分式易错题汇编及答案解析
- 格式:doc
- 大小:317.00 KB
- 文档页数:8
新初中数学分式易错题汇编含解析(1)一、选择题1.有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.3.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣5.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.计算(a2)3+a2·a3-a2÷a-3的结果是( )A.2a5-a B.2a5-1aC.a5D.a6【答案】D【解析】【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a2×3+a2+3-a2-(-3)=a6+a5-a5=a6,故选D.【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.5.x的取值范围为().A.x≥2B.x≠2C.x≤2D.x<2【答案】D【解析】【分析】根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】解:∵式子2x -有意义 ∴2x 0x 20-≥⎧⎨-≠⎩∴x <2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.6.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a -= 【答案】B【解析】【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a-=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.7.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d--=++ 【答案】C【解析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.8.0000036=3.6×10-6;故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】【分析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.【详解】 解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.故选:B.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯ B .60.10210-⨯ C .71.0210-⨯ D .810210-⨯【解析】【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.若115a b =,则a b a b -+的值是( ) A .25 B .38 C .35 D .115【答案】B【解析】【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.下列方程中,有实数根的方程是( )A .x 4+16=0B .x 2+2x +3=0C .2402x x -=-D 0=【答案】C【解析】【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断.解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误;B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误;C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确;D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误.故选:C .【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则13.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.14.计算22222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( ) A .1a b - B .1a b + C .a -b D .a +b【答案】B【解析】【分析】先算小括号里的,再算乘法,约分化简即可.解: 2222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭=()()()2222a b a b a b a b a b ab +---⨯+-=1a b + 故选B .【点睛】本题考查分式的混合运算. 15.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断. 【详解】∵22211x x x x x -÷-- =2221·1x x x x x--- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x --=2x x -, ∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m -=;④()3236xyx y =。
一、选择题1.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分2.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .23.把分式中的、的值同时缩小到原来的,则分式的值( )A .扩大为原来的2倍B .不变C .扩大为原来的4倍D .缩小为原来的一半4.若代数式()11x --有意义,则x 应满足( ) A .x = 0 B .x ≠ 0C .x ≠ 1D .x = 15.把分式2aa b+中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍 B .扩大2倍C .缩小2倍D .不变6.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米 B .2.5×10–7米 C .2.5×10–6米 D .25×10–7米8.下列运算中,正确的是( )A .;B .;C .;D .;9.下列四种说法(1)分式的分子、分母都乘以(或除以),分式的值不变;(2)分式的值能等于零;(3)的最小值为零;其中正确的说法有( )A .1个B .2 个C .3 个D .0个10.下列变形正确的是( )A .y x =22y xB .a ac b bc= C .ac a bc b= D .x m xy m y+=+ 11.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁14.若把分式32aba b +中的a 、b 都缩小为原来的13,则分式的值( ) A .缩小为原来的13B .扩大为原来的6倍C .缩小为原来的19D .不变15.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①②B .③④C .①③D .②④16.下列变形正确的是( ) A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-17.下列结论正确的是( ) A .当23x ≠时,分式132x x +-有意义B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0 D .当1x =-时,分式211x x --没有意义18.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<cB .a<c<bC .b<a<cD .c<b<a19.下列运算正确的是( ) A .2x -2 =212xB .a 6÷a 3 =a 2 C .(a 2)3 =a 5D .a 3·a =a 4 20.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<21.222142x x x÷--的计算结果为( ) A .2x x +B .22x x +C .22x x -D .2(2)x x +22.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .11523.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个B .4个C .6个D .8个24.当x 为任意实数时,下列分式中,一定有意义的是( ) A .1xB .11x + C .11x - D .211x + 25.