筑物对⽓流产⽣的⼲扰造成群体⼲扰影响下的⽓流特性与单体有很⼤差别,⽽我国现⾏规范未考虑群体⼲扰的影响因素,还有⼀些⾼层建筑采⽤⼀些特殊的体型(⾮基本体型),且不同⾼度采⽤不同的截⾯形状,沿⾼度变化的截⾯风压分布,再加上群体⼲扰的影响,其风压分布复杂多变,例如正负风压系数都出现在双园弧⾯尖⾓拐⾓,双园弧⾯与过渡段交接处的尖⾓上有极强的压⼒脉动等,这些分布规律在荷载规范风荷载体型系数表中是查不到的,需要通过风洞试验来验证和确定。
⼀些⾼层建筑即使平⾯形状与基本体型相似,但周围环境不尽相同,最好还是通过风洞试验来确定风荷载体型系数。
现在已有很多⾼层建筑采⽤风洞试验来确定风荷载,经过对⼀部份风洞试验报告分析,发现在同⼀地点,⾼度、体型均相近的建筑设计风荷载取值悬殊,也有同⼀建筑由两个试验单位试验,试验结果差别很⼤,甚⾄有些试验单位的试验报告提出的设计风荷载⽅案中,出现按C类地区计算出的风压⽐按B类计算的数据要⼤的不正常情况。