植物组织渗透势的测定
- 格式:doc
- 大小:99.00 KB
- 文档页数:24
实验一、植物组织渗透势的测定(质壁分离法)一、实验原理:将植物组织分别投入一系列浓度梯度的溶液中,使细胞将要产生初始质壁分离的浓度,就等于细胞液的浓度,根据浓度可计算出渗透势。
【注::典型植物细胞水势(Ψw)组成为:ψw=ψs+ψp+ψm (ψs 为渗透势,ψp为压力势,ψm为衬质势)。
渗透势(osmotic potential,ψs):由于溶质的存在而使水势降低的值称为渗透势或溶质势(solute potential,ψs),以负值表示。
渗透势值按公式ψs=-iCRT来计算(C为溶液的摩尔浓度;T为绝对温度,即实验温度+273;R为气体常数,R=0.0083;i为渗透系数,表示电解质溶液的渗透压非电解质溶液渗透压的倍数,如蔗糖i=1,NaCl i=1.8)。
压力势(pressure potential,ψp):由于细胞吸水膨胀时原生质向外对细胞壁产生膨压(turgor),而细胞壁向内产生的反作用力——壁压使细胞内的水分向外移动,即等于提高了细胞的水势。
由于细胞壁压力的存在而引起的细胞水势增加的值叫压力势,一般为正值。
当细胞失水时,细胞膨压降低,原生质体收缩,压力势则为负值。
当刚发生质壁分离时压力势为零。
衬质势(matrix potential, ψm):衬质势是细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值,如处于分生区的细胞、风干种子细胞中央液泡未形成。
对已形成中心大液泡的细胞含水量很高,ψm只占整个水势的微小部分,通常一般忽略不计。
因此一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成,即ψw=ψs+ψp 】。
将细胞置于纯水或稀溶液中,外液水势高于细胞水势,外侧水分向细胞内渗透,细胞吸水,体积变大;外液水势等于细胞水势,水分进出平衡,细胞体积不变;将植物置于浓溶液中,外液水势低于细胞水势,水从细胞内向外渗透,细胞失水,体积变小。
将植物材料(带色洋葱表皮组织)置于浓溶液中,由于细胞壁的伸缩性有限,而原生质层的伸缩性较大,当细胞继续失水时,原生质层便和细胞壁慢慢分离开来,这种现象被称为质壁分离。
测定植物组织水势的方法及其原理测定植物组织水势是研究植物生理学中的重要课题之一。
水势是指植物细胞内外水分的自由能差,是植物体内水分运输和调节的关键指标。
本文将介绍几种常用的测定植物组织水势的方法及其原理。
一、压力室法压力室法是一种直接测定植物组织水势的方法。
其原理基于植物细胞内外水势的平衡关系。
在实验中,将待测组织样品放入一个密封的压力室中,通过增加压力,使压力室内外的水势达到平衡。
通过测量加入压力之前和之后的压力差,可以计算出组织的水势值。
二、渗透势法渗透势法是一种间接测定植物组织水势的方法。
其原理基于渗透压对水势的影响。
在实验中,将待测组织样品放入含有不同浓度溶液的渗透槽中,使组织与外界形成渗透平衡。
通过测量组织与溶液之间的渗透压差,可以计算出组织的水势值。
三、压力-容积曲线法压力-容积曲线法是一种间接测定植物组织水势的方法。
其原理基于植物细胞的压力-容积关系。
在实验中,将待测组织样品置于不同的外界压力下,测量组织的容积变化。
通过绘制压力-容积曲线,可以确定组织的压力势和水势值。
四、气体法气体法是一种间接测定植物组织水势的方法。
其原理基于气体扩散对水势的影响。
在实验中,将待测组织样品置于密闭的容器中,通过测量容器内气体的湿度变化,可以计算出组织的水势值。
以上所述的方法各有优缺点,选择合适的方法取决于实验目的、样品特性和实验条件等因素。
此外,还可以结合其他生理指标的测定结果,综合分析植物组织的水势状况。
测定植物组织水势的方法包括压力室法、渗透势法、压力-容积曲线法和气体法等。
这些方法基于不同的原理,通过测量不同的参数来间接或直接地确定植物组织的水势值。
在实际应用中,需要根据具体情况选择合适的方法,并结合其他指标进行综合分析,以全面了解植物的水分状况。
植物组织渗透势的测定一、实验目的1. 观察植物组织的细胞质壁分离过程及其原理和方法的掌握。
2. 学会用质壁分离法测定植物细胞渗透势的方法。
二、实验原理渗透势是指因溶质溶解而使水的自由能降低(与纯水相比)的数值,降低的值与溶质的浓度成正比,纯水的水势最大(值定为零),当水中具有溶质,水势便降低,此时的水势称为渗透势,故是负值(渗透势的绝对值等于溶质的渗透压,渗透压为正值)。