化简22222a ab b a b++-的结果是( ) A .a ba b+- B .b a b- C .a a b+ D .b a b+【参考答案】***试卷处理标记,请不要删除1.B 解析:B 【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分. 【详解】 因为c ac b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分;数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分. 故他应得80分,选择B 【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.2.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数.【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x的值.3.A解析:A【解析】【分析】根据题意可知原来的x变成,原来的y变成,在根据分式基本性质可以求得答案.【详解】由题意可知:分式的值扩大为原来的2倍.故选:A【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.4.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.5.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式2aa b+中的a、b都扩大2倍,得2222222()a aa b a b⋅⋅=++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.7.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.D解析:D【解析】【分析】根据二次根式的加减运算法则、二次根式的性质、幂的运算性质和立方根的性质对各项进行分析判断即可得出答案.解:A 项,,故本选项错误;B 项,,由于不知x 的正负,故本选项错误;C 项,,故本选项错误;D 项,,正确;故答案为D. 【点睛】本题考查了幂的运算性质、二次根式的性质和运算、立方根的性质,熟知幂的运算性质、二次根式的性质和运算法则是解题的关键.9.A解析:A 【解析】(1)分式的分子、分母都乘以(或除以)不为零的整式,分式的值不变,故(1)错误; (2)分式的值不能等于零,故②错误; (3)的最小值为零,故(3)正确;故选A.10.C解析:C 【解析】试题解析:A 、分式的乘方不等于原分式,故A 错误; B 、当c=0时,结果不成立,故B 错误;C 、分式的分子分母都乘或除以同一个不为零的整式,故C 正确;D 、分式的分子分母都加同一个不为零的数,结果发生变化,故D 错误. 故选C .11.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.12.D【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.B解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.A解析:A 【分析】把分式32ab a b +中的a 用13a 、b 用13b 代换,利用分式的基本性质计算即可求解. 【详解】把分式32ab a b +中的a 、b 都缩小为原来的13, 则分式变为1133311233a b a b ⨯⨯⨯+, 则:1133311233a b a b ⨯⨯⨯+=1332ab a b ⨯+,所以把分式32ab a b +中的a 、b 都缩小为原来的13时分式的值也缩小为原来的13. 故选:A . 【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.15.D解析:D 【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题;④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣23,那么分式332x x -+无意义,所以逆命题为真命题; 故选:D . 【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.16.C解析:C 【分析】原式各项计算得到结果,即可作出判断. 【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a ,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误. 故选:C .【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.17.A解析:A 【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解. 【详解】A 、分式有意义,3x-2≠0,解得23x ≠,故本选项正确; B 、分式有意义,x 2-y 2≠0,解得x≠±y ,故本选项错误;C 、分式的值等于0,x=0且x 2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D 、分式没有意义,x-1=0,x=1,故本选项错误. 故选:A . 【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.C解析:C 【分析】首先计算a 、b 、c 的值,再进行比较即可. 【详解】 a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=,∵-1<1<32, ∴b<a<c , 故选:C. 【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.19.D解析:D 【分析】根据负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则逐项排除即可.解:A. 2x -2 =22x,故选项A 错误; B. a 6÷a 3 =a 3,故选项B 错误;C. (a 2)3 =a 6,故选项C 错误;D. a 3·a =a 4 ,D 正确;故答案为D .【点睛】本题考查了负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.20.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1, ∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 21.B解析:B【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果.【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+-- =()()()2·222x x x x -+- =22x x +. 故选:B .【点睛】本题主要考查了分式的除法,约分是解答的关键.解析:B【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.23.B解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 24.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A 、当0x =时,分式无意义,故此选项错误;B 、当1x =-时,分式无意义,故此选项错误;C 、当1x =时,分式无意义,故此选项错误;D 、当x 为任意实数时,分式都有意义,故此选项正确;故选:D .【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.25.A解析:A【分析】利用完全平方公式和平方差公式化简约分即可.【详解】222222()=()()a ab b a b a b a b a b a b a b++++=-+--. 故选A.【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.。
