人教版高中数学基础知识归类
- 格式:doc
- 大小:3.06 MB
- 文档页数:21
高三数学知识点全部汇总人教版高三数学知识点全部汇总一、函数与方程1. 函数概念及性质函数是描述两个变量之间相互关系的工具。
具有定义域、值域和对应关系等性质。
2. 一元二次函数一元二次函数是形如y=ax^2+bx+c的函数,其中a≠0。
3. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
4. 指数函数与对数函数指数函数是以底数为常数的幂函数,对数函数是指数函数的反函数。
5. 解方程与不等式解方程是求出使等式成立的未知数值,解不等式是求出使不等式成立的未知数值范围。
二、数列与数列求和1. 等差数列等差数列是具有相同公差的数列,常用通项公式an=a1+(n-1)d来表示。
2. 等比数列等比数列是相邻两项的比值相等的数列,常用通项公式an=a1*q^(n-1)来表示。
3. 递推数列递推数列是通过前一项和递推关系得到后一项的数列。
4. 数列求和数列求和是指对数列中的所有项进行加和运算,有等差数列求和公式和等比数列求和公式。
三、平面几何1. 平面图形的性质平面图形包括点、线、角、三角形、四边形、圆等,具有特定的性质和定理。
2. 三角形三角形是由三条边和三个内角组成的图形,有特殊的三边关系、三角形的性质和定理。
3. 圆与圆的相交关系圆与圆之间可以相离、相切或相交,并有相应的关系和定理。
四、空间几何1. 空间图形的性质空间图形包括点、线、面、体等,在三维空间中有特定的性质和定理。
2. 平行与垂直平行是指两条直线在同一平面内永不相交,垂直是指两条直线相交成直角。
3. 球与球的相交关系球与球之间可以相离、相切或相交,并有相应的关系和定理。
五、概率与统计1. 概率基本概念概率是用来描述事件发生可能性的大小,包括样本空间、事件、概率的概念。
2. 样本空间与事件样本空间是指随机试验的所有可能结果的集合,事件是样本空间的子集。
3. 随机变量与概率分布随机变量是随机试验结果的数值描述,概率分布用来描述随机变量取值的概率。
新人教版高中数学知识点全总结高中数学是学生在中学阶段学习的最后一个数学科目,它在知识体系上是对初中数学的拓展和深化,同时也是大学数学的基础。
新人教版高中数学教材按照必修和选修的不同模块进行编排,涵盖了从函数、导数、积分等基本概念到立体几何、概率统计等应用领域的广泛内容。
以下是新人教版高中数学知识点的全总结:一、集合与函数概念集合是高中数学的基础概念,包括集合的含义、表示方法、基本关系和运算。
函数部分则介绍了函数的定义、性质、函数的图像以及常见函数类型,如一次函数、二次函数、幂函数、指数函数和对数函数等。
二、数列与数学归纳法数列是一系列按照特定顺序排列的数,本部分内容包括数列的概念、等差数列、等比数列以及数列求和。
数学归纳法是一种证明方法,用于证明与自然数相关的命题,本部分将介绍其基本步骤和应用。
三、函数的极限与导数极限是微积分的基础概念,涉及到函数值的趋近性。
导数则描述了函数在某一点的切线斜率,是研究函数局部性质的重要工具。
本部分内容包括极限的定义、性质、导数的定义、求导法则以及高阶导数。
四、函数的积分积分是微积分的另一核心概念,用于求解曲线下面积或物体的体积。
本部分内容包括不定积分、定积分的概念、性质和计算方法,以及积分在几何和物理中的应用。
五、三角函数三角函数是解决与三角形相关问题的重要工具。
本部分内容包括三角函数的定义、基本关系式、三角恒等变换、三角函数的图像和性质,以及解三角形的方法。
六、平面向量与解析几何向量是描述几何形状和物理现象的重要工具。
本部分内容包括向量的基本概念、线性运算、数量积和向量积,以及向量在解析几何中的应用,如直线、圆和圆锥曲线的方程。
七、立体几何立体几何研究三维空间中的几何形状。
本部分内容包括空间几何体的基本概念、性质,以及直线与平面、平面与平面之间的相互关系和判定方法。
八、概率与统计概率与统计是研究随机现象的数学分支。
本部分内容包括随机事件的概率、条件概率、独立事件、随机变量及其分布、数学期望和方差,以及统计中的样本、总体、抽样分布和假设检验等。
高中数学所有知识点归类大全一、数学初等函数1. 指数函数:定义、对数、幂函数、应用。
2. 三角函数:定义、几何语言、正弦余弦定理、半正弦函数等。
