冶金工程概论第07章氧气转炉炼钢(设备)
- 格式:pptx
- 大小:934.40 KB
- 文档页数:40
《冶金工程概论》课程教学大纲课程编号:0802505104课程名称:冶金工程概论英文名称:Conspectus of Metallurgical Engineering课程类型:专业选修课总学时:24 讲课学时:24 实验学时:0学时:24学分:1.5适用对象:冶金、材料等专业先修课程:无机化学、材料热力学等一、课程性质、目的和任务冶金工程概论课程是从事冶金行业和金属材料的一门专业基础课,它是在学生学习无机化学的基础上,系统地介绍了钢铁和主要有色金属(铜,铝等)提取冶金过程的基本原理,工艺特点和基本工艺流程。
通过学习,学生对冶金(包括火法,湿法和电冶金)生产过程有一个全面而概括的了解,初步掌握冶金的基本知识,为进一步学习冶金学理论、机加工生产工艺和金属材料理论打下必要的专业基础。
除此之外,本课程还简要介绍了金属的分类,主要金属的性质,用途,资源状况,生产方法,近年来的世界产量和价格,以及发展我国冶金工业的基本国情等方面的内容。
本课程旨在介绍冶金工业在国民经济的地位,冶金工业的原料,冶金过程和方法,冶金工程设计和新技术。
使学生了解冶金工业概况和冶金技术的进步,为材料开发提供新的思路。
要求学生认识冶金工业是国民经济的支柱产业。
了解冶金工程的主要研究内容是从金属矿石中提取有价元素加工成纯金属和金属化合物的原理和工艺,涉及过程自动控制,工程设计,新材料制备等领域。
二、教学基本要求本课程介绍炼铁、炼钢、铜冶金和铝冶金原理、工艺及设备,以炼铁和炼钢为重点。
学完本课程应达到以下基本要求:1.了解金属及其分类方法,金属的产量和价格,冶金工业在国民经济中的地位和作用;矿石、矿床和矿物的概念及金属元素在地壳中的分布;掌握冶金和冶金方法,冶金工艺流程和冶金过程;选矿的基本任务,工艺指标和选矿方法.。
2.了解高炉炼铁的基本知识,高炉附属设备和高炉生产的发展方向。
熟练掌握高炉冶炼用原料及要求,高炉冶炼中铁氧化物碳热还原的一般规律,高炉冶炼炉内反应,高炉结构以及高炉生产的主要技术经济指标。
《转炉炼钢生产》课程标准一、课程性质转炉炼钢生产处于钢铁生产制造链(炼铁—炼钢—轧钢)的中心环节,因此《转炉炼钢生产》是冶金技术专业的一门核心学习领域。
本学习领域主要培养学生转炉炼钢生产的基本理论和主要工艺操作,常见生产事故及处理方法,及转炉炼钢生产的主要工艺设备和机械设备的使用与维护。
同时注重培养学生独立分析问题和解决现场实际问题的能力,为学生今后的工作奠定基础。
前导课程:金属材料及热处理、冶金通用机械与冶炼设备、烧结矿与球团矿生产、高炉炼铁生产后续课程:炉外精炼、连续铸钢生产、轧钢概论等二、课程目标(一)总体目标通过本课程实施使学生了解转炉炼钢原材料的选择、炼钢车间构筑物及主要设备;掌握转炉炼钢生产的原料配比、工艺过程制订及常见问题的处理。
培养学生利用理论知识分析和解决实际问题的初步能力,掌握专业思维方法,为今后走上工作岗位,解决现场实际问题打下基础。
能力目标:1、能识别转炉炼钢所用原材料,并具备一定的质量判断能力;2、能够依据原材料条件和所炼钢种要求,合理地进行造渣、供氧、温度控制、脱氧合金化等方面的工艺计算,并能够进行初步的操作;3、初步具备兑铁水、加废钢、吹氧、控制喷溅、取样、测温、摇炉、合金加入的操作能力及冶炼终点的判断能力;4、具有正确使用和维护转炉炼钢设备的一般能力,并能分析和排除一般的故障。
知识目标:1、掌握常用耐火材料及钢铁料的识别与选用方法;2、掌握脱氧剂、铁合金、各种造渣材料及其他物料的识别与选用方法;3、重点掌握转炉生产工艺及操作方法;4、了解转炉炼钢设备的检查使用及事故处理方法。
素质目标:1、具有较强的事业心和实事求是的科学态度;2、热爱本职工作,锐意进取,具有创新意识和开拓精神;3、加强艰苦岗位的职业道德教育。
(二)职业资格证书考核目标学生学习完本课程后可考取中级转炉炼钢工,有能力的同学可考取高级转炉炼钢工并参加全国转炉炼钢技能大赛。
三、课程内容及要求四、实训项目五、课程实施为了充分体现学生的主体地位和教师的主导作用,培养学生独立思考的习惯,分析问题和解决问题的能力和创新能力,培养学生与人沟通交流和合作的良好素质。
