数学物理方法复习
- 格式:pptx
- 大小:1.16 MB
- 文档页数:98
数学物理方法复习
数学物理方法是指在数学和物理学领域中常用的方法和技巧。
复习这些方法可以帮助我们更好地理解和应用数学和物理学的知识。
数学方法的复习包括但不限于以下内容:
1. 微积分:复习微分和积分的基本概念和性质,掌握常用的微积分技巧,如导数的计算、函数的积分等。
2. 线性代数:复习矩阵的运算和性质,如矩阵乘法、逆矩阵、特征值等;掌握线性方程组的解法,如高斯消元法、矩阵求逆法等。
3. 微分方程:复习一阶和二阶微分方程的基本概念和解法,如分离变量法、变换法、欧拉方程等。
4. 概率与统计:复习概率的基本概念和性质,如事件的概率、条件概率等;掌握常用的概率分布,如正态分布、泊松分布等。
5. 复变函数:复习复数的基本概念和运算,如复数的加减乘除、复函数的导数和积分等;掌握常用的复变函数,如指数函数、三角函数、对数函数等。
物理方法的复习包括但不限于以下内容:
1. 牛顿力学:复习牛顿的三大定律和它们的应用,如力的合成、力的分解、摩擦力等。
2. 电磁学:复习电荷、电场、电势等基本概念和性质,掌握库仑定律、电场强度和电势的计算方法。
3. 光学:复习光的折射、反射、干涉、衍射等基本原理和现象,掌握光的像的
成像公式和光的传播速度。
4. 热学:复习热力学和热传导的基本概念和定律,如热容、热力学第一定律、热传导方程等。
5. 量子力学:复习波粒二象性、不确定性原理等基本概念和性质,了解薛定谔方程和波函数的基本解法。
除了复习这些数学和物理方法外,还可以通过做习题、阅读教材、参加学习小组等方式来加深理解和应用。
数学物理方法复习整理数学物理方法一、本课程的教学内容第1章典型数学物理方程及定解问题第2章分离变量法第3章积分变换法第4章行波法和降维法(达朗贝尔法)第5章数理方程差分法第6章格林函数法第7章bessel方程与函数二、章节重点第一章典型的数学和物理方程及定解问题1。
术语解释:(1)定解条件、定解问题、定解问题的适定性;(2).dirichlet、neumann定解问题;(3)傅立叶热传导定律和胡克弹性定律;(4)演化方程,势方程,拉普拉斯方程,泊松方程;2.简述二阶线性偏微分方程的分类方法。
3.推导一维波和热传导方程。
4.写出二阶偏微分方程的特征方程及其特征曲线。
5.书1.4习题:1,3,4,7,8,96.书中示例1.1.1、1.1.3、1.1.6和1.2.1第二章分离变量方法1。
名词解释:(1)特征值、特征函数、sturm-liouville问题;(2)驻波、腹点、节点、基频、固有频率;(3)三角函数系正交性;(4)fourier级数;(5)矩形和圆形区域上的拉普拉斯问题;2.简述采用分离变量法求解齐次边界条件的齐次线性偏微分方程定解问题的步骤。
3.第2.7册练习:1,4,6,8,15,16(p65-67)。
4.书籍示例:2.1.1、2.1.2、2.2.1。
第三章积分变换方法1。
术语解释:(1)fourier变换;(2)laplace变换;(3)傅里叶变换,线性性质,位移性质;(4)拉普拉斯变换,线性性质,平移性质,微分性质;2.简述用积分变换法求解偏微分方程定解问题的基本步骤。
3.写出傅里叶变换和拉普拉斯变换的存在条件。
4.用傅里叶变换方法导出了无限弦振动的达朗贝尔公式。
5.第3.6册练习:1(1)(2)、6、9(1)(2)、12、13(p93-94)。
6.书籍示例:3.1.1;3.1.2; 3.3.1、2、3、4、6;例3.4.1、3.4.2、3.4.3解的像函数。
第四章行波法与降维法(d’alembert法)1.名词解释:(1)无限长弦自由振动的达朗贝尔公式;(2)行波速度;(3)特征变换,特征线;(4)球对称性,降维法;2.简要描述达朗贝尔公式的物理意义。
第一章 复变函数复数的三种表示:代数表示,三角表示与指数表示几个初等函数的定义式:()1sin 2iz iz z e e i-=- ()1cos 2iz iz z e e -=+ ()12z z shz e e -=- ()12z z chz e e -=+ ln ln()ln iArg iArgz z z e z z ==+§1.3导数u v x y v u xy ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ Cauchy-Riemann 方程§1.4 解析函数1.定义若复变函数()f z 在点0z 及其邻域上处处可导,则称()f z 在0z 点解析。
