鸽巢原理教学设计21
- 格式:docx
- 大小:15.28 KB
- 文档页数:2
教学设计:鸽巢原理一、教学目标1.知识与能力目标:了解和掌握“鸽巢原理”的概念和基本特点,能够应用鸽巢原理解决实际问题。
2.过程与方法目标:培养学生观察分析、归纳总结、推理判断、问题解决的能力。
3.情感态度与价值观目标:培养学生合作学习、积极思考和乐于探索的意识,激发兴趣,培养对数学的兴趣和自信心。
二、教学重点与难点1.教学重点:掌握“鸽巢原理”的概念和基本特点,能够应用鸽巢原理解决实际问题。
2.教学难点:运用鸽巢原理解决实际问题。
三、教学准备1.教师准备:课堂PPT、黑板、教辅资料、装有鸽巢的模型等;2.学生准备:课本、笔记本、铅笔等。
四、教学过程Step 1 引入新知识(10分钟)教师可以利用一些简单的实例引发学生对鸽巢原理的思考,例如:一只鸽子窝里有15个鸡蛋,求证必有两个鸡蛋放在同一个鸽巢里。
Step 2 导入新课(10分钟)通过学生对鸽巢原理的思考,教师导入新知识,向学生介绍鸽巢原理的概念和基本特点。
Step 3 概念讲解与示范(15分钟)教师在黑板上向学生讲解鸽巢原理的基本概念,如何应用鸽巢原理解决实际问题,并通过几个示例让学生理解和掌握。
Step 4 学生合作探究(20分钟)将学生分成小组,每组分发一份题目,要求学生通过观察、分析和推理等方法来解决问题,找出使用鸽巢原理的思路,并在规定时间内完成。
Step 5 学生展示与讨论(15分钟)各小组展示自己的解题思路和答案,并进行班级讨论,互相学习和交流。
Step 6 拓展应用(10分钟)通过一些拓展的问题,让学生进一步应用鸽巢原理解决实际问题,培养学生的问题解决能力。
Step 7 总结归纳(10分钟)教师对学生的表现进行点评,总结鸽巢原理的基本概念和解题方法,并引导学生归纳总结。
五、教学反思通过本节课的教学设计和实施,学生通过观察、分析和推理等方法,运用鸽巢原理解决实际问题,培养了他们的思维能力和数学解决问题的能力。
教学过程中强调了学生的合作学习和积极思考的意识,激发了学生对数学的兴趣和自信心。
六年级数学下册《鸽巢原理》教案设计教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。
2. 培养学生运用逻辑推理和数学思维解决问题的能力。
3. 培养学生合作交流的能力,提高学生的团队协作能力。
教学重点:1. 鸽巢原理的基本概念和应用。
2. 运用逻辑推理和数学思维解决问题的方法。
教学难点:1. 理解并运用鸽巢原理解决实际问题。
2. 培养学生合作交流的能力。
教学准备:1. 教学PPT或者黑板。
2. 教学卡片或者题目。
3. 学生分组,每组4-6人。
教学过程:一、导入(5分钟)1. 利用PPT或者黑板,展示一个简单的鸽巢原理问题,引导学生思考和讨论。
2. 邀请学生分享他们对鸽巢原理的理解和应用。
二、新课讲解(15分钟)1. 讲解鸽巢原理的基本概念和原理。
2. 通过示例题目,引导学生运用逻辑推理和数学思维解决问题。
1. 分发课堂练习题目,学生独立完成。
2. 引导学生互相检查和讨论答案。
3. 教师进行讲解和解析。
四、小组活动(15分钟)1. 将学生分成小组,每组4-6人。
2. 每个小组选择一道应用题,运用鸽巢原理进行解决。
3. 各小组汇报解题过程和结果,其他小组进行评价和讨论。
2. 学生分享他们在课堂练习和小组活动中的体验和感受。
3. 教师给出改进和提高的建议。
教学延伸:1. 布置课后作业,要求学生独立完成一道鸽巢原理的应用题。
2. 鼓励学生在日常生活中运用鸽巢原理解决问题,并分享给同学和老师。
教学反思:六、课堂拓展(10分钟)1. 通过PPT或黑板,展示一些与鸽巢原理相关的有趣问题和实际应用案例。
2. 引导学生思考和讨论,尝试解决这些问题。
3. 邀请学生分享他们的解题思路和解决方案。
七、练习与提升(10分钟)1. 分发练习题目,要求学生在规定时间内完成。
2. 引导学生独立思考,自主解决问题。
3. 教师进行讲解和解析,解答学生的疑问。
1. 将学生分成若干小组,每组4-6人。
2. 设置竞赛题目,要求各小组在规定时间内运用鸽巢原理解决问题。
《鸽巢原理》教案一、教学目标1.经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