世界氧气顶吹转炉炼钢技术发展史氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。
它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。
炉衬用镁砂或白云石等碱性耐火材料制作。
所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。
简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。
炼钢是氧化熔炼过程,空气是自然界氧的主要来源。
然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。
平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。
因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。
早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。
20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。
从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯•罗尔(V.Roll)公司继续进行研究。
1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。
1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。
1948年丢勒尔(R.Durrer)等在冯•罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。
第一节转炉冶炼过程概述氧气顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应的过程,其工艺操作则是控制装料、供氧、造渣、温度及加入合金材料等,以获得所要求的钢液,并浇成合格钢锭或铸坯。
从装料起到出完钢、倒完渣为止,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉、倒渣等几个阶段。
一炉钢的吹氧时间通常为l2~18min ,冶炼周期(相邻两炉之间的间隔时间,即从装料开始到装料开始或者从出钢毕到出钢毕)通常为30~40min。
表10—1为氧气顶吹转炉生产一炉钢的操作过程,图10—1为转炉吹炼一炉钢过程中金属和炉渣成分的变化。
吹炼的前l/3—1/4时间,硅、锰迅速氧化到很低的含量。
在碱性操作时,硅氧化较彻底,锰在吹炼后期有回升现象;当硅、锰氧化的同时,碳也被氧化。
当硅、锰氧化基本结束后,随着熔池温度升高,碳的氧化速度迅速提高。
碳含量<0.15%以后,脱碳速度又趋下降。
在开吹后不久,随着硅的降低,磷被大量氧化,但在吹炼中后期磷下降速度趋缓慢,甚至有回升现象。
硫在开吹后下降不明显,吹炼后期去除速度加快。
熔渣成分与钢中元素氧化、成渣情况有关。
渣中CaO含量、碱度随冶炼时间延长逐渐提高,中期提高速度稍慢些;渣中氧化铁含量前后期较高,中期随脱碳速度提高而降低;渣中Si02,Mn0,P25含量取决于钢中Si,Mn,P氧化的数量和熔渣中其他组分含量的变化。
在吹炼过程中金属熔池升温大致分三阶段:第一阶段升温速度很快,第二阶段升温速度趋缓慢,第三阶段升温速度又加快。
熔池中熔渣温度比金属温度约高20-1000C。
根据熔体成分和温度的变化,吹炼可分为三期:硅锰氧化期(吹炼前期)、碳氧化期(吹炼中期)、碳氧化末期(吹炼末期)。
表10— 1 氧气顶吹转炉一炉钢的操作吹炼时间 %图10—1 转炉吹炼一炉钢过程中金属和炉渣成分的变化第二节装入制度与装入操作一、装入量装入量指炼一炉钢时铁水和废钢的装入数量,它是决定转炉产量、炉龄及其他技术经济指标的重要因素之一。