3. 对数函数:定义、有理函数的对数、指数函数的对数等。
4. 幂函数:定义、幂函数定义、幂函数的性质、幂函数的应用等。
5. 向量函数:定义、表示、性质等。
6. 积分函数:定义、概念、初等函数积分、重积分等。
二、统计与概率1. 概率的定义、公理、概率的计算。
2. 离散分布与连续分布:定义、概率分布函数、期望值等。
3. 抽样估计:抽样分布函数、均匀抽样、样本总体的判断等。
4. 回归分析:定义、正态模型、最小二乘估计、多项式回归模型等。
5. 贝叶斯分析:定义、贝叶斯统计、贝叶斯方法应用等。
6. 推断分析:点估计、区间估计、参数误差等。
三、代数1. 多项式及其性质:定义、系数、次数、根的处理等。
2. 同类型代数式:定义、因式分解、完全平方式等。
3. 向量空间:定义、向量空间的子空间、线性相关、线性无关等。
4. 线性方程组:定义、矩阵方程组、逆矩阵解、三角形法等。
5. 二元一次方程:一次函数性质、椭圆方程、双曲线方程等。
6. 不定系数线性方程组:定义、条件互异、充分必要性等。
四、几何1. 直角坐标系:定义、坐标方程组、投影面等。
2. 点、线:定义、直线的性质、平行线的性质等。
3. 平面图形:定义、圆的性质、锐角三角形、钝角三角形等。
4. 正多边形:定义、正五边形性质、正六边形性质等。
5. 空间几何:定义、球面坐标系、球面角等。
6. 极坐标系:定义、极线条件、极角等。
高考数学知识点归纳人教版高考数学是高中阶段数学学习的总结和升华,其知识点广泛而深入,涵盖了代数、几何、概率统计等多个领域。
以下是根据人教版高中数学教材的知识点归纳:一、代数部分1. 集合与函数:包括集合的概念、运算,函数的定义、性质、单调性、奇偶性、周期性等。
2. 不等式:包括不等式的性质、解法,特别是一元二次不等式和绝对值不等式的解法。
3. 数列:数列的概念、等差数列、等比数列、数列的通项公式和求和公式。
4. 复数:复数的概念、运算、共轭复数、复数的模和辐角等。
5. 导数与微分:导数的定义、几何意义、基本导数公式、复合函数的求导法则、高阶导数。
6. 积分:定积分的概念、性质、基本定理、计算方法,包括牛顿-莱布尼茨公式。
二、几何部分1. 平面解析几何:包括直线与圆的方程、椭圆、双曲线、抛物线的标准方程及其性质。
2. 空间解析几何:空间直线与平面的方程、空间几何体的体积和表面积计算。
3. 立体几何:立体图形的性质、体积和表面积的计算,包括棱柱、棱锥、圆柱、圆锥、球等。
三、概率与统计1. 概率论基础:随机事件的概率、条件概率、独立事件、贝努利试验、二项分布等。
2. 统计基础:数据的收集、整理、描述,包括均值、中位数、众数、方差、标准差等。
四、其他知识点1. 三角函数:包括正弦、余弦、正切等三角函数的定义、图像、性质、和差化积、积化和差公式。
2. 反三角函数:反正弦、反余弦、反正切等函数的定义和性质。
3. 线性代数:矩阵的概念、运算、行列式、线性方程组的解法。
4. 逻辑推理:命题逻辑、演绎推理、归纳推理等。
结束语高考数学的知识点繁多,但只要系统地学习和复习,掌握每个知识点的内在联系和应用,就能够在高考中取得优异的成绩。
希望以上的归纳能够帮助同学们更好地准备高考,实现自己的目标。
人教版高一数学知识点总结一、集合与函数1.集合的概念及表示方法,包括集合元素的特点和集合关系的运算。
2.不等式解集的概念、表示及应用。
3.函数的概念及表示方法,包括函数的定义域、值域、图像和性质。
4.复合函数与反函数的概念及相关性质,包括复合函数的性质和反函数的求法。
5.函数的运算及函数方程的应用,包括函数的加、减、乘、除、求逆等运算,以及函数方程的解法。
二、数列与数学归纳法1.数列的概念及表示方法,包括等差数列、等比数列和锐角三角函数数列的性质与应用。
2.数列的通项公式及相关性质,包括等差数列通项公式、等差数列前n项和公式、等差数列求和等,以及等比数列通项公式和前n项和公式。
3.数学归纳法的原理及应用,包括数学归纳法的基本原理和应用题的解题思路。
三、函数的极限与连续1.函数的极限的概念、性质与运算法则,包括函数极限的定义、极限运算法则、无穷小量与无穷大量等。
2.无穷极限的概念、性质与运算法则,包括无穷大量的性质、无穷大量的运算法则等。