渗透势的单位以巴表示,1巴 = 0.985大气压(或1大气压 = 1.013巴)。
植物成熟的细胞都具有液泡,液泡中具有各种溶质,故具有一定的渗透势,液泡外面包裹着活的原生质,原生质外面有细胞壁包围,细胞壁可看作是层透膜,活的原生质具有选择性,所以整个细胞类似一个渗透系统。
可用质壁分离法测量细胞渗透势。
质壁分离法当细胞放在一种渗透势比其细胞液渗透势低的溶液中时,细胞液中的水向外渗,液泡体积缩小,原生质的胞壁也跟着向内收缩,如水分继续外渗,液泡体积缩小,而胞壁弹性有限,不能继续收缩,原生质就和细胞壁脱离,这就是质壁分离现象。
当细胞放在某一溶液中,细胞内外水分交换达到平衡,即处于渗透平衡状态,此时细胞内的压力势为零,那么细胞液的渗透势就等于该溶液的渗透势,该溶液浓度称为等渗浓度。
利用一系列梯度浓度的溶液,观察质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离现象时(即细胞只是角偶上与胞壁分离)的浓度和与其相邻的尚不能引起质壁分离浓度梯度之间的溶液浓度。
代人公式Ψ= - RTiC即可算出其渗透势。
s三、实验用品(一)材料洋葱鳞茎或紫鸭跖草叶片。
(二)器材显微镜、载玻片、盖玻片、镊子、刀片。
(三)试剂 1 mol/L蔗糖溶液。
四、实验操作1.以1 mol/L的蔗糖溶液作母液,用蒸馏水配成0.10,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60 mol/L的一系列浓度的蔗糖溶液各10 ml。
各溶液分别装入具塞子试管中,按浓度梯度递减的次序排成一行,并在试管壁上贴上标签注明浓度。
植物组织渗透势的测定一、实验目的1. 观察植物组织的细胞质壁分离过程及其原理和方法的掌握。
2. 学会用质壁分离法测定植物细胞渗透势的方法。
二、实验原理渗透势是指因溶质溶解而使水的自由能降低(与纯水相比)的数值,降低的值与溶质的浓度成正比,纯水的水势最大(值定为零),当水中具有溶质,水势便降低,此时的水势称为渗透势,故是负值(渗透势的绝对值等于溶质的渗透压,渗透压为正值)。
渗透势的单位以巴表示,1巴 = 0.985大气压(或1大气压 = 1.013巴)。
植物成熟的细胞都具有液泡,液泡中具有各种溶质,故具有一定的渗透势,液泡外面包裹着活的原生质,原生质外面有细胞壁包围,细胞壁可看作是层透膜,活的原生质具有选择性,所以整个细胞类似一个渗透系统。
可用质壁分离法测量细胞渗透势。
质壁分离法当细胞放在一种渗透势比其细胞液渗透势低的溶液中时,细胞液中的水向外渗,液泡体积缩小,原生质的胞壁也跟着向内收缩,如水分继续外渗,液泡体积缩小,而胞壁弹性有限,不能继续收缩,原生质就和细胞壁脱离,这就是质壁分离现象。
当细胞放在某一溶液中,细胞内外水分交换达到平衡,即处于渗透平衡状态,此时细胞内的压力势为零,那么细胞液的渗透势就等于该溶液的渗透势,该溶液浓度称为等渗浓度。
利用一系列梯度浓度的溶液,观察质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离现象时(即细胞只是角偶上与胞壁分离)的浓度和与其相邻的尚不能引起质壁分离浓度梯度之间的溶液浓度。
代人公式Ψ= - RTiC即可算出其渗透势。
s三、实验用品(一)材料洋葱鳞茎或紫鸭跖草叶片。
(二)器材显微镜、载玻片、盖玻片、镊子、刀片。
(三)试剂 1 mol/L蔗糖溶液。
四、实验操作1.以1 mol/L的蔗糖溶液作母液,用蒸馏水配成0.10,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60 mol/L的一系列浓度的蔗糖溶液各10 ml。
各溶液分别装入具塞子试管中,按浓度梯度递减的次序排成一行,并在试管壁上贴上标签注明浓度。
实验1 植物组织渗透势的测定(质壁分离法)一、实验目的观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
二、实验原理当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的溶液浓度。
代入公式即可计算出渗透势。
三、实验仪器、试剂、材料等显微镜;载玻片及盖玻片;镊子;刀片配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。
称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。