注意:如果只在一点导数存在,而在其他点不存在,那么也不能说函数在该点解析。
例如:函数2)(z z f =在0=z 点是否可导?是否解析? 解:222)(y x z z f +==,22y x u +=,0=v ,x x u 2=∂∂,y y u 2=∂∂,0=∂∂xv ,0=∂∂y v , 由此可见,仅在0=z ,u 、v 可微且满足C-R 条件,即)(z f 仅于0=z 点可导,但在0=z 点不解析。
在其他点不可导,则它在0z =点及整个复平面上处处不解析。
某一点,函数解析⇒⇐可导某一区域B,函数解析⇔可导2.解析函数的性质(ⅰ)几何性质(ⅱ)调和性(ⅲ)共轭性例已知323u x xy=-求v看书上例题§2.1 复变函数的积分∴复变函数的路积分可以归结为两个实函数的线积分。
因此复变函数积分也具有实变函数积分的某些性质。
一般说来,积分值不仅依赖于起点、终点。
积分路线不同,其结果也不同.§2.2 柯西定理的应用§2.3 不定积分§2.4 柯西公式均属于考试内容!第三章幂级数展开,)()()(20201000Λ+-+-+=-∑∞=z z a z z a a z z a k k k (1)比值判别法(达朗贝尔判别法,D ’ Alember )(3.2.3) (2)根值判别法(柯西判别法)(3.2.6) §3.3 泰勒级数的展开2. 其他展开法可用任何方法展开,只要0()kz z -项相同,那么展开结果一定相同(根据Taylor 展开的唯一性)如利用00111!k k k z k t t t z e z k ∞==∞=⎧=<⎪-⎪⎨⎪=<∞⎪⎩∑∑ ∞<+-=∑∞=+z k z z k k k ,)!12()1(sin 012;∞<-=∑∞=z k z z k k k ,)!2()1(cos 02 等等!例6 将211z -在00z =点邻域展开(1z <) 解:利用011k k t t ∞==-∑有:24222011(1)1k k k z z z z z z ∞==+++++=<-∑K K例7 11z -在02iz =点的邻域展开 解:01011111(1)()1222211212()1122()2(1)22(1)2kk kk k i i iiz z z iiz i ii z i i z i∞=∞+===⋅---------=---=-<--∑∑§3.5 洛朗(Laurent )级数展开(1)展开中心z 0不一定是函数的奇点;3展开方法的唯一性间接展开方法:利用熟知公式的展开法 较常用 例 2 将函数21()(2)(3)f z z z =--在021z <-<内展开为Laurent 级数 解:因为021z <-<内展开,展开形式应为(2)nn n c z ∞=-∞-∑ 01113(2)11(2)(2)(21)nn z z z z z +∞===------=---<∑ 而20111(2)(3)312(2)(2)(21)n n n z z z z n z z ∞=-''⎡⎤⎛⎫=-=- ⎪⎢⎥--⎝⎭⎣⎦=+-++-+-<∑K K得到:22221111()(2)(3)(2)(3)123(2)(2)(2)(2)021n n n f z z z z z z n z z n z z -∞-===•----=++-++-+-=-<-<∑L L例3 函数1()(1)(2)f z z z =--在下列圆环域内都是处处解析的,将()f z 在这些区域内展开成Laurent级数 ①01z <<②12z <<③2z <<∞④011z <-< 解:①11111()211212f z zz z z =-=----- 由于1z <从而12z<,利用 21111n z z z z z =+++++<-K K 可得:22111(1)122222212n n z z z z z =+++++<-K K 22221()(1)(1)22221370248nn n z z z f z z z z z z z ∴=+++++-+++++=+++<K K K K K 结果中不含负幂次项,原因在于1()(1)(2)f z z z =--在1z <内解析的。