3.函数的连续性的概念、判定条件与性质,包括函数连续性的定义、连续性的判定条件及连续函数的性质等。
四、导数与函数的应用1.导数的概念、运算法则及几何意义,包括导数的定义、导数的四则运算法则、导数的几何意义等。
2.函数的导数及导数的应用,包括函数的导数、函数单调性、函数极值、函数图像等。
3.特殊函数的导数及应用,包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数等的导数。
4.中值定理与泰勒公式的概念和应用,包括罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式等。
五、平面向量1.平面向量的概念、表示方法及运算法则,包括平面向量的定义、向量的运算法则(加法、数乘等)。
2.向量的线性相关与线性无关的概念与判定方法,包括向量组的线性相关与线性无关的定义、方法与判定法则。
3.平面向量的数量积的概念、性质及相关运算法则,包括向量的数量积的定义、性质和运算法则,如数量积的坐标表示、数量积的几何意义等。
高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
高中数学知识点全总结目录人教版高中数学知识点全总结(人教版)一、函数与导数1. 函数的概念与性质- 定义域与值域- 函数的奇偶性- 反函数- 基本初等函数(线性函数、二次函数、幂函数、指数函数、对数函数、三角函数)2. 函数的运算- 函数的四则运算- 复合函数- 反函数的求法3. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 链式法则、乘积法则、商法则- 高阶导数- 微分的概念与应用4. 函数的极值与最值- 极值的定义与判定- 最值问题- 应用题5. 导数在几何上的应用- 曲线的切线与法线- 函数图像的凹凸性与拐点 - 渐近线二、三角函数与解三角形1. 三角函数的基本概念- 正弦、余弦、正切函数- 三角函数的图像与性质- 三角函数的基本关系式2. 三角恒等变换- 同角三角函数的关系- 恒等变换公式3. 解三角形- 正弦定理与余弦定理- 三角形的面积公式- 应用题三、数列与数学归纳法1. 等差数列与等比数列- 通项公式与求和公式- 等差数列与等比数列的性质2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 原理与步骤- 证明方法四、解析几何1. 平面直角坐标系- 点的坐标- 距离公式与中点公式2. 直线与圆的方程- 直线的斜率与方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线4. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型与连续型随机变量- 概率分布与概率密度函数3. 统计量与抽样分布- 常见的统计量(均值、方差、标准差)- 抽样分布与正态分布4. 参数估计- 点估计与区间估计- 置信区间的概念与计算六、数学思维与方法1. 逻辑推理与证明- 演绎推理与归纳推理- 证明方法(直接证明、间接证明、数学归纳法)2. 数学建模与应用- 数学建模的基本步骤- 数学在实际问题中的应用3. 数学思想方法- 函数与方程的思想- 转化与化归的思想- 极限与无穷的思想结语高中数学的学习不仅是对数学知识的掌握,更重要的是培养数学思维和解决问题的能力。
人教版高中数学知识点总结高中数学是学生进入高中阶段后所学习的一门主要学科,人教版高中数学是其中一种教材版本。
以下是针对人教版高中数学的知识点的总结:一、函数与方程1. 函数与映射- 函数的定义、性质和表示方法- 映射的定义和性质- 函数的四则运算和复合运算2. 一次函数与二次函数- 一次函数的定义、图像和性质- 一次函数的解析式及其在实际问题中的应用- 二次函数的定义、图像和性质- 二次函数的标准型、顶点型和一般型的相互转化- 二次函数的解析式及其在实际问题中的应用3. 指数与对数函数- 指数函数的定义、图像和性质- 对数函数的定义、图像和性质- 指数方程与对数方程的解法4. 三角函数- 弧度制和角度制- 三角函数的定义、图像和性质- 三角函数的周期性、奇偶性和单调性- 三角函数的和差化积公式和倍角公式- 三角方程和三角不等式的解法5. 