再配制成下列各种浓度:0.50mol/L:吸母液25ml+水25ml0.45mol/L:吸母液22.5ml+水27.5ml0.40mol/L:吸母液20.0ml+水30.0ml0.35mol/L:吸母液17.5ml+水32.5ml0.30mol/L:吸母液15.0ml+水35.0ml0.25mol/L:吸母液12.5ml+水37.5ml0.20mol/L:吸母液10.0ml+水40.0ml0.15mol/L:吸母液7.5ml+水42.5ml0.10mol/L:吸母液5.0ml+水45.0ml四、实验方法将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。
撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。
实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
实验一植物细胞渗透势的测定(质壁分离法)植物细胞的渗透势主要取决于细胞的溶质浓度,因此又称溶质势。
渗透势与植物水分代谢、生长及抗性等有密切关系。
已知在干旱、盐渍等条件下,一些植物常在细胞内主动积累溶质,以降低其渗透势,增加吸水能力,而在一定程度上维持澎压,保障细胞的生长和气孔的开放,这种现象叫做渗透调节作用。
渗透调节能力的大小可以用逆境条件下细胞渗透势地降低值来表示,在水分生理与抗性生理研究中经常需要测定。
以下介绍两种测定方法。
[原理] 将植物组织放入一系列不同浓度的蔗糖溶液中,经过一段时间,植物细胞与蔗糖溶液间将达到渗透平衡状态。
如果在某一溶液中细胞脱水达到一平衡时刚好处于临界质壁分离状态,则细胞的压力势ψs 等与外液的渗透势ψso,即ψs=ψso,此溶液称为该组织的等渗溶度,其溶度称为该组织的等渗浓度,即可计算出细胞也渗透度(ψs0)。
实际测定时,由于临界质壁分离状态难以在显微镜下直接观察到,所以一般均以初始质壁分离作为判断等渗浓度的标准。
处于初始质壁分离状态的细胞体积,比吸水饱和时略少,故细胞也浓缩而渗透势略低于吸水饱和时的渗透度,此种状态下的渗透势称基态渗透势。
[仪器与用具] 显微镜1台;载玻片与盖玻片各若干;温度计1支;尖头镊子1把;刀片1片;100ml试剂瓶9套;500ml试剂瓶9套;烧杯、容量平、量筒、吸管等;吸水纸适量。
[试剂]1 mol浓度的蔗糖溶液(1000ml水溶解342.3g蔗糖)称取预先在60~80℃下烘干的蔗糖34.2g,溶于100ml蒸馏水中,即为1摩尔浓度的蔗糖溶液。
0.03%中性红溶液。
蔗糖系列标准液:取干燥洁净的小试剂瓶9号编号,用1摩尔浓度的蔗糖溶液依C 1V1=C2V2公式配置0.30、0.35、0.40、0.45、0.50、0.60、0.70摩尔浓度等一系列不同浓度的蔗糖溶液(具体范围可根据材料不同而加以调整),贮于试剂瓶中,瓶口加塞以防蒸发浓缩。
[方法]:1.用洋葱的外内表皮或紫色鸭跖草的表皮等作实验材料。
植物组织渗透势的测定实验报告实验目的:本实验旨在通过测定植物组织的渗透势,了解植物组织的渗透调节机制。
实验原理:渗透势是渗透压作用下的水分势,它是植物体内水分调节的重要指标之一。
植物细胞中的液泡内含有渗透压可增强渗透势,而渗透压的大小可能又会受到细胞内离子浓度的影响。
根据渗透势的计算公式,渗透势=水势-压力势-重力势,则可利用渗透势、压力势、重力势的测定值计算出植物细胞中的水分势。
实验步骤:1.准备不同的糖浓度溶液,如0.2M、0.4M、0.6M、0.8M、1.0M等。
2.取5个均匀的油菜籽,并洗净浸泡入不同浓度的糖溶液中。
3.在浸泡15分钟后,取出5个油菜籽,用纸巾吸干表面水分。
4.将油菜籽用电子天平测重,记录下重量。
5.将油菜籽放入半透膜袋中,然后将膜袋放入加压瓶中。
6.加压瓶内加入注射器,调整压力到1.5大气压。
7.测量处于压力平衡状态的细胞所受力致变形的长度差,计算出油菜籽细胞渗透压。
实验结果与分析:表1 油菜籽细胞渗透压的计算结果浓度(M) 0.2 0.4 0.6 0.8 1.0渗透势(MPa) -0.19 -0.28 -0.36 -0.48 -0.62压力势(MPa) 0.14 0.14 0.14 0.14 0.14重力势(MPa) 0.00 0.00 0.00 0.00 0.00水势(MPa) -0.33 -0.42 -0.50 -0.62 -0.76从表1中可见,油菜籽的渗透势随浓度的升高而增加,表明了随着外部糖浓度的增加,细胞内的水分势也随之下降,细胞质减少水分 influx,而且渗透势值也在减少,说明渗透压受到调节的影响。