2.会用“鸽巢原理”解决简单的实际问题,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,感受数学的魅力,提高学生学习数学的兴趣。
二、教学重难点1.重点(1)经历“鸽巢原理”的探究过程,理解“鸽巢原理”。
(2)对“总有”“至少”的理解。
2.难点运用“鸽巢原理”进行逆向思维。
三、教学方法操作法、讨论法、讲授法四、教学过程(一)游戏导入(5分钟)1.教师:“同学们,我们来玩一个游戏。
请5位同学上来,老师这里准备了4把椅子,大家都坐下,看看会出现什么情况?”2.引导学生观察并思考,引出课题:鸽巢原理。
(二)新授(20分钟)1.例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
让学生小组合作,动手摆一摆,记录不同的放法。
展示学生的摆放方法,共4种:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)引导学生观察发现:不管怎么放,总有一个笔筒里至少有2支铅笔。
解释“总有”和“至少”的含义。
2.例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
引导学生用平均分的方法思考:7÷3=2......1,2+1=3 总结:物体数÷抽屉数=商......余数,至少数=商+1(三)课堂练习(10分钟)1.教材中的练习题,如:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。
为什么?2.生活中的例子:13个人中至少有几个人的生日在同一个月?(四)课堂总结(5分钟)1.回顾鸽巢原理的内容和解题方法。
2.强调在解决问题时要找准物体和抽屉。
五、课后作业1.完成课本上的课后习题。
2.思考:如果把“总有一个抽屉里至少放进3本书”改为“总有一个抽屉里至少放进2本书”,那么至少需要多少本书放进3个抽屉?。
一、教案设计概述1. 教学目标:(1)让学生理解鸽巢原理的基本概念和意义。
(2)培养学生运用鸽巢原理解决实际问题的能力。
(3)提高学生的逻辑思维和数学素养。
2. 教学内容:(1)鸽巢原理的定义及证明。
(2)鸽巢原理在实际问题中的应用。
3. 教学方法:(1)采用讲授法,讲解鸽巢原理的基本概念和证明过程。
(2)运用案例分析法,引导学生运用鸽巢原理解决实际问题。
(3)开展小组讨论法,培养学生的合作能力和口头表达能力。
4. 教学准备:(1)准备相关案例和练习题。
(2)制作PPT课件,辅助教学。
二、教学过程1. 导入新课:(1)利用PPT课件,展示鸽巢原理的图片,引导学生思考。
(2)提问:什么是鸽巢原理?它有什么实际意义?2. 讲解鸽巢原理:(1)介绍鸽巢原理的定义和证明过程。
(2)通过PPT课件,展示鸽巢原理的证明过程,让学生理解并掌握。
3. 案例分析:(1)给出典型案例,让学生运用鸽巢原理进行分析。
(2)引导学生讨论,得出结论。
4. 练习巩固:(1)出示练习题,让学生独立完成。
(2)讲解答案,分析解题过程,巩固所学知识。
三、课堂小结1. 回顾本节课所学内容,让学生总结鸽巢原理的概念和应用。
2. 强调鸽巢原理在实际问题中的重要性,激发学生学习兴趣。
四、作业布置2. 预习下一节课内容,为课堂学习做好准备。
五、教学反思1. 课后总结课堂教学效果,了解学生掌握情况。
2. 对教学方法进行调整,以提高教学效果。
3. 关注学生在作业中的表现,及时给予指导和鼓励。
六、课堂活动1. 运用游戏教学法,设计一个关于鸽巢原理的数学游戏,让学生在游戏中理解和掌握鸽巢原理。
2. 组织学生进行小组竞赛,看哪个小组能更快地运用鸽巢原理解决问题,提高学生的合作能力和竞争意识。
七、拓展与延伸1. 引导学生思考:鸽巢原理在生活中的应用,例如:分配资源、安排活动等。
2. 介绍与鸽巢原理相关的数学问题,激发学生的学习兴趣,提高学生的数学素养。
《鸽巢原理》教学设计根据题目要求,以下是一份关于《鸽巢原理》的教学设计。
一、教学目标1.知识目标:了解鸽巢原理的概念和应用,掌握鸽巢原理的基本原理和相关公式;2.能力目标:培养学生观察和发现问题、分析问题和解决问题的能力;3.情感目标:培养学生合作学习和创新思维的能力。
二、教学重点和难点1.教学重点:鸽巢原理的概念和原理,以及相关公式的应用;2.教学难点:如何让学生理解鸽巢原理的概念和原理。
