高层剪重比的调整思路
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
剪重比不满足规范要求时怎么调整
剪重比不满足规范要求时怎么调整
1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整:1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
2、结构调整:当剪重比偏小且与规范限值相差较大时,宜调整增强竖向构件,加强墙、柱等竖向构件的刚度。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
1。
关键词:高层建筑;抗震设计;剪重比调整0引言高层建筑具有占地面积小、节约市政工程费用、节约拆迁费用等优点,因此在现代化建设中发展十分迅速。
我国位于欧亚板块和太平洋板块边缘,历史上就是地震多发的国家,抗震设计成为了高层建筑结构设计中的重要组成部分,《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)和《高层建筑混凝土结构技术规程》JGJ3-2010对此进行了详细规定。
地震作用下内力的调整是《抗规》“小震不坏”的一个重要环节,而剪重比满足《抗规》5.2.5条是结构后续抗震计算的前提,只有调整到符合最小剪力要求才能进行相应的地震倾覆力矩、构件内力、位移等的计算分析。
下面以某实际工程为例,在结构各项整体指标满足现行规范的情况下,着重论述剪重比的计算与调整。
1工程概况与计算分析某工程位于贵州省贵定县东外环东侧,敬老院北侧,场地所处位置为缓丘陵地带,经平场开挖后整体地势较平坦、开阔,地形起伏不大。
其中2#楼为地下一层地上17层的高层住宅,采用钢筋混凝土剪力墙结构体系。
查《中国地震动参数区划图》(GB18306-2015)表C.24,本区的地震设防烈度为7度,设计地震分组第一组,设计地震峰值加速度值为0.10g,属于建筑抗震一般地段。
结构设计采用YJK软件,经判断结构不存在竖向不规则,建筑标准层平面图如图1所示。
(1)前期结构试算时(模型1),根据地勘过程资料暂定场地类别为Ⅱ类,反应谱特征周期Tg=0.35s,剪重比的计算结果如表1所列。
从表1可知,除地下室不做剪重比控制外的其他楼层,按《抗规》式(5.2.5)计算两个计算方向X、Y轴的剪重比均大于1.6%,满足《抗规》表5.2.5,7度0.1g下最小剪重比1.6%的要求,不需要做调整。
(2)根据正式地勘详细资料场地类别判为Ⅱ1类,反应谱特征周期Tg=0.25s。
在前期结构试算(模型1)基础上修改相应的场地条件信息(模型2),剪重比及调整系数的计算结果如表2所列。
高层结构设计需要控制的八个比值及调整方法高层结构设计的控制参数(比值)及调整方法(转自user的博客)2008-11-13 14:37高层结构设计的控制参数及调整方法本文在笔者《高层结构设计需要控制的七个比值及调整方法》的基础上编写,编写中针对原文中的一些错误及不足之处做了必要的修改和补充,并在原文的基础上增加了部分内容。
高层结构设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中主要通过对一些目标参数的控制来达到这一目的。
一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求。
见抗规6.3.7和6.4.6,高规6.4.2和7.2.14及相应的条文说明。
轴压比不满足规范要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足规范要求时的调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。
见抗规5.2.5,高规3.3.13及相应的条文说明。
剪重比不满足规范要求,说明结构的刚度相对于水平地震剪力过小;但剪重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