一、选择题1.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-2.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 3.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2=B .x ?2=-C .x 3=D .x ?3=-4.下列式子中,错误的是 A .1a a 1a a--=- B .1a a 1a a---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.下列运算,正确的是 A .0a 0=B .11a a-=C .22a a b b=D .()222a b a b -=-6.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x++=-++7.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 8.下列计算,正确的是( ) A .2(2)4--=B2=-C .664(2)64÷-= D=9.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=-C .222()x y x y x y x y --=++ D .23193x x x -=-- 10.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的1311.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 12.下列分式是最简分式的是( )A .22a aab +B .63xy aC .211x x -+D .211x x ++13.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <b C .b <a <cD .c <b <a14.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个15.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 16.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3 B .x≠0C .x≠2D .x=217.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个 B .2个C .3个D .4个18.在实数范围内有意义,则a 的取值范围是( ) A .4a ≠- B .4a ≥-C .4a >-D .4a >-且0a ≠19.若分式55x x -+的值为0,则x 的值为( ) A .0 B .5C .-5D .±5 20.下列等式或不等式成立的是 ( )A .2332<B .23(3)(2)---<-C .3491031030⨯÷⨯=D .2(0.1)1-->21.下列分式中:xy x ,2y x -,+-x yx y,22x y x y +-不能再约分化简的分式有( )A .1个B .2个C .3个D .4个22.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯23.已知m ﹣1m ,则1m+m 的值为( )A .BC .D .1124.函数2y x =-的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠225.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a mb m++已是最简分式,故B 选项错误;C.22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.2.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.3.A解析:A 【解析】 由题意得:20260x x -=⎧⎨-≠⎩ ,解得:2x =.故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.6.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误; B .原式=1,正确; C .原式为最简结果,错误; D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.7.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -, ∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.8.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误; B2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D==D 错误,故选C .9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.10.B解析:B 【解析】 解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .11.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.12.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.14.B解析:B 【解析】 【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答. 【详解】 当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1,当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B . 【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.15.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.16.C解析:C 【解析】分析:根据分式有意义的条件:分母不等于0即可求解. 详解:根据题意得:x-2≠0, 解得:x≠2. 故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.17.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.18.C解析:C 【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a 的范围. 详解:由题意可知:a+4>0 ∴a >-4 故选C .点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.19.B解析:B 【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 【详解】由式子x -5=0,解得x 5=±. 而x =5时分母5x +≠0,x =-5时分母5x +=0,分式没有意, 即x =5, 故选B. 【点睛】要注意分母的值一定不能为0,分母的值是0时分式没有意义.20.D解析:D 【分析】先进行指数计算,再通过比较即可求出答案. 【详解】解:A 2339;28==,9>8 ,故A 错.B ()()2311;9832----==-,1198>-,故B 错. C 347910310=310⨯÷⨯⨯,故C 错. D ()20.1100--=,100>1, 故D 对.故选D. 【点睛】本题主要考查指数计算和大小比较,题目难度不大,细心做题是关键.21.B解析:B 【分析】找出各项中分式分子分母中有没有公因式,即可做出判断. 【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y - 所以,不能约分化简的有:- 22y x +-x yx y共两个, 故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.22.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.23.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴,221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.24.D解析:D【解析】【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:3020xx+≥⎧⎨-≠⎩,解得:x≥﹣3且x≠2.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.25.D解析:D【解析】解:A.原式=1,故A错误;B.x3与x4不是同类项,不能进行合并,故B错误;C.原式=a4b6,故C错误;D.正确.故选D.。