不等式与方程组- 一元一次不等式与一元一次方程组的解法- 一元二次不等式的解法- 一元二次方程的解法- 二元一次方程组的解法6. 高次方程- 因式分解与求根公式- 高次方程的解的判别法和综合问题二、数列与数列的极限1. 数列的概念和表示- 数列的定义、性质和表示方法- 等差数列和等比数列的概念和表示2. 数列的通项公式及其性质- 等差数列和等比数列的通项公式- 数列的前n项和公式3. 数列的极限- 数列极限的定义和性质- 数列收敛和发散的判断- 等比数列和等差数列的极限性质三、平面几何1. 直线与线段- 直线、线段和射线的概念- 直线的方程和性质2. 角与三角形- 角的概念和性质- 三角形的概念和性质- 三角形的面积和周长公式- 三角形的分类和判定方法3. 圆与圆的切线- 圆的概念和性质- 圆的方程和性质- 圆的弦、弧和切线的概念和性质4. 二次曲线- 抛物线、椭圆和双曲线的概念和性质- 二次曲线的标准方程和性质四、立体几何和空间解析几何1. 空间中的直线和平面- 空间直线的概念和性质- 空间平面的概念和性质- 空间中的直线与平面的位置关系2. 空间中的立体图形- 空间中的球、柱、锥、棱柱和棱锥的概念和性质- 空间图形的表面积和体积公式3. 空间解析几何- 点、直线和平面的坐标表示和性质- 空间中的距离和夹角的计算五、概率论- 概率的概念和性质- 试验、基本事件和样本空间的概念- 随机事件的概念和性质- 事件的概率计算方法- 条件概率和独立事件的概念和计算方法总结:以上是人教版高中数学的主要知识点总结,其中包含了函数与方程、数列与数列的极限、平面几何、立体几何和空间解析几何以及概率论等内容。
新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。
2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。
3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。
4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。
5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。
6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。
二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。
2.等差数列:公差、前n项和、等差数列的性质及应用。
3.等比数列:公比、前n项和、等比数列的性质及应用。
4.通项公式及求和公式的推导与应用。
5.数学归纳法的基本概念和使用。
三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。
2.正切函数与余切函数的关系。
3.正割函数与余割函数的关系。
4.辅助角公式及证明。
5.万能角公式及证明。
6.统一化问题的求解及应用。
四、解析几何基本定理与推理1.重矢量的定义与性质。
2.数量积的基本性质与运算规则。
3.向量的线性相关性与线性独立性。
4.解析几何定理的证明与推理。
五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。
2.概率的基本性质:加法原理、乘法原理、条件概率等。
3.随机变量和概率分布的基本概念与性质。
4.离散型随机变量与连续型随机变量的概率分布。
5.正态分布的基本性质和应用。
以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。
人教版高中数学知识点提纲人教版高中数学知识点提纲
人教版高中数学教材是国内一线的数学教材,其教学内容深入浅出、重点突出,在学习过程中为高中学生提供了一个系统化的学习平台。
下面是对人教版高中数学知识点的概要提纲,希望对大家的学习有所帮助。
一. 高中数学的基础知识 1. 集合论概念与运算 2. 映射
与函数 3. 数列与极限
二. 解析几何 1. 平面向量的基本概念 2. 空间向量的基
本概念 3. 直线与平面的交点
三. 线性代数 1. 矩阵与矩阵运算 2. 行列式及其性质 3.