剪重比不满足规范要求时的调整方法:1、程序调整:当剪重比偏小但与规范限值相差不大(如剪重比达到规范限值的80%以上)时,可按下列方法之一进行调整:1)在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数,增大地震作用,以满足剪重比要求。
3)在SATWE的“地震信息”中的“周期折减系数”中适当减小系数,增大地震作用,以满足剪重比要求。
楼层剪重比不满足要求楼层剪重比是指建筑结构中楼板受到剪力作用时的抵抗能力与楼板自重之比。
在设计建筑结构时,楼层剪重比是一个重要的指标,它直接关系到建筑的稳定性和安全性。
一般来说,楼层剪重比的要求是不得大于某个限值,以确保建筑结构的安全可靠。
然而,在实际的工程中,有时会出现楼层剪重比不满足要求的情况,这就需要进行相应的处理和调整。
我们来了解一下楼层剪重比的计算方法。
楼层剪重比的计算是基于结构理论和力学原理的,通过对结构进行静力分析和力学计算,可以得到楼层剪重比的数值。
一般来说,楼层剪重比的计算需要考虑楼板的几何形状、材料性质和工作状态等因素。
具体而言,需要计算楼板的惯性矩、抗弯承载力和楼板的自重等参数,然后将这些参数代入公式中进行计算,得到楼层剪重比的数值。
根据国家相关规范的要求,楼层剪重比的数值应该在一定范围内,以确保结构的安全性。
然而,在实际的工程中,由于设计、施工和使用等方面的原因,有时会出现楼层剪重比不满足要求的情况。
这可能是因为设计时考虑不周,未能合理确定楼板的几何形状和材料性质,或者是因为施工过程中出现了误差和偏差,导致楼板的实际情况与设计不符。
此外,建筑的使用情况也可能会发生变化,使得楼层剪重比超过了设计要求。
无论是哪种原因,当发现楼层剪重比不满足要求时,都需要采取相应的措施进行调整和处理。
对于楼层剪重比不满足要求的情况,可以采取的处理方法有很多种。
首先,可以对楼板的几何形状和材料性质进行调整,以增加楼板的抗弯承载力和刚度。
这可以通过增加楼板的厚度、加固楼板的边缘或设置加强筋等方式来实现。
其次,可以对楼板的支承方式进行调整,以增加楼板的稳定性和刚度。
例如,可以增加楼板的支座数量或调整支座的位置,以提高楼板的受力性能。
此外,还可以对楼板的工作状态进行调整,以减小楼板的受力和变形。
例如,可以在楼板上设置隔声层或防水层,以增加楼板的质量和刚度,从而提高楼层剪重比的数值。
除了上述的处理方法,还可以通过优化设计方案、加强施工管理和定期检测维护等方式来提高楼层剪重比的数值。
高层结构设计需要控制的七个比值及调整方法1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
4、位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。
高层建筑结构剪重比设计探讨根据《高层建筑混凝土结构技术规程》(JGJ3-2010)(简称高规)规定:水平地震剪力系数剪重比等于楼层地震作用与重力荷载代表值的比值,是抗震设计的重要控制指标之一。
出于对结构安全的考虑,高规提出不同抗震设防烈度下楼层剪重比的限值,当计算结构水平地震作用效应的剪重比小于规范规定的限值时,须对楼层设计用的地震剪力进行相应的调整。
规范以规定剪重比限值的方式来控制基底和楼层最小地震剪力的做法对保证结构的抗震安全性是有一定作用的,但对剪重比限值的合理性以及实际设计中怎样合理地调整剪重比以满足规范限值的要求,还存在不同的看法,下面结合笔者的工作实践,对此问题提出相应的建议。
1 场地类别对剪重比限值的影响如上所述,高规中剪重比限值的水准对应于Ⅱ类场地的地震作用,那么其他场地类别的限值是否需要调整呢?试作如下分析。
高规反应谱地震影响系数α值在周期T≥5Tg(Tg为场地特征周期)的下降段由下式确定:(1)式中:αmax为地震影响系数最大值;γ为衰减系数,阻尼比取0. 05时,γ=0. 9;η1为直线下降段的下降斜率调整系数;η2为阻尼调整系数。
高规 4.3.8 条对η1,η2 的取值有相应规定,代入式(1)后可得:(2)式(2)表明α值与场地特征周期Tg(即场地类别)有关,且其影響是不可忽略的。
表1 为不同场地类别在T=3.5,5.0s 时的地震影响系数值,中间为线性变化。