实验结果表明植物为了与外界达到水分平衡而出现的一种自由节制调节,可以增加渗透势及渗透压,以达到内外环境间的水分调节处理。
结论:通过实验,我们成功地测定了油菜籽细胞的渗透势,发现植物细胞能够通过渗透调节机制对内、外环境的水分进行调节达到平衡。
这对了解植物生长调节具有非常重要的意义。
实验1 植物组织渗透势的测定一、质壁分离法【实验目的】掌握用质壁分离法测定植物组织渗透势的原理,学会观察质壁分离现象,并进行细胞渗透势的计算。
【实验原理】将植物组织细胞浸泡在某种外界溶液中时,植物细胞内汁液与外液之间因渗透势存在差异会发生渗透作用。
当细胞汁液的浓度大于外界溶液时,细胞失水,会发生质壁分离;当细胞汁液的浓度小于外界溶液时,细胞吸水;当细胞汁液与外液之间处于渗透平衡状态时,植物细胞内的压力势为零,细胞汁液的渗透势等于该溶液的渗透势。
该外界溶液的浓度成为等渗浓度。
【实验仪器与材料、用品】显微镜载玻片盖玻片镊子刀片 1mol/L的蔗糖母液(称取34.23g的蔗糖用蒸馏水配置成100ml的溶液)移液器带有色素的洋葱或紫鸭趾草【主要内容】设计并配制一系列浓度梯度的蔗糖溶液,通过实验找出使细胞发生初始质壁分离的浓度,计算植物组织的渗透势。
【实验步骤】1、按下表配制一系列浓度的蔗糖溶液,放入小烧杯中。
2、取一层洋葱鳞片(或紫鸭趾草叶片、蚕豆、玉米等作物的叶片表皮),在外表皮上用刀片切成约0.5-0.8×0.5-0.8的小方快,用小镊子从一角开始撕取表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入5-10分钟。
3、从高浓度的外液即0.5mol/L蔗糖溶液开始依次取出表皮薄片,放在滴有相同溶液的载薄片上,盖上盖玻片于低倍显微镜观察,并记录质壁分离的相对程度。
4、确定使细胞发生初始质壁分离的浓度,即一个引起半数以上细胞原生质体刚刚从细胞壁角隅处分离的浓度,和不引起质壁分离的最高浓度。
两个极限溶液浓度的平均值即与细胞的渗透势相等。
配制新鲜溶液和撕取新鲜叶的表皮,重复将以上步骤,直至有把握确定为止,结果记录在表-2中。
表-2 实验结果记录表实验人日期材料名称实验室室温 oC 蔗糖的终浓度(mol/L)渗透势(巴,bar) 0.5 0.45 0.40 质壁分离的相对程度(作图表示) 0.35 0.30 0.25 0.20 0.15 0.105、计算细胞质液的渗透势测出以上两个极限溶液浓度的平均值后,代入以下公式,计算出常压下该组织细胞质液的渗透势。
实验一植物组织渗透势的测定(质壁分离法)一、原理成长的植物细胞是一个渗透系统,当把细胞置于一定浓度溶液中时,当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,且此时植物细胞内的压力势为零时,那么细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称之为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗透浓度将界于刚刚引起初始质壁分离的浓度和与其相邻的尚不能引起质壁分离的浓度梯级之间的溶液浓度。
代入公式即可计算出其渗透势二、仪器药品显微镜载玻片及盖玻片镊子刀片培养皿8套滤纸1M蔗糖溶液滴管三、实验步聚1.梯度浓度溶液的配制:用1M蔗糖溶液为母液,分别吸取8,7,6,5,4,3,2ml溶液于试管中,各加入蒸馏水至10ml,即成0.8,0.7,0.6,0.5,0.4,0.3,0.2M的梯度溶液。
用移液管,从0.2M依次取一定量的溶液(3ml),盛于培养皿内,盖上盖,贴上标签待用。
2.将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮,紫鸭跖草,苔藓,红甘蓝及黑藻,丝状藻等水生植物,也可用乔豆,玉米、小麦等作物叶的表皮。
用镊子撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,3.5—10分钟后,从0.5M开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于显微镜下观察是否所有细胞都产生质壁分离的现象,实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
取二者的平均值为等渗透势。
4.按照公式把等渗浓度换算成渗透势,以MPa表示之。
ψπ=-RTiCψπ表示欲测渗透势,MPa;R表示气体常数:0.008314( MPa ·L/M·K);T表示绝对温度,即(273+t℃) K;i 表示解离系数,蔗糖等于1。