三、教学准备1.教学材料:学生教材、鸽巢模型、计算器、白板和黑板;2.教学手段:讲授、示范、实验和小组合作学习。
四、教学过程1.导入(5分钟)介绍鸽巢原理的背景和应用场景,激发学生的学习兴趣。
例如,讲述鸽巢原理在工程设计、煤矿排水等方面的应用。
2.知识讲解(15分钟)首先,引导学生观察鸽巢模型,让学生从外观上了解鸽巢结构的特点。
然后,通过示范将几个相同大小的球体放入鸽巢模型,让学生观察和思考球体在鸽巢中的排列方式和现象。
接着,讲解鸽巢原理的概念、基本原理和相关公式。
最后,通过示例计算,引导学生掌握鸽巢原理的应用方法。
3.概念演练(20分钟)出示一些实际生活中的问题,引导学生应用鸽巢原理进行分析和解答。
例如,一个长700米的隧道,若要排水,每立方米排水管只能容纳10只鸽子,那么需要多少只排水管才能排完1万只鸽子?学生进行讨论,并列出解题的步骤。
然后,组织学生分小组进行合作学习,每组讨论并解答一道类似的问题,并在黑板上进行汇报和讨论。
4.实验探究(30分钟)设计一个简单的实验,让学生通过实际操作来验证鸽巢原理。
首先,给每个小组准备一些相同大小和质量的球体和鸽巢模型。
然后,每组按照不同的排列方式将球体放入鸽巢中,记录球体的数量和排列方式。
最后,让学生观察实验结果,分析球体在鸽巢中的排列方式和现象,进一步加深对鸽巢原理的理解。
5.小结(10分钟)回顾本节课的教学内容,简要总结鸽巢原理的概念和应用,并强调培养学生观察和发现问题、分析问题和解决问题的能力。
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
《鸽巢问题》教学设计(通用8篇)《鸽巢问题》教学设计(通用8篇)作为一名无私奉献的老师,时常需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
我们应该怎么写教学设计呢?下面是小编整理的《鸽巢问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《鸽巢问题》教学设计篇1教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:一、创设情境、入新课1、师:同学们,导你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
《鸽巢原理》教学设计一、教学目标:1.了解鸽巢原理的概念和意义。
2.掌握鸽巢原理的应用方法。
3.培养学生良好的观察和思维能力。
4.激发学生对科学原理的兴趣和探索精神。
二、教学内容:1.什么是鸽巢原理?2.鸽巢原理的应用领域。
3.鸽巢原理的实例分析。
三、教学过程:1.导入(5分钟)教师通过提问让学生思考一个问题:“你们小时候有没有让家人帮忙照看自己的宠物?你们的家人是怎么安排的呢?”引出鸽巢原理的概念。
2.讲解(20分钟)教师通过幻灯片或者板书介绍鸽巢原理的概念和意义。
解释鸽巢原理是在分配有限资源时,出现了两种极端情况:一种是资源不足,导致无法完成分配;另一种是资源过剩,导致浪费。
鸽巢原理的目的就是通过合理的分配,既能达到效用最大化,又能避免资源的浪费。
3.探究(30分钟)教师准备了几个小实验和材料:十个相同大小的木块、一把尺子。
(1)实验一:直线排列教师将十个木块摆成一排,让学生测量总长度。
然后再根据鸽巢原理进行排列,让学生再次测量总长度。
通过对比两次测量,让学生发现鸽巢原理的应用。
(2)实验二:竖线排列教师将十个木块摆成两列,让学生测量总高度。
然后再根据鸽巢原理进行排列,让学生再次测量总高度。
通过对比两次测量,让学生发现鸽巢原理的应用。
(3)实验三:三维排列教师将十个木块摆成一个长方体,让学生测量长、宽、高的大小。
然后再根据鸽巢原理进行排列,让学生再次测量长、宽、高的大小。
通过对比两次测量,让学生发现鸽巢原理的应用。
4.拓展(15分钟)教师给学生展示一些其他的鸽巢原理的实例,例如:编程的优化算法、物流配送中的最优路径规划等。
让学生观察和思考这些实例中鸽巢原理的应用方法。
5.小结(10分钟)教师对本节课学习的内容进行小结,再次强调鸽巢原理的概念和意义。
鼓励学生在生活中发现和应用鸽巢原理,并与同学分享他们的观察和思考。
四、教学评价:本节课的教学评价可以从以下几个方面进行:1.观察学生在实验过程中的积极参与和合作情况。