表1 不同场地类别和烈度的α值如第1节所述,规范规定的地震作用下高层建筑基底剪力限值在周期T=3.5s 时,即相当于Ⅱ类场地、同周期T、同总质量M时对应单质点结构的基底剪力,那么基底剪重比λ限值应反映出不同场地类别的影响,得:(3)式中:T =3.5s时,ξ=1.0;T=5.0s 时,ξ=0.88;中间为线性变化。
得到不同场地类别时的剪重比限值如表2所示,表中是根据对规范规定对应于Ⅱ类场地的认识推导至其他场地类别所得到的结果,是否妥当,尚需进一步研究和讨论。
剪重比是结构设计中控制建筑安全的重要指标。
结构设计中剪重比达不到设计要求时可采用如下方法进行调整:1)增加参与计算振型数,可将振型数定在15 ~18 附近;2 )在规范规定的范围内减小周期折减系数;3 )加大结构受力构件截面,加大结构整体刚度;4)适当的减小单位面积重度精细化荷载剪重比更容易满足规范要求:5 )加大全楼地震力放大系数。
(此方法在剪重比达到规范限值80%以上方可使用) 剪重比的调整仅反映在相应楼层,不会向下层传递,若此处同时是薄弱层还应乘以1.15 的放大系数。
但对长周期超高层建筑,考虑到反应谱长周期段本身的一些缺陷,第一阶振型参与质量系数对计算剪重比的影响有可能大于刚度和质量对计算剪重比的影响,导致计算剪重比偏小,并不一定是结构刚度偏小或质量偏大不能简单用上述方法对剪重比进行调整。
结构设计应从建筑布局整体性和规则性上进行控制,并对周期比、位移比、刚度比、刚重比、位移角等计算指标进行分析和判断。
在各项指标均合理且质量参与系数大于90%的条件下调整剪重比使之满足规范要求。
楼板配筋边界条件选取原则:Ø1:当板边支座与边梁相连、支座两侧板面标高相差较大时,可按铰接计算配筋Ø2:当连续支座、支座两侧板面标高相差较小(板厚之内)及确认边梁可作为嵌固时可按嵌固计算配筋Ø3:当与砼墙相连而不连续时,可根据墙厚适当考虑嵌固作用。
一般当墙厚不小于2倍板厚时,按嵌固,与板同厚时按半铰接4:Ø两边有高差按嵌固计算时,支座两边的钢筋规格应一致。
当两侧板厚差异较大(>30mm),只考虑部分嵌固。
两侧按薄侧的嵌固配,厚侧多余的弯矩应调至跨中5:Ø对于按简支计算的板支座,可不按受力钢筋的最小配筋率控制,统一取0.15%。
剪重比的调整思路
“剪重比”是结构整体控制设计的一项重要指标,当其不能满足规范的要求时,就应该进行必要的调整。
对于需调整楼层层数较少(不超过楼层总数的1/3),且“剪重比”与规范限值相差不大(不小于规范限值的80%,或地震剪力调整系数不大于1.2-1.3)的情况,我们可以通过选择“地震力放大系数”等SATWE 的相关参数来达到目的;对于需调整楼层层数较多,或与规范限值相差较大的情况,就只能提高结构的刚度。
但是在对结构刚度进行调整的时候,我们有时会遇到这样一种情况,我们加大了结构下部“剪重比”不满足规范要求楼层的侧移刚度,但这些楼层的“剪重比”没有多大的变化,有时反而略有减小。
问题出在哪里呢?
我们先来看看规范:规范对结构“剪重比”的要求是基于“振型分解反应谱法”在结构基本周期大于3s时,计算水平地震作用可能偏小的情况,为保证结构的安全而考虑的。
这不是简单的局部刚度或承载能力不足的问题,而是规范针对上述情况对“振型分解反应谱法”的修正,即规定了水平地震作用的最小值。
因此,只加大结构下部“剪重比”不满足规范要求楼层的侧移刚度,是把结构整体刚度偏柔的问题,当成了局部刚度或承载能力不足的问题,以至于收效不大。
我们再来看看结构自振周期与水平地震作用的关系:抗震结构中起主要作用的基本振型(靠近两个主轴的方向和扭转方向,其中两个平动为主振型的基底剪力分别沿两个主轴方向为最大值),其自振周期(基本周期)一般都大于设计特征周期。
根据规范的“地震影响系数曲线”,此时的地震影响系数与结构基本周期成反比关系。
即结构的基本周期越小,水平地震作用效应就越大。
而结构的自振周期与结构的刚度成反比关系。
这说明采用结构调整的方法加大“剪重比”,需要增大结构的刚度,以减小结构的基本周期。
那么,为什么我们加大了结构下部“剪重比”不满足规范要求楼层的侧移刚度,但这些楼层的“剪重比”没有多大的变化,有时反而略有减小呢?