一、选择题1.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b --=--C .22a b a b a b -=-+D .22a b a b a b-=++ 2.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 3.在分式ab a b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .不确定4.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变5.下列等式成立的是( )A .212x y x y=++ B .2(1)(1)1x x x ---=-C .x x x y x y=--++ D .22(1)21x x x --=++6.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或27.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯8.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a --=--B .11x x x y x y +--=--C .116321623a a a a --=++D .22b a a b a b -=-+ 9.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥310.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy 中,分式共有( )个. A .2B .3C .4D .5 11.如果把分式22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍 12.计算23x 11x +--的结果是 A .1x 1- B .11x- C .5x 1- D .51x - 13.下列计算正确的是( ).A .32b b b x x x += B .0a a a b b a -=-- C .2222bc a a b c ab ⋅=D .22()1a a a a a -÷=- 14.化简-的结果是( ) A . B . C . D .15.化简﹣的结果是( )m+3 B .m-3 C .D . 16.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D . 17.在代数式,,+,,中,分式有( )A .1个B .2个C .3个D .4个18.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣219.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)0 20.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是( ).A .aB .bC .2a b +D .2ab a b+21.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯22.如果把中的x 和y 都扩大到5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍23.若02(1)2(2)x x ----无意义,则x 的取值范围是( ) A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x = 24.在函数中,自变量的取值范围是( ) A .>3 B .≥3且≠4 C .>4 D .≥325.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C .【解析】试题分析:根据分式的基本性质作答.试题解析:A .()1a b a b a b a b ---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b-+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b-+-==-≠+++,故该选项错误. 故选C .考点:约分.2.C解析:C .【解析】 试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值. 试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a∴2-a 2=a+1,21a a += 原式=2211111(1)(1)1a a a a a a a +====+++ 故选C .考点:分式的值.3.A解析:A【解析】 试题分析:在分式ab a b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值是原来的2倍,故选A .考点:分式的基本性质. 4.D解析:D .【解析】试题解析:根据题意得:844(2)2844(2y)2x y x y x yx y x x y---==+++,即和原式的值相等,故选D.考点:分式的基本性质.5.D解析:D【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案.【详解】A、2122x y x y=++,22x y+≠1x y+,不符合题意;B、(-x-1)(1-x)=[-(x+1)](1-x)=-(1-x2)=x2-1,不合题意;C、xx y-+=--xx y,xx y-+≠-+xx y,不合题意;D、(-x-1)2=x2+2x+1,符合题意.故选D.考点:分式的基本性质.6.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.7.B解析:B【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8.C解析:C【详解】解:A.220.21020.3103a a a a a a --=--,故原选项错误; B. 11x x x y x y+--=--,故原选项错误; C. 116321623a a a a --=++ ,故此选项正确; D.22b a b a a b-=-+,故原选项错误, 故选C .9.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.10.B解析:B【解析】 试题解析:2235a b -,37xy 的分母中均不含有字母,因此它们是整式,而不是分式. 12x y +,52a b a b --,3m的分母中含有字母,因此是分式. 故选B .11.C解析:C【解析】 分式22a b ab+中的a 和b 都扩大了2倍,得: 4212822a b a b ab ab++=⨯, 所以是缩小了2倍.故选C.12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x -++=-+==------.故选B . 13.C解析:C【解析】 A 选项:∵334b b b b b x x x x ++==,∴A 错误; B 选项:∵2a a a a a a b b a a b a b a b -=+=-----,∴B 错误; C 选项:∵2222bc a a b c ab⋅=,故C 正确; D 选项:∵221()(1)(1)1a a a a a a a a a--÷=-⋅=--,∴D 错误; 故选C. 14.D解析:D【解析】试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D15.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m m m m m m m -+--===+----,所以选:A . 考点:分式的减法.16.C解析:C【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=• =﹣,当x=3,y=2时,原式=﹣=﹣. 故选C .考点:分式的化简求值.17.B解析:B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B18.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.19.C解析:C【解析】9,227是无限循环小数,π是无限不循环小数,31=,所以π是无理数,故选C.20.C解析:C.【解析】试题分析:直接表示出上下坡所用时间,进而利用总路程÷总时间=平均速度,进而得出答案.设总路程为x,由题意可得:22211x abx x a ba b a b==+++.故选:C.考点:列代数式(分式).21.B解析:B【解析】根据科学记数法的书写规则,易得B.22.B解析:B 【解析】试题解析:,即分式的值不变.故选B . 23.C解析:C【解析】∵()()02x 12x 2----无意义,∴x −1=0或x −2=0,∴x=1或x=2.故选C. 24.B解析:B【解析】试题分析:根据分式的意义,可知x-4≠0,解得x≠4,根据二次根式有意义的条件可知x-3≥0,解得x≥3,因此x 的取值范围为x≥3,且x≠4.故选:B.点睛:此题主要考查了复合算式有意义的条件,解题关键是根据复合算式的特点,逐步确定条件即可.主要有:分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数为非负数.25.B解析:B【解析】 试题解析:由于11a -中,分母含有字母, 故选B.。