矩阵特征及其应用
四. 微积分 1. 函数基本概念 2. 导数及其应用 3. 积分
及其应用
五. 三角函数 1. 三角函数及其性质 2. 三角函数的图像
与解析式 3. 三角函数的应用
六. 数学分析 1. 极值与最值 2. 微分学基本定理 3. 积
分学基本定理
七. 微分方程 1. 微分方程及其解法 2. 常微分方程的解
析式 3. 微分方程的应用
总之,人教版高中数学知识点涵盖了集合论、解析几何、线性代数、微积分等几个方面,覆盖了大部分高中数学的内容。
通过系统的学习,高中学生不仅可以掌握常用的数学工具和方法,而且还能够培养思维能力和独立解决问题的能力。
在考研或找工作等方面都非常有帮助。
高中数学基础知识归类——献给2012年高三(理科)考生一.集合与简易逻辑1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域;{(,)|lg }x y y x =—函数图象上的点集.2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ⊆. ②空集是任何集合的子集,记为A ∅⊆.③空集是任何非空集合的真子集;注意:条件为A B ⊆,在讨论的时候不要遗忘了A =∅的情况如:}012|{2=--=x ax x A ,如果A R +=∅,求a 的取值.(答:0a ≤)④()UUUC A B C A C B =,()UUUC A B C A C B =;A B C A B C =()();A B C A B C =()().⑤A B A A B B =⇔=UUA B C B C A ⇔⊆⇔⊆UA CB ⇔=∅UC A B R ⇔=. ⑥A B 元素的个数:()()card A B cardA cardB card A B =+-.⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -.3.补集思想常运用于解决否定型或正面较复杂的有关问题。
如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围.(答:32(3,)-)4.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两 个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件)5.若p q ⇒且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件).6.注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝. 命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”否定是“若a 和b 都是偶数,则b a +是奇数”.二.函数1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ⊆).②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象.2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个.3.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.4.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0> 且1≠;零指数幂的底数0≠);实际问题有意义;若()f x 定义域为[,]a b ,复合函数[()]f g x 定义域由()a g x b ≤≤解出;若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域.5.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围).④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域; ⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数). 6.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法;⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。
7.函数的奇偶性和单调性⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等;⑵若()f x 是偶函数,那么()()(||)f x f x f x =-=;定义域含零的奇函数必过原点((0)0f =);⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或()()1(()0)f x f x f x -=±≠;⑷复合函数的奇偶性特点是:“内偶则偶,内奇同外”.注意:若判断较为复杂解析式函数的奇偶性,应先化简再判断;既奇又偶的函数有无数个(如()0f x =定义域关于原点对称即可).⑸奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等.⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域) 如:函数122log (2)y x x =-+的单调递增区间是_____________.(答:(1,2))8.函数图象的几种常见变换⑴平移变换:左右平移---------“左加右减”(注意是针对x 而言);上下平移----“上加下减”(注意是针对()f x 而言).⑵翻折变换:()|()|f x f x →;()(||)f x f x →.⑶对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x+=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =--的图像关于点22(,)m n 对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=.9.