通过对具体结构的分析,不难发现,当仅增大结构下部少数楼层的侧移刚度时,结构的基本周期变化不大,水平地震作用增幅有限。
同时,因为结构刚度的增大,使结构的质量略有增加,致使结构的“剪重比”变化不大。
特别是在受到建筑方案的限制,仅能加厚剪力墙的墙厚时,结构质量增加的比率可能大于水平地震作用的增大比率,反而可能导致“剪重比”的减小。
但是,当我们改变方式,沿结构自下而上的大多数楼层(包括“剪重比”满足规范要求的楼层)直致结构全高增大结构的侧移刚度时,结构基本周期的减小愈发显著,结构水平地震作用的增大比率愈发大于结构质量的增大比率,结构的“剪重比”也随之增大。
这样,我们就找到了解决问题的思路。
结论:结构“剪重比”的大小与结构的整体刚度密切相关。
当需要通过结构调整的方法来增大结构的“剪重比”时,宜自下而上的沿结构的大多数楼层以致结构的全高增大结构的侧移刚度,才能有效的减小结构基本周期,增大水平地震作用,从而增大“剪重比”,使其接近规范限值,为最终采用“地震力放大系数”等SATWE的相关参数来调整结构的“剪重比”创造条件。
控制结构的局部振动使有效质量系数满足规范要求
在对结构进行整体控制设计的时候,我们有时会遇到这种情况,结构的“有效质量系数”达不到规范所要求的不小于90%的要求(见抗规5.2.2条文说明、高规5.1.13条2款),有时即使把“计算振型数”取得很大,也无法满足这个要求。
问题究竟出在哪里?我们又怎样来解决这个问题呢?
对于存在这种情况的工程,我们通过继续观察其“结构空间振动简图”,可以发现这样一种现象,在我们所取“计算振型数”范围内的结构振型中,有的振型是结构的整体在振动,而有的振型只有结构的局部在振动。
继续分析下去,我们会发现,发生局部振动的部位,或空间刚度较差,或缺少约束。
如结构错层等原因形成的较长的越层柱;楼板开洞等原因形成的较长的无板梁段或无板墙段;悬臂端缺少约束的悬臂构件;没有设臵屋脊梁的坡屋顶;楼顶设臵刚度或约束较差的构架等。
因为上述问题的存在,使得这些部位的局部振动极易被激发。
由于这种振动是局部的,所以只有局部的构件参与其中,其参与的质量也只能是与这些构件有关的质量。
结构的有效质量是“计算振型数”所包含的各振型的有效质量由低阶到高阶的叠加,当其中存在较多的与局部振动有关的较低阶的振型时,结构的“有效质量系数”就不容易满足规范的要求。
笔者认为:发生低阶局部振型的部位是结构的薄弱部位,在地震中低阶局部振型容易被激发而在该部位产生较大的变形,当该部位的相关构件在结构中处于比较重要的位臵时,可能影响结构的安全,故在设计中应采取措施尽量消除。
在结构设计时,可以加强与局部振动有关的构件沿振动方向的刚度,使相关局部振型由较低阶振型转变为较高阶振型,将其排除出“计算振型数”范围;也可以沿相关构件节点的振动方向增加约束,如加设拉梁等,以消除局部振动。
对于那些对结构安全没有影响或影响可以忽略不计的局部振动,可以强制采用“全楼刚性楼板假定”过滤掉局部振动,或增加“计算振型数”来增大结构的“有效质量系数”。
第一或第二振型为扭转时的调整方法
1)SATWE程序中的振型是以其周期的长短排序的。
2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布臵宜使各主轴方向的侧移刚度接近”。
3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。
4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。
5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。
6)当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但
相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。
8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。
9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。