(易错题精选)初中数学分式经典测试题附答案解析一、选择题1.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠-B .0x ≠C .1x ≠D .2x ≠ 【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义, 则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.2.下列运算中,正确的是( )A .2+=B .632x x x ÷=C .122-=-D .325a a a ⋅= 【答案】D【解析】【分析】根据实数的加法对A 进行判断;根据同底数幂的乘法对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据同底数幂的除法对D 进行判断.【详解】解:A 、2不能合并,所以A 选项错误;B 、x 6÷x 3=x 3,所以B 选项错误;C 、2-1=12,所以C 选项错误; D 、a 3•a 2=a 5,所以D 选项正确.故选:D .【点睛】此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号.3.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.4.下列运算中,不正确的是( )A .a b b a a b b a --=++B .1a b a b--=-+ C .0.55100.20.323a b a b a b a b++=-- D .()()221a b b a -=-【答案】A【解析】【分析】根据分式的基本性质分别计算即可求解.【详解】 解:A.a b b a a b b a--=-++,故错误. B 、C 、D 正确.故选:A【点睛】 此题主要考查分式的基本性质,熟练利用分式的基本性质进行约分是解题关键.5.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1【答案】D【解析】 试题解析:由题意可知:x-1≠0,x≠1故选D.6.关于分式25x x -,下列说法不正确的是( ) A .当x=0时,分式没有意义B .当x >5时,分式的值为正数C .当x <5时,分式的值为负数D .当x=5时,分式的值为0【答案】C【解析】【分析】 此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解.【详解】A .当x=0时,分母为0,分式没有意义;正确,但不符合题意.B .当x>5时,分式的值为正数;正确,但不符合题意C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意.D .当x=5时,分式的值为0;正确,但不符合题意.故选:C .【点睛】本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件.7.若化简22121b a b b a a a -⎛⎫-÷ ⎪+++⎝⎭W 的结果为1a a -,则“W ”是( ) A .a - B .b - C .a D .b【答案】D【解析】【分析】根据题意列出算式,然后利用分式的混合运算法则进行计算.【详解】 解:由题意得:()()()()222111=1211111111b a a b a b a b b a b a b ab b a a a a a a a a a a W +-+--⋅=-⋅=+==+++-+-++++,故选:D .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.8.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d 【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.9.已知17x x -=,则221x x +的值是( ) A .49B .48C .47D .51 【答案】D【解析】【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【详解】 已知等式17x x -=两边平方得:22211()249x x x x -=+-=, 则221x x+=51. 故选D .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.若式子2x -有意义,则x 的取值范围为( ). A .x≥2B .x≠2C .x≤2D .x <2【答案】D【解析】【分析】 根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】解:∵式子2x -有意义 ∴2x 0x 20-≥⎧⎨-≠⎩∴x <2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.11.若把分式2x y xy+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍;B .缩小3倍;C .缩小6倍;D .不变; 【答案】B【解析】【分析】x ,y 都扩大3倍就是分别变成原来的3倍,变成3x 和3y .用3x 和3y 代替式子中的x 和y ,看得到的式子与原来的式子的关系.【详解】解:用3x 和3y 代替式子中的x 和y 得:()()33233x y x y +=()3x 18y xy +=13×x 2y xy+, 则分式的值缩小成原来的13,即缩小3倍. 故选:B .【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.12.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】 根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.13.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.14.0000036=3.6×10-6;故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.16.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.17.化简(1)b b a a a ⎛⎫-÷ ⎪-⎝⎭的结果是() A .-a-1B .–a+1C .-ab+1D .-ab+b 【答案】B【解析】【分析】将除法转换为乘法,然后约分即可.【详解】 解:(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯=--=- ⎪ ⎪-⎝⎭⎝⎭, 故选B.【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键.18.计算22222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( )A .1a b -B .1a b +C .a -bD .a +b【答案】B【解析】【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解: 2222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭=()()()2222a b a b a b a b a b ab +---⨯+-=1a b + 故选B .【点睛】本题考查分式的混合运算.19.00519=5.19×10-3.故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1||10a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数所决定.20.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.。