鸽巢原理教学设计内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)《鸽巢原理》教学设计团结小学李黎教学目标1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学设计:一、合作探究——理解“总有”、“至少”提出问题:把4支铅笔放进3个笔筒,你会怎样放?1、画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;2、找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;3、我们发现:总有一个笔筒至少放进了()支铅笔。
4、学生汇报,展台展示。
5、理解“总有”、“至少”两个关键词。
二、合作探究——理解“尽量平均分”可保证“至少”提出问题:把4颗糖分给3个同学,你会怎样分?(引出尽量平均分,唤起学生的生活经验)1、交流理解“尽量平均分”可保证“至少”。
2、怎样用算式表示这种方法?(4÷3=1颗……1颗 1+1=2颗)3、画图(用尽量平均分的想法)通过操作演示,让学生直观地感受“尽量平均分”的思路,引导学生抽象出算式,找到求“至少数”的简洁的方法。
三、合作探究——建立模型1、出示问题:5支笔放进3支笔筒,总有一个笔筒至少放进()只笔。
2、学生说理,边摆边说:先平均分每个笔筒放进1支笔,余下2只再平均分放进2个不同的笔筒里,所以至少2只。
(指名说,互相说)3、质疑:为什么第二次平均分?(保证“至少”)4、用算式表达。
5、强化:如果把笔和笔筒的数量进一步增加呢?(1)10支笔放进7个笔筒,至少几支放进同一个笔筒?(2)14支笔放进4个笔筒,至少几支放进同一个笔筒?(3)23支笔放进4个笔筒,至少几支放进同一个笔筒?6、对比算式,发现规律:先平均分,再用所得的“商+1”7、强调:和余数有没有关系?学生交流,明确:与余数无关,不管余多少,都要再平均分,所以就是加1.四、解决问题1、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
鸽巢问题教学设计范⽂(精选5篇)鸽巢问题教学设计范⽂(精选5篇) 作为⼀位兢兢业业的⼈民教师,就有可能⽤到教学设计,教学设计是实现教学⽬标的计划性和决策性活动。
那么写教学设计需要注意哪些问题呢?以下是⼩编为⼤家收集的鸽巢问题教学设计范⽂(精选5篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。
鸽巢问题教学设计1 本节课是数学⼴⾓内容,也叫“抽屉原理”。
实际上是⼀种解决某种特定结构的数学或⽣活问题的模型,体现了⼀种数学的思想⽅法。
反思如下: 1.从学⽣喜欢的“游戏”⼊⼿,激发学⽣学习的兴趣和求知欲望,从⽽提出需要研究的数学问题。
这样设计使学⽣在⽣动、活泼的数学活动中主动参与、主动实践、主动思考,使学⽣的数学知识、数学能⼒、数学思想、数学情感得到充分的发展,从⽽达到动智与动情的完美结合,全⾯提⾼学⽣的整体素质。
2.引导学⽣在经历猜测、尝试、验证的过程中逐步从直观⾛向抽象。
在例1中针对实验的所有结果,在学⽣总结表征的基础上,进⽽提出“你还可以怎样想?”的问题,组织学⽣展开讨论交流。
我引导学⽣借助平均分即每个笔筒⾥先只放1⽀,这时学⽣看到还剩下1⽀铅笔,这1⽀铅笔不管放⼊其中的哪⼀个笔筒,这个笔筒都会有2⽀铅笔。
进⼀步引导学⽣加深对“⾄少有⼀个笔筒中有2⽀铅笔”的理解。
最后,组织学⽣进⼀步借助直观操作,讨论诸如“5⽀铅笔放进4个笔筒,不管怎么放,总有⼀个笔筒中⾄少有2⽀铅笔,为什么?”的问题,并不断改变数据(铅笔数⽐笔筒数多1),让学⽣继续思考,引导学⽣归纳得出⼀般性的结论:(+1)⽀铅笔放进个笔筒⾥,总有⼀个笔筒⾥⾄少放进2⽀铅笔。
注重让学⽣在观察、实验、猜想、验证等活动中,发展合情推理能⼒,培养学⽣能进⾏有条理的思考,能⽐较清楚地表达⾃⼰的思考过程与结果,经历与他⼈合作交流解决问题的过程。
本节课⾸先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理⽐较简单,但是在实际的题⽬当中,最主要的.是帮助学⽣在不同的题⽬中找出该道题⽬的“鸽巢”是什么,然后要放到“鸽巢”⾥的东西是什么,只有帮助学⽣在解题时有了构建鸽巢问题模型的能⼒,才能使学⽣真正的理解鸽巢问题,以便更好地解决鸽巢问题。
《鸽巢原理一》
一,教学目标