函数的周期性:⑴若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ;⑵若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑶若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑷若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑸()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -;⑹()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;10.对数:⑴log log n n a a b b =(0,1,0,)a ab n R +>≠>∈;⑵对数恒等式log (0,1,0)a N a N a a N =>≠>;⑶log ()log log ;log log log ;log log n a a a a a a a a M NM N M N M N M n M ⋅=+=-=;1log log aa nM ;⑷对数换底公式log log log b b a N aN =(0,1,0,1)a a b b >≠>≠;推论:121123log log log 1log log log log n abca a a na nb c a a a a a -⋅⋅=⇒⋅⋅⋅=.(以上120,0,0,1,0,1,0,1,,,0nM N a a b b c c a a a >>>≠>≠>≠>且12,,na a a 均不等于1)11.方程()k f x =有解k D ⇔∈(D 为()f x 的值域);()a f x ≥恒成立[()]a f x ⇔≥最大值,()a f x ≤恒成立[()]a f x ⇔≤最小值.12.恒成立问题的处理方法:⑴分离参数法(最值法); ⑵转化为一元二次方程根的分布问题;13.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;14.二次函数解析式的三种形式: ①一般式:2()(0)f x ax bx c a =++≠;②顶点式:2()()(0)f x a x h k a =-+≠; ③零点式:12()()()(0)f x a x x x x a =--≠.15.一元二次方程实根分布:先画图再研究0∆>、轴与区间关系、区间端点函数值符号;16.复合函数:⑴复合函数定义域求法:若()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域可由不等式()a g x ≤b ≤解出;若[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于[,]x a b ∈时,求()g x 的值域;⑵复合函数的单调性由“同增异减”判定.17.对于反函数,应掌握以下一些结论:⑴定义域上的单调函数必有反函数;⑵奇函数的反函数也是奇函数;⑶定义域为非单元素集的偶函数不存在反函数;⑷周期函数不存在反函数;⑸互为反函数的两个函数在各自的定义域具有相同的单调性;⑹()y f x =与1()y f x -=互为反函数,设()f x 的定义域为A ,值域为B ,则有1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈.18.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:()()()0f u g x u h x =+≥(或0≤)()a u b ≤≤()0()0f a f b ≥⎧⇔⎨≥⎩(或()0()0f a f b ≤⎧⎨≤⎩); 19.函数(0,)ax b cxdy c ad bc ++=≠≠的图像是双曲线:①两渐近线分别直线dcx =-(由分母为零确定)和直线a c y =(由分子、分母中x 的系数确定);②对称中心是点(,)d a c c-;③反函数为bdx cx ay --=; 20.函数(0,0)bxy ax a b =+>>:增区间为(,)-∞+∞,减区间为[-.如:已知函数12()ax x f x ++=在区间(2,)-+∞上为增函数,则实数a 的取值范围是_____(答:12(,)+∞).三.数列 1.由nS 求na ,1*1(1)(2,)n n n S n a S S n n N -=⎧⎪=⎨-≥∈⎪⎩ 注意验证1a 是否包含在后面na 的公式中,若不符合要单独列出.如:数列{}na 满足111534,n n n a S S a ++=+=,求na (答:{14(1)34(2)n n n a n -==⋅≥). 2.等差数列1{}nnn a a a d -⇔-=(d 为常数)112(2,*)nn n a a a n n N +-⇔=+≥∈21122(,)(,)n n d d a an b a d b a d S An Bn A B a ⇔=+==-⇔=+==-;3.等差数列的性质: ①()nm aa n m d =+-,m n a a m nd --=;②mnlkm n l k a a a a +=+⇒+=+(反之不一定成立);特别地,当2m n p +=时,有2mnpa a a +=;③若{}n a 、{}n b 是等差数列,则{}n nka tb +(k 、t 是非零常数)是等差数列;④等差数列的“间隔相等的连续等长片断和序列”即 232,,,m m m m mS S S S S --仍是等差数列;⑤等差数列{}n a ,当项数为2n 时,S S nd -=偶奇,1nn S a S a +=奇偶;项数为21n -时,(*)n SS a a n N -==∈偶中奇,21(21)n n S n a -=-,且1S nS n =-奇偶;()(21)nn nnAa Bb f n f n =⇒=-.⑥首项为正(或为负)的递减(或递增)的等差数列前n 项和的最大(或最小)问题,转化为解不等式 100n n a a +≥⎧⎨≤⎩(或10n n a a +≤⎧⎨≥⎩).也可用2nSAn Bn =+的二次函数关系来分析.⑦若,()nma m a n m n ==≠,则0m na +=;若,()nmS m S n m n ==≠,则()m n S m n +=-+;若()mnS S m n =≠,则S m+n =0;S 3m =3(S 2m -S m );m nmnS S S mnd +=++. 4.