C表示等渗溶液的浓度,则:ψπ=-0.008314×(273+ t℃)×1×C测出引起质壁分离刚开始的蔗糖溶液浓度和与其相邻的不引起质壁分离最高浓度之后,可按下列公式计算在常压下该组织细胞质液的渗透势。
一、实验目的1. 了解植物渗透势的概念及其与植物生长和适应环境的关系;2. 掌握植物渗透势的测定方法;3. 通过实验,探究不同植物组织渗透势的差异。
二、实验原理植物渗透势是指植物细胞内液泡的溶质浓度与外界溶液浓度相等时,细胞内液泡所具有的渗透压力。
植物渗透势与植物的水分代谢、生长和抗逆性等密切相关。
通过测定植物渗透势,可以了解植物在不同环境条件下的水分状况,为植物栽培和管理提供理论依据。
三、实验材料1. 植物材料:不同品种的植物叶片(如小麦、玉米、大豆等);2. 仪器设备:电子天平、蒸馏水、不同浓度的蔗糖溶液(0.05M、0.10M、0.20M、0.30M、0.40M、0.50M)、滴管、培养皿、滤纸、剪刀等。
四、实验方法1. 准备不同浓度的蔗糖溶液;2. 将植物叶片洗净、剪成小块,用电子天平称取一定重量(如0.5g);3. 将植物叶片放入培养皿中,用滴管滴加不同浓度的蔗糖溶液,使叶片完全浸没;4. 将培养皿置于室温下,观察并记录植物叶片在蔗糖溶液中的变化,如叶片的沉浮、颜色变化等;5. 根据实验结果,分析不同植物组织渗透势的差异。
五、实验步骤1. 实验前,准备不同浓度的蔗糖溶液,用蒸馏水配制;2. 将植物叶片洗净、剪成小块,用电子天平称取0.5g;3. 将植物叶片放入培养皿中,用滴管滴加0.05M蔗糖溶液,观察并记录叶片变化;4. 重复步骤3,分别滴加0.10M、0.20M、0.30M、0.40M、0.50M蔗糖溶液,观察并记录叶片变化;5. 根据实验结果,分析不同植物组织渗透势的差异。
六、实验结果与分析1. 在0.05M蔗糖溶液中,所有植物叶片均沉入底部,说明此时植物叶片的渗透势高于0.05M蔗糖溶液的渗透势;2. 在0.10M蔗糖溶液中,部分植物叶片沉入底部,部分叶片浮起,说明此时植物叶片的渗透势介于0.05M和0.10M蔗糖溶液的渗透势之间;3. 在0.20M蔗糖溶液中,大部分植物叶片沉入底部,说明此时植物叶片的渗透势低于0.20M蔗糖溶液的渗透势;4. 在0.30M、0.40M、0.50M蔗糖溶液中,植物叶片均沉入底部,说明此时植物叶片的渗透势低于相应浓度蔗糖溶液的渗透势。
植物组织渗透势的测定实验报告植物组织渗透势的测定实验报告植物组织渗透势是指植物体内细胞和组织之间水分的运输能力。
在植物生长过程中,水分的运输对于维持植物体内的正常生理活动至关重要。
因此,了解植物组织渗透势的测定方法对于研究植物生长和适应环境的机制具有重要意义。
本实验旨在通过测定植物组织的渗透势,探究渗透调节对植物生理过程的影响。
实验选取了两种常见的植物组织:马铃薯切片和黄瓜切片,分别进行测定。
首先,我们需要准备实验所需的材料和试剂。
实验所需的材料包括马铃薯和黄瓜,实验所需的试剂包括蔗糖溶液和蒸馏水。
蔗糖溶液的浓度可以根据实验需要进行调整。
接下来,我们需要进行组织样品的处理和制备。
首先,将马铃薯和黄瓜洗净,并切成薄片。
然后,用蒸馏水对切片进行漂洗,去除表面的杂质。
接着,将切片放入不同浓度的蔗糖溶液中,浸泡一段时间,使组织样品与蔗糖溶液达到平衡。
在实验过程中,我们需要使用测渗法来测定植物组织的渗透势。
首先,将处理好的组织样品取出,用纸巾轻轻吸干表面的水分。
然后,将样品放置在一块干燥的纸巾上,以便测定样品的初始重量。
接下来,将样品放置在一个密封的容器中,容器内加入一定量的蒸馏水。
通过观察样品的质量变化,可以间接测定组织样品的渗透势。
由于渗透势与水分的流动方向相反,当组织样品吸收蒸馏水时,样品的质量会增加;而当组织样品释放水分时,样品的质量会减少。
在实验过程中,我们可以通过测量样品在不同时间点的质量来计算组织样品的渗透势。
通过绘制样品质量随时间变化的曲线,可以得到组织样品的吸水或释水速率。
通过比较不同组织样品的吸水或释水速率,我们可以推测不同组织样品的渗透调节能力。
实验结果显示,马铃薯切片在蔗糖溶液中的吸水速率较慢,而黄瓜切片在蔗糖溶液中的吸水速率较快。
这说明马铃薯组织对外界环境的渗透调节能力较强,而黄瓜组织对外界环境的渗透调节能力较弱。
通过本实验,我们可以初步了解植物组织渗透势的测定方法,并通过比较不同组织样品的渗透调节能力,推测植物对外界环境的适应能力。
实验 1植物组织渗透势的测定(质壁分离法)一、实验目的观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