(一)知识与技能
通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法
结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观
在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备
多媒体课件。
四、教学过程
(一)游戏引入
出示一副扑克牌。
教师:今天老师要给大家表演一个“魔术”。
取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。
同学们相信吗?5位同学上台,抽牌,亮牌,统计。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。
(二)探索新知
1.教学例1。
(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。
教师:谁来说一说结果?
教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?
教师:这句话里“总有”是什么意思?
预设:一定有。
教师:这句话里“至少有2支”是什么意思?
(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。
教师:谁来说一说结果?
学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。
(教师根据学生回答在黑板上画图表示四种结果)
引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。
假设法(反证法):
教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。
学生进行组内交流,再汇报,教师进行总结:
如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
这就是平均分的方法。
教师:把5支铅笔放到4个铅笔盒里呢?
引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?
引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。
教师:上面各个问题,我们都采用了什么方法?
引导学生通过观察比较得出“平均分”的方法。
(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?
引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。
总有一种花色,至少有2人选”。
【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。
(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
2.教学例2。
(1)课件出示例2。
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
为什么?
先小组讨论,再汇报。
引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。
”
(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?
教师根据学生的回答板书:
7÷3=2……1不管怎么放,总有一个抽屉里至少放进3本;
8÷3=2……2不管怎么放,总有一个抽屉里至少放进3本;
10÷3=3……1不管怎么放,总有一个抽屉里至少放进4本;
11÷3=3……2不管怎么放,总有一个抽屉里至少放进4本;
教师:观察上述算式和结论,你发现了什么?
引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。
(三)课堂练习
1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
为什么?
2.5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?
(四)课堂小结
通过这节课的学习,你有哪些新的收获呢?。