等比数列121111{}(0)(2,*)n nn nnn n n a a a q q a a a n n N a a q +--+⇔=≠⇔=≥∈⇔=.5.等比数列的性质①n m n m a a q -=,n q ={}n a 、{}n b 是等比数列,则{}n ka 、{}n n a b 等也是等比数列;③111111(1)1111(1)(1)(1)(1)n n n n qq a a a a a q q q q na q na q S q q q ------==⎧⎧⎪⎪==⎨⎨-+≠=≠⎪⎪⎩⎩;④m n l k m n l k a a a a +=+⇒=(反之不一定成立);mnm nmnnmS S q S S q S +=+=+. ⑤等比数列中232,,,m m mm m S S S S S --(注:各项均不为0)仍是等比数列. ⑥等比数列{}na 当项数为2n 时,SS q =偶奇;项数为21n -时,1Sa S q -=奇偶.6.①如果数列{}na 是等差数列,则数列{}na A (na A 总有意义)是等比数列;如果数列{}na 是等比数列,则数列{log ||}(0,1)a na a a >≠是等差数列;②若{}n a 既是等差数列又是等比数列,则{}na 是非零常数数列; ③如果两个等差数列有公共项,那么由他们的公共项顺次组成的数列也是等差数列,且新数列的公差是原两个等差数列公差的最小公倍数;如果一个等差数列和一个等比数列有公共项,那么由他们的公共项顺次组成的数列是等比数列,由特殊到一般的方法探求其通项;④三个数成等差的设法:,,a d a a d -+;四个数成等差的设法:3,,,3a d a d a d a d --++;三个数成等比的设法:,,a qa aq ;四个数成等比的错误设法:33,,,a aqqaq aq (为什么?) 7.数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n aa a f n +++=)求na 用作差法:11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩. ⑶已知12()n a a a f n ⋅⋅⋅=求n a 用作商法:()(1)(1),(1),(2)n f n f n f n a n -=⎧⎪=⎨≥⎪⎩.⑷若1()n n a a f n +-=求n a 用迭加法. ⑸已知1()n na a f n +=,求n a 用迭乘法.⑹已知数列递推式求na ,用构造法(构造等差、等比数列):①形如1nn a ka b -=+,1nn n a ka b -=+,1nn a ka a n b -=+⋅+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a .②形如11n n na ka ba --+=的递推数列都可以用 “取倒数法”求通项.8.数列求和的方法:①公式法:等差数列,等比数列求和公式;②分组求和法;③倒序相加;④错位相减;⑤分裂通项法.公式:12123(1)n n n ++++=+;222216123(1)(21)n n n n ++++=++;33332(1)2123[]n n n +++++=;2135n n ++++=;常见裂项公式111(1)1n n nn ++=-;1111()()n n k k nn k++=-;1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;11(1)!!(1)!n n n n ++=-常见放缩公式:212=<=.9.“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利和为:(1)2(1)(12)(1)()n n n S p r p r p nr p n r +=+++++=+(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清.如果每期利 率为r (按复利),那么每期等额还款x 元应满足: 12(1)(1)(1)(1)nn n p r x r x r x r x --+=+++++++(等比数列问题). 四.三角函数1.α终边与θ终边相同2()k k Z αθπ⇔=+∈;α终边与θ终边共线()k k Z αθπ⇔=+∈;α终边与θ终边关于x 轴对称()k k Z αθπ⇔=-+∈;α终边与θ终边关于y 轴对称2()k k Z απθπ⇔=-+∈;α终边与θ终边关于原点对称2()k k Z απθπ⇔=++∈;α终边与θ终边关于角β终边对称22()k k Z αβθπ⇔=-+∈.2.弧长公式:||l r θ=;扇形面积公式:21122||S lr r θ==扇形;1弧度(1rad )≈57.3︒. 3.三角函数符号(“正号”)规律记忆口诀:“一全二正弦,三切四余弦11sin cos αα--sin cosαα+”.注意: tan15cot 752︒=︒=;tan75cot152︒=︒=4.三角函数同角关系中(八块图) sin cos x x ±、sin cos x x ⋅”的关系.如2(sin cos )12sin cos x x x x ±=±等.5.对于诱导公式, (注意:公式中始终视...a .为锐角...).6.角的变换:已知角与特殊角、已知角与目标角、已知角 与其倍角或半角、两角与其和差角等变换.如:()ααββ=+-;2()()ααβαβ=++-;2()()αβαβα=+--;22αβαβ++=⋅;222()()αββααβ+=---等;“1”的变换:221sincos tan cot 2sin30tan 45x x x x =+=⋅=︒=︒;7.重要结论:sin cos )a xb x x ϕ+=+其中tan b aϕ=);重要公式22cos 1sin 2αα-=;2cos α=1cos 22α+;sin 1cos 21cos sin tan ααααα-+==22|cos sin |θθ==±.万能公式:22tan 1tan sin 2ααα+=;221tan 1tan cos2ααα-+=;22tan 1tan tan 2ααα-=.8.正弦型曲线sin()y A x ωϕ=+的对称轴2()k x k Z ππϕω+-=∈;对称中心(,0)()k k Z πϕω-∈;余弦型曲线cos()y A x ωϕ=+的对称轴()k x k Z πϕω-=∈;对称中心2(,0)()k k Z ππϕω+-∈;9.