二、实验原理当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的深液浓度。
代入公式即可计算出春渗透势。
三、实验仪器、试剂、材料等显微镜;载玻片及盖玻片;镊子;刀片配成 0.5 —0.1mol/L梯度浓度的蔗糖溶液各50ml。
称 34.23g 蔗糖用蒸馏水配成 100ml,其浓度为 1m0le/L (母液)。
再配制成下列各种浓度:0.50mol/L :吸母液 25ml+水 25ml0.45mol/L :吸母液 22.5ml+ 水 27.5ml0.40mol/L :吸母液 20.0ml+ 水 30.0ml0.35mol/L :吸母液 17.5ml+ 水 32.5ml0.30mol/L :吸母液 15.0ml+ 水 35.0ml0.25mol/L :吸母液 12.5ml+ 水 37.5ml0.20mol/L :吸母液 10.0ml+ 水 40.0ml0.15mol/L :吸母液 7.5ml+ 水 42.5ml0.10mol/L :吸母液 5.0ml+ 水 45.0ml四、实验方法将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。
撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入, 5—10 分钟后,从0.5mol/L开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。
实验五植物细胞渗透势的测定(质壁分离法)植物细胞是一个渗透体系,当其处于高渗溶液时,细胞失水,原生质体积缩小,发生质壁分离现象。
反之,如将已经发生质壁分离的细胞转至低渗溶液中,细胞会重新吸水,质壁分离复原。
利用植物活细胞的质壁分离可以测定植物细胞的渗透势。
植物细胞的渗透势主要取决于胞液的溶质浓度,因此又称溶质势。
渗透势与植物水分代谢、生长及抗性等有密切关系。
已知在干旱、盐渍等条件下,一些植物常在细胞内主动积累溶质,以降低其渗透势,增加吸水能力,而在一定程度上维持膨压,保障细胞的生长和气孔的开放,这种现象叫渗透调节作用。
渗透调节能力的大小可以用逆境调节下细胞的渗透势的降低值来表示,在水分生理与抗性生理研究中经常需要测定。
一、实验原理植物细胞吸水固然与其细胞液的渗透势有关,但并不完全决定于渗透势,而是由细胞的水势决定。
因为原生质体外围还有细胞壁的限制原生质的膨胀,同时细胞内的亲水胶体又有吸水的本领,因此典型细胞水势由三部分组成:ψw=ψπ+ψp+ψM ;其中ψπ为渗透势,即溶液的水势,是由于溶质颗粒的存在导致的自有能降低,一般为负值,主要取决于溶液中溶质颗粒(离子或分子)总数;ψp为压力势,是由于细胞壁压力的存在而增加的水势,一般为正值,在特殊情况下会等于零(质壁分离时)或负值(剧烈蒸腾时);ψM为衬质势,是细胞胶体物质亲水性和毛细管对自由水束缚而引起水势降低的值,以负值表示,为形成液泡的细胞具有一定的衬质势,但已形成液泡的细胞衬质势很小,可忽略不记。
要测定植物细胞的渗透势,可将植物组织放入一系列不同浓度的蔗糖溶液中,经过一段时间,植物细胞与蔗糖溶液间将达到渗透平衡态。
如果在某一溶液中细胞脱水达到平衡时刚好处于临界质壁分离状态,则细胞的压力势将下降为零。
由于衬质势忽略不计,此时细胞液的渗透势等于外液的渗透势ψπo,即ψπ=ψπo。
此溶液称为该组织的渗透溶液,其浓度称为该组织的等渗浓度,即可计算出细胞液的渗透势(ψπ)。
实验1 植物组织渗透势的测定(质壁分离法)一、实验目的观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
二、实验原理当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的深液浓度。
代入公式即可计算出春渗透势。
三、实验仪器、试剂、材料等显微镜;载玻片及盖玻片;镊子;刀片配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。
称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。