第一部分:填空题1复变函数f(z) u(x,y) i v(x,y)在点z x i y可导的必要条件是____ 2 柯西黎曼方程在极坐标系中的表达式为_______ 3 复变函数f(z) zz在z ____处可导4复变函数f(z) xy i y在z ____处可导5 ln( 1) _____6 指数函数f(z) ez的周期为______ 21dz _____ 7 1z 2(z )2zezdz _____ 8 z 3z 3 19 dz _____ 2 z 4z 2 1cos zd z _________ 5(z 1)z 111 z10 11 在z0 1的邻域上将函数f(z) e展开成洛朗级数为__________12 将e1/z在z0 0的邻域上展开成洛朗级数为_____________1在z0 1的邻域上展开成洛朗级数为________________ z 1sinz14 z0 0为函数的________________ 2z115 z0 0为函数sin的________________ z13 将sin16 z0 1为函数e17 z0 0为函数11 z的____________________ cosz的______阶极点4zsinz18 z0 0为函数4的______阶极点z1 e2z19 函数f(z) 在z0 0的留数Resf(0) ________ z320 函数f(z) e11 z在z0 1的留数Resf(1) ________,在无限远点的留数Resf( ) ________21 函数f(z) e1/z2在z0 0的留数Resf(0) ________22 函数f(z) cosz在z0 0的留数Resf(0) ________ 3zsinz23 函数f(z) 3在z0 0的留数Resf(0) ________ z24 积分 f( ) (t0 )d ______ (t (a,b) )ab25 两端固定的弦在线密度为 f(x,t) (x)sin t的横向力作用下振动,泛定方程为_______________.26 两端固定的弦在点x0受变力 f(x,t) f0sin t的横向力的作用,其泛定方程为_________________.27 弦在阻尼介质中振动,单位长度的弦所受的阻力F R ut(R为阻力系数),弦在阻尼介质中的振动方程为_______________。
中考数学物理方法归纳总结在中考中,数学和物理是两门重要的科目。
为了帮助同学们更好地备考中考,下面将对数学和物理的相关方法进行归纳总结,以希望能够帮助同学们更好地理解和掌握这两门科目。
一、数学方法1. 整数运算法则整数运算法则包括加法、减法、乘法和除法。
加法和减法是数学中最基本的运算,掌握好整数的加减法则是非常重要的。
乘法和除法则是对加减法的推广和拓展,需要灵活运用。
2. 分数运算法则分数是数学中的一个重要概念,分数的加减乘除都需要掌握。
加减法的关键在于找到分母的最小公倍数,乘除法的关键在于分数的乘法和除法法则。
3. 代数方程与函数代数方程和函数是数学中的重点内容,理解代数方程和函数的意义以及解法是至关重要的。
需要掌握一元一次方程、平方根、平方差、二次函数等相关概念和求解方法。
4. 图形的性质和几何变换图形的性质和几何变换是中考中的重点内容,需要掌握平行线的性质、相似三角形、正多边形等几何概念,同时也需要了解几何变换中的平移、旋转、翻转等基本操作。
5. 概率与统计概率和统计是数学中的应用内容,需要掌握概率的计算方法、抽样调查和数据分析等统计概念和方法。
在中考中,概率题和统计题所占比例较小,但也需要重视。
二、物理方法1. 物理量和单位物理中的物理量有长度、质量、时间、速度、加速度等,每个物理量都需要有相应的单位。
掌握各种物理量和单位,可以更好地理解物理概念和解题方法。
2. 运动学运动学是物理中最基础的部分,包括直线运动、曲线运动和平抛运动等。
理解物体的位移、速度、加速度等运动学量,以及利用运动学公式解题的方法,是掌握物理的基本要求。
3. 力和牛顿定律力是物理中的基本概念,掌握力的性质、计算和合成方法是解决力学问题的关键。
牛顿定律是物理中的基本定律,包括惯性定律、运动定律和作用-反作用定律,需要理解和应用。