新初中数学分式易错题汇编含答案(1)一、选择题1.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a =(a ﹣1)•()1a a --•a =﹣a 2,故选:A .点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.2.下列各式计算正确的是( )A .(﹣x ﹣2y )(x+2y )=224x y -B .13x -=13xC .236(2)6y y -=-D .32()(1)m m m m x x x -÷=- 【答案】D【解析】【分析】根据整式的相关运算法则计算可得.【详解】A .(﹣x ﹣2y )(x+2y )=﹣(x+2y )2=﹣x 2﹣4xy ﹣4y 2,此选项计算错误;B .3x ﹣1=3x,此选项计算错误; C .(﹣2y 2)3=﹣8y 6,此选项计算错误;D .(﹣x )3m ÷x m =(﹣1)m x 2m ,此选项计算正确;故选:D .【点睛】本题主要考查整式的运算,解题的关键是掌握整式的运算法则和负整数指数幂的规定.3.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==-【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.4.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.5.若x 满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( )A .1B .12C .1-D .32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】 由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭,又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.6.在下列四个实数中,最大的数是( )A .B .0C .12-D .13【答案】C【解析】【分析】根据实数的大小比较法则即可得.【详解】1122-=则四个实数的大小关系为11023-<<<因此,最大的数是12-故选:C .【点睛】本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.7.关于分式25x x -,下列说法不正确的是( )A .当x=0时,分式没有意义B .当x >5时,分式的值为正数C .当x <5时,分式的值为负数D .当x=5时,分式的值为0【答案】C【解析】【分析】此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解.【详解】A .当x=0时,分母为0,分式没有意义;正确,但不符合题意.B .当x>5时,分式的值为正数;正确,但不符合题意C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意.D .当x=5时,分式的值为0;正确,但不符合题意.故选:C .【点睛】本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件.8.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.9.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】【分析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.【详解】 解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为( )A .63.610-⨯B .50.3610-⨯C .73610-⨯D .60.3610-⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】11.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
一、选择题1.下列各分式中,最简分式是( )A .21x x +B .22m n m n -+C .22a b a b +-D .22x y x y xy ++ 2.若把分式x y xy +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍 3.把分式2a a b+中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .缩小2倍D .不变 4.下列计算正确的有().①0(1)1-= ②21333-⨯= ③()()33m m x x -=- ④2211224x x x ⎛⎫-=-+ ⎪⎝⎭ ⑤22(3)(3)9a b b a a b ---=- A .4个 B .3个 C .2个D .1个 5.已知:a ,b ,c 三个数满足,则的值为( )A .B .C .D .6.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( ) A .2B .-2C .3D .-3 7.与分式()()a b a b ---+相等的是( )A .a b a b +-B .a b a b -+C .a b a b +--D .a b a b--+ 8.当x =_____ 时,分式11x x -+无意义.( ) A .0B .1C .-1D .2 9.如果把分式2++a b a b 中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍 10.下列运算结果最大的是( ) A .112-⎛⎫ ⎪⎝⎭ B .02 C .12- D .()12-11.函数3y x =+的自变量x 的取值范围是( ) A .3x >- B .3x ≥-C .3x ≠-D .3x ≤- 12.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( )A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<< 13.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .414.下列运算正确的是( )A .()32622x x -=-B .22133x x -=C .()2x x y x xy --=-+D .()2222x y x xy y --=-+15.下列命题中: ①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( )A .①②B .③④C .①③D .②④ 16.计算33x y x y x y ---的结果是( ) A .1 B .0 C .3 D .617.下列运算正确的是( )A .1133a a﹣= B .2322a a a += C .326()•a a a ﹣=﹣ D .32()()a a a ÷﹣﹣= 18.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<19.下列计算中错误的是( )A .020181=B .224-=C 42=D .1133-=20.222142x x x ÷--的计算结果为( ) A .2x x + B .22x x + C .22x x - D .2(2)x x + 21.下列等式成立的是( )A .123a b a b +=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a a a b a b=--++ 22.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>- C .2a 2-<< D .a 2≠±23.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446=B .004+4+4=6C .34+4=6D .14446-= 24.已知1112a b -=,则ab a b -的值是( ) A .12 B .12- C .2 D .-225.下列等式从左到右的变形正确的是( )A .22b by x xy =B .2ab b a a =C .22b b a a =D .11b b a a +=+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.【详解】解:A. 21x x +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n; C.22a b a b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y 故选:A.