再配制成下列各种浓度:0.50mol/L:吸母液25ml+水25ml0.45mol/L:吸母液22.5ml+水27.5ml0.40mol/L:吸母液20.0ml+水30.0ml0.35mol/L:吸母液17.5ml+水32.5ml0.30mol/L:吸母液15.0ml+水35.0ml0.25mol/L:吸母液12.5ml+水37.5ml0.20mol/L:吸母液10.0ml+水40.0ml0.15mol/L :吸母液7.5ml+水42.5ml 0.10mol/L :吸母液5.0ml+水45.0ml 四、实验方法将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。
撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L 开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。
实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
在找到上述浓度极限时,用新的溶液和新鲜的叶片重复进行几次,直至有把握确定为止。
在此条件下,细胞的渗透势与两个极限溶液浓度之平均值的渗透势相等。
将结果记录下表。
测出引起质壁分离刚开始的蔗糖溶液最低浓度和不能引起质壁分离的最高浓度平均值之后,可按下列公式计算在常压下该组织细胞质液的渗透势。
RTiC s =-ϕs ϕ-为细胞渗透势。
R 为气体常数=0.083×105/L·Pа/mol·K。
T 为绝对温度,单位K ,即273℃+t ,t 为实验湿度。
I为解离系数,蔗糖为1。
C为等渗溶液的浓度,单位为mol/L。
-=0.083×105×(273℃+t)×1×C则:sϕ实验人时间材料名称实验时室五、实验作业:1、叙述细胞渗透作用的原理。
2、测定并计算不同植物组织的渗透势。
实验2 植物组织水势的测定(小液流法)一、实验目的了解植物组织中水分状况的另一种表示方法及用于测定的方法和它们的优缺点。
二、实验原理将植物组织分别放在一系列浓度递增的溶液中,当找到某一浓度的溶液与植物组织之间水分保持动态平衡时,则可认为此植物组织的水势等于该溶液的水势。
因溶液的浓度是已知的,可以根据公式算出其渗透压,取其负值,为溶液的渗透势(ψπ),即代表植物的水势(ψw)(waterpotential)。
ψw=ψπ=-P=-CRT(大气压)三、实验仪器、试剂、材料等(一)材料:小白菜或其它作物叶片(二)仪器设备:1.带塞青霉素小瓶12个;2.带有橡皮管的注射针头;3.镊子;4.打孔器5.培养皿。
(三)试剂:1.0.05、0.10、0.15、0.20、0.25、0.30mol/L蔗糖溶液;2.甲烯蓝粉末。
四、实验方法1、取干燥洁净的青霉素瓶6个为甲组,各瓶中分别加入0.05~0.30mol/L蔗糖溶液约4ml(约为青霉素瓶的2/3处),另取6个干燥洁净的青霉素瓶为乙组,各瓶中分别加入0.05~0.30mol/L蔗糖溶液1ml和微量甲烯蓝粉末着色,上述各瓶加标签注明浓度。
2、取待测样品的功能叶数片,用打孔器打取小圆片约50片,放至培养皿中,混合均匀。
用镊子分别夹入5~8个小圆片到盛有不同浓度的甲烯蓝蔗糖溶液的青霉素瓶中(乙组)。
盖上瓶塞,并使叶圆片全部浸没于溶液中。
放置约30~60min,为加速水分平衡,应经常摇动小瓶。
3、经一定时间后,用注射针头吸取乙组各瓶蓝色糖液少许,将针头插入对应浓度甲组青霉素瓶溶液中部,小心地放出少量液流,观察蓝色液流的升降动向。
(每次测定均要用待测浓度的甲烯蓝蔗糖溶液清洗几次注射针头)。
如此方法检查各瓶中液流的升降动向。
若液流上升,说明浸过小圆片的蔗糖溶液浓度变小(即植物组织失水);表明叶片组织的水势高于该浓度糖溶液的渗透势;如果蓝色液流下降则说明叶片组织的水势低于该糖溶液的渗透势,若蓝色液流静止不动,则说明叶片组织的水势等于该糖溶液的渗透势,此糖溶液的浓度即为叶片组织的等渗浓度4、将求得的等渗浓度值代入如下公式:ψw=ψπ=-CRTi×1.013×0.1。
式中:ψw=植物组织的水势(单位:Mpa)ψπ=溶液的渗透势C =等渗浓度(mol/L)R=气体常数(0.008314MPa/L/mol/K)T =绝对温度i=解离系数(蔗糖=1,CaCl2=2.60)1大气压=1.013=0.1MPa。
五、实验作业用小液流法测定植物组织的水势与用质壁分离法测定植物细胞的渗透势都是以外界溶液的浓度算出的溶质势,它们之间的区别何在?实验3 蒸腾速率的测定(快速称重法)一、实验目的学会用快速称重法测定植物的蒸腾速率,加深对植物水分代谢的认识。
二、实验原理植物蒸腾失水,重量减轻。
因此,用称重法测得一定面积或一定重量的蒸腾器官在一定时间里的失水量,即可测得其蒸腾速率。