4. 能量与功率能量和功率是物理中的重要概念,能量守恒定律和功率的计算方法是物理问题中常见的考点。
数学物理方法复习资料及参考答案(二)一、选择题:1. 函数()f x 以0z 为中心的Taylor 展开的系数公式为:( )A ξξξπd z f i k C c k ⎰-=)()(20 B !)(0)(k z f C k k =C ξξξπd z f i C c k k ⎰+-=10)()(21 D ξξξπd z f i k C c k k ⎰+-=10)()(2 2。
⎰=-l dz a z )(( ) (其中l 表示以为a 中心ρ为半径的周围)。
A i ⋅πB iC i ⋅-πD 0 3. 非齐次边界条件)(),(0t u t u l x x νμ====,转化为齐次边界条件的方法:( )A )()(tB x t A + B x t A )(C )(t BD x t B x t A )()(2+ 4。
)(t f 是定义在半无界区间),0(∞上的函数,⎩⎨⎧<<<=)(0)0()(t T T t ht f在边界条件0)0(='f 下,把)(t f 展为实数形式傅立叶积分:( ) Aw h 12π B w wT h cos 2π C w wT h sin 2π D wwTh cos 12-π 5. 齐次边界条件0,00====l x x xu u 的本征值和本征函数:( ) A ),3,2,1,0(cos )(,222 ===n l xn C x X l n nn n ππλB ),3,2,1(sin )(,222 ===n l xn C x X l n nn n ππλC ),3,2,1,0()21(cos )(,)21(222 =+=+=n l xn C x X ln n n n ππλD ),3,2,1,0()21(sin )(,)21(222 =+=+=n l xn C x X l n nn n ππλ6. 若集合是( ),则该集合是区域。
A 开集B 连通开集C 连通闭集D 连通集 7. 设a 是)(z f 的可去奇点,则有:( )Alim ()Z af Z →存在且有限 Blim ()Z af Z →不存在C )(z f 在a 点的主要部分只有有限项D )(z f 在a 点的主要部分有无限多项8。
数学物理方法期末复习数学物理方法是一门综合应用数学和物理知识的学科,主要涉及到数学工具和数学方法在物理学中的应用。
数学物理方法的核心内容包括数学分析、微分方程、线性代数、复变函数等。
这门课程对于物理学专业的学生来说非常重要,它为我们理解和解决物理问题提供了强有力的工具。
在数学物理方法的学习中,数学分析是一个非常重要的基础部分。
数学分析研究了函数的性质、极限、连续性、微分性和积分性等。
通过学习数学分析的原理和方法,我们可以更深入地理解和分析物理问题中的数学关系。
微分方程是数学物理方法中的另一个重要内容。
微分方程是描述物理系统动力学行为的数学模型。
通过对微分方程进行求解,可以得到物理系统的解析解或数值解,从而进一步研究和分析物理系统的运动和变化规律。
线性代数也是数学物理方法中的关键部分。
线性代数研究了向量空间、线性变换、矩阵以及它们的性质和运算。
在物理学中,线性代数被广泛应用于矩阵理论、量子力学、电磁学等领域。
例如,在量子力学中,波函数的表示和演化可以通过线性代数的方法进行描述和求解。
复变函数是研究复数域上的函数的一门学科,也是数学物理方法中的重要内容。
复变函数在物理学中的应用非常广泛,特别是在电磁学、流体力学和量子力学中。
通过复变函数的分析,我们可以更好地理解和求解这些物理问题。
总的来说,数学物理方法是物理学专业学生必须掌握的一门课程。
它不仅提供了解决物理问题所需的数学工具,而且培养了我们分析和解决问题的能力。
数学物理方法的学习不仅需要我们掌握数学知识,还需要我们运用数学方法进行物理问题的建模和求解。
通过不断练习和研究,我们可以逐渐掌握和运用这些数学物理方法来解决实际问题。
在数学物理方法的期末复习中,我们可以从以下几个方面进行复习和提高:首先,我们可以回顾和复习数学分析的基本概念和原理。
包括函数的性质、极限、连续性、微分性和积分性等。
通过做一些相关的数学分析题目,加深对这些概念和原理的理解和应用能力。