【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.2.C解析:C【解析】【分析】根据题意,分式中的x 和y 都扩大2倍,则222()2242x y x y x y x y xy xy+++==⋅; 【详解】 解:由题意,分式x yy x +中的x 和y 都扩大2倍, ∴222()2242x y x y x y x y xy xy+++==⋅; 分式的值是原式的12,即缩小2倍; 故选C .【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.3.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得 把分式2a a b +中的a 、b 都扩大2倍,得2222222()a a a b a b ⋅⋅=++, 根据分式的基本性质,则分式的值不变.故选D .【点睛】此题考查了分式的基本性质.4.C 解析:C【解析】【分析】直接利用整数指数幂的法则和乘法公式分别计算得出答案.【详解】解:①0(1)1-=,故①正确;②211333=93-⨯=⨯,故②正确; ③当m 是偶数时,()()333=m m mx x x -=,故③错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,故④错误;⑤22(3)(3)9a b b a b a ----=,故⑤错误.正确的有①②,共2个.故选C【点睛】本题考查了整数指数幂的运算法则和乘法公式,熟练掌握幂的各种性质和法则,乘法公式是解题的基础.5.A解析:A【解析】【分析】由已知可得,,,,则ac +bc =3abc ,ab +ac =4abc ,bc +ab =5abc ,把三式相加,可得2(ab +bc +ca )=12abc ,即可求解.【详解】解:由已知可得,,,,则ac +bc =3abc ①,ab +ac =4abc ②,bc +ab =5abc ③,①+②+③得,2(ab+bc+ca)=12abc,即=.故选:A.【点睛】此题考查了分式的化简求值,要特别注意观察已知条件和所求代数式的关系,再进行化简.6.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式为8.13×10-2,则n为-2.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质. 8.C解析:C【分析】根据分式无意义的条件,分母等于0,列不等式求解即可.【详解】因为分式11xx-+无意义,所以1+x=0,解得x=-1.故选C.【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件. 9.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10(分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.10.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.【详解】∵11=22-⎛⎫⎪⎝⎭;02=1;12-=12;()12=2--,2>1>12>-2,∴运算结果最大的是112-⎛⎫⎪⎝⎭,故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键. 11.A解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x+>解得:3x>-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.12.B解析:B【解析】【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可.【详解】因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<.故选B.【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.13.C解析:C【分析】 先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b ab ab+-+,最后代入数值计算即可. 【详解】 因为2b a a b++ ()2222222222323233b a ab abb a aba b ab ab=+++=++-=+-⨯=+= 所以选C.【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键. 14.C解析:C【分析】根据积的乘方、负整数指数幂、整式的乘法、完全平方公式逐项判断即可得.【详解】A 、()32628xx -=-,此项错误; B 、2233x x-=,此项错误; C 、()2x x y x xy --=-+,此项正确; D 、()()22222x y x y x xy y --=+=++,此项错误;故选:C .【点睛】本题考查了积的乘方、负整数指数幂、整式的乘法、完全平方公式,熟练掌握各运算法则和公式是解题关键.15.D解析:D【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断.【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题; ④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣23,那么分式332x x -+无意义,所以逆命题为真命题; 故选:D .【点睛】 此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.16.C解析:C【分析】根据同分母的分式加减的法则进行计算即可.【详解】解:()333=3x y x y x y x y x y--=--- 故选C.【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.17.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并; C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.18.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.19.B解析:B【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案.【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案;B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B .【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.20.B解析:B【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果.【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+-- =()()()2·222x x x x -+- =22x x +. 故选:B .【点睛】本题主要考查了分式的除法,约分是解答的关键.21.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b==---,故C 正确;D 、a a ab a b=--+-,故D 错误; 故选C .【点睛】 本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零23.D解析:D【详解】∵4+46=,∴选项A 不符合题意;∵4+40+40=6,∴选项B 不符合题意;∵,∴选项C 不符合题意;∵144-=1486≠,∴选项D 符合题意, 故选D . 24.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.25.B解析:B【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项.【详解】A 、22b by x xy =,其中y≠0,故选项错误; B 、2ab b a a =,其中左边隐含a≠0,故选项正确; C 、2b ab a a=,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误; 故选B .【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.。