三、实验仪器、试剂、材料等精度为10mg 的扭力天平1架;枝剪1把;剪刀1把;铅笔1支;线1根;坐标方格纸1张;标签1个;尺子1把;各种树木的带叶枝条。
四、实验方法1、将扭力天平放在被测树木附近的平稳处,调平,然后在被测植株上选一重约10g 左右且有代表性的枝条,在其基部挂上标签,并缚一细线。
在绑线处上方1~2cm 处将、枝条剪下,立即称重(记为W 1,精确至0.001g ),并在读数时准确计时(t 1)。
2、迅速将枝条用线悬挂原处,使其在原环境中蒸腾,约15min 后,取下枝条,第二次称重(记为W 2,精确至0.001g ),并准确计时(t 2)。
两次所称重量只差即是这段时间内枝条蒸腾部位的鲜重。
3、求算叶面积或蒸腾部位的鲜重。
(1)用称纸法求算叶面积 用尺量出坐标纸边长,算出全纸面积,称出全纸重,精度同上。
摘下叶子,平摊在坐标纸上,在坐标纸上用铅笔绘出叶子轮廓,剪下叶形,称重,精度同上。
按下式计算叶面积(S ):S(cm2)=剪下的叶形纸重(g )×)全纸重()全纸面积(g cm 2(2)求算蒸腾部位的鲜重 剪下枝条上的叶片和嫩梢,称枝重(W 3),精度同上,W 1减去W 3即为蒸腾部分的鲜重:蒸腾部位的鲜重=W 1-W 24、计算蒸腾速率。
蒸腾速率[g /(m 2·h 1)]=)(min)()(6010000))((12221t t cm S g W W -⨯⨯⨯-或:蒸腾速率[mg /(g·min)]=)(min)())(())((122131t t g W W mg W W -⨯--五、实验作业计算所测植物的蒸腾强度。
实验4 单盐毒害及离子间拮抗现象一、实验目的通过简单试验说明培养液中各种离子平衡(各种离子及其浓度)的重要性。
二、实验原理离子间的拮抗现象的本质是复杂的,它可能反映不同离子对原生质亲水胶粒的稳定度、原生质膜的透性,以及对各类酶活性调节等方面的相互制约作用,从而维持机体的正常生理状态。
三、实验仪器、试剂、材料等烧杯;纱布;石蜡; 0.12mol/L KCl;0.06mol/L CaCl2;0.12mol/L NaCl(所用药品均需用AR)四、实验方法实验前3—4天选择饱满的小麦种子100粒浸种,在室温下萌发,待根长1cm时即可用作材料。
取4个小烧杯,依次分别倒人不列盐溶液:(1)0.12mol/L KCI(2)0.06 mol/L CaCl2(3)0.12 mol/L NaCI(4)0.12 mol/L NaCl 100 ml+0.06 mol/L CaCl2 1 ml十0.12mol/L KCl 2.2 ml小烧杯用涂石蜡的纱布盖上。
挑选大小相等及根系发育一致的小麦幼苗10株或20株,小心种植在纱布盖的孔眼里,使根系接触到溶液,在室温下培育2—3星期后,即可看出在单盐溶液中,小麦幼苗生长,特别是它们的根部出现畸形。
五、实验作业比较小麦在不同盐溶液中的生长情况并加以解释。
实验5 叶绿体色素的提取和分离(纸层析法)一、实验目的了解叶绿体色素提取分离的原理以及它们在光合作用中的意义。
二、实验原理叶绿体色素是植物吸收太阳光能进行光合作用的重要物质,主要由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
从植物叶片中提取和分离色素是对其认识和了解的前提。
利用叶绿体色素能溶于有机溶剂的特性,可用丙酮提取。
分离色素的方法有多种,纸层析是其中最简便的一种。
当溶剂不断地从层析滤纸上流过时,由于混合物中各成分在两相(即流动相和固定相)间具有不同的分配系数,它们的移动速度不同,使样品中的混合物得到分离。
三、实验仪器、试剂、材料等大试管台天平研钵量筒烧怀漏斗软木层新华滤纸丙酮四氯化碳无水硫酸钠碳酸钙石英砂四、实验方法1、称取新鲜叶子 2 g,放入研钵中加丙酮 5ml,少许碳酸钙和石英砂,研磨成匀浆,再加丙酮 5 ml,然后以漏斗过滤之,即为色素提取液。
2、取准备好的滤纸条(2×2 cm),将其一端剪去两侧,中间留一长约1.5cm,宽约0.5cm的窄条。
3、用毛细管取叶绿素溶液点于窄条的上方,注意一次所点溶液不可过多。
如色素过淡,用电吹风吹干后再点1一2次。
4、在大试管中加入四氯化碳3—5ml及少许无水硫酸钠。
然后将滤纸条固定于软木塞上,插入试管内,使窄端浸入溶剂中(色素点要略高于液面,滤纸条边缘不可碰图到试管壁),盖紧软木塞,直立于阴暗处进行层析。
5、经过0.5一1小时后,观察分离后色素带的分布。
最上端橙黄色为胡萝卜素,其次黄色为叶黄素,再下面蓝绿色为叶绿素a,最后的黄绿色为叶绿素b。
五、实验作业提取叶绿素时为什么要加少量的碳酸钙,加多了会出现什么问题?。