熟知正弦、余弦、正切的和、差、倍公式,正、余弦定理,处理三角形内的三角函数问题勿忘三内角和等于180︒,一般用正、余弦定理实施边角互化;正弦定理:sin sin sin 2a b cABCR ===;余弦定理:22222222()222cos ,cos 1b c ab c abcbcab c bc A A +-+-=+-==-;正弦平方差公式:22sinsin sin()sin()A B A B A B -=+-;三角形的内切圆半径2ABCS a b cr ∆++=;面积公式:124sin abc RS ab C ∆==;射影定理:cos cos a b C c B =+.10.ABC∆中,易得:A B C π++=,①sin sin()A B C =+,cos cos()A B C =-+,tan tan()A B C =-+.②22sin cos A B C +=,22cos sin A B C +=,22tan cot A B C +=. ③sin sin a b A B A B >⇔>⇔>④锐角ABC ∆中,2A B π+>,sin cos ,cos cos A B A B ><,222a b c +>,类比得钝角ABC ∆结论.⑤tan tan tan tan tan tan A B C A B C ++=.11.角的范围:异面直线所成角2(0,]π;直线与平面所成角2[0,]π;二面角和两向量的夹角[0,]π;直线的倾斜角[0,)π;1l 到2l 的角[0,)π;1l 与2l 的夹角2(0,π.注意术语:坡度、仰角、俯角、方位角等.五.平面向量1.设11(,)a x y =,22(,)b x y =. (1)1221//0a b x y x y ⇔-=;(2)121200a b a b x x y y ⊥⇔⋅=⇔+=.2.平面向量基本定理:如果1e 和2e 是同一平面内的两个不共线的向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+. 3.设11(,)a x y =,22(,)b x y =,则1212||||cos a b a b x x y y θ⋅==+;其几何意义是a b ⋅等于a 的长度与b 在a 的方向上的投影的乘积;a 在b 的方向上的投影1222||cos ||a b a b x θ⋅==+4.三点A 、B 、C 共线AB ⇔与AC 共线;与AB 共线的单位向量||AB AB ±.5.平面向量数量积性质:设11(,)a x y =,22(,)b x y =,则122221122cos ||||a ba b x yx yθ⋅==++;注意:,a b 〈〉为锐角0a b ⇔⋅>,,a b 不同向;,a b 〈〉为直角0a b ⇔⋅=;,a b 〈〉为钝角0a b ⇔⋅<,,a b 不反向.6.a b ⋅同向或有0||||||||||||a b a b a b a b ⇔+=+≥-=-;a b ⋅反向或有0 ||||||||||||a b a b a b a b ⇔-=+≥-=+;a b ⋅不共线||||||||||a b a b a b ⇔-<±<+.7.平面向量数量积的坐标表示:⑴若11(,)a x y =,22(,)b x y =,则1212a b x x y y ⋅=+;||(AB x = ⑵若(,)a x y =,则222a a a x y =⋅=+.8.熟记平移公式和定比分点公式. ①当点P 在线段21P P 上时,0λ>;当点P 在线段21P P (或12P P )延长线上时,1λ<-或10λ-<<.②分点坐标公式:若12PP PP λ=;且111(,)P x y ,(,)P x y 222(,)P x y ;则121211(1)x x y y x y λλλλλ++++⎧=⎪⎪≠-⎨⎪=⎪⎩, 中点坐标公式:121222(1)x x y y x y λ++⎧=⎪⎪=⎨⎪=⎪⎩. ③1P ,P ,2P 三点共线⇔存在实数λ、μ使得12OP OP OP λμ=+且1λμ+=.9.三角形中向量性质:①AB AC +过BC 边的中点:||||||||()()AB AC AB AC AB AC AB AC +⊥-;②13()0PG PA PB PC GA GB GC G =++⇔++=⇔为ABC ∆的重心;③PA PB PB PC PA PC P⋅=⋅=⋅⇔为ABC∆的垂心; ④||||||0BC PA CA PB AB PC P ++=⇔为ABC ∆的内心;||||()(0)AB AC AB AC λλ+≠所在直线过ABC ∆内心. ⑤设1122(,),(,)A x y B x y ,12AOB A B B A S x y x y ∆=-. 222121||||sin ||||()2ABCSAB AC A AB AC AB AC ∆==-⋅.⑥O 为ABC ∆内一点,则0BOCAOC AOB S OA S OB S OC ∆∆∆++=.10.(,)(,)(,)a h k P x y P x y ='''−−−−−→按平移,有x x hy y k'=+⎧⎨'=+⎩(PP a'=);(,)()()a h k y f x y k f x h ==−−−−−→-=-按平移.六.不等式1.掌握课本上的几个不等式性质,注意使用条件,另外需要特别注意:①若0ab >,b a >,则11ab>.即不等式两边同号时,不等式两边取倒数,不等号方向要改变.②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法.3.掌握重要不等式,(1)均值不等式:若0,>b a ,则2211a b ab++≥(当且仅当b a =时 取等号)使用条件:“一正二定三相等 ” 常用的方法为:拆、凑、平方等;(2),,a b c R ∈,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)公式注意变形如:22222()a b a b ++≥,22()a b ab +≤;(4)若0,0a b m >>>,则b b m aa m++<(真分数的性质);4.含绝对值不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+≥-=-;,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+≥-=+.5.证明不等式常用方法:⑴比较法:作差比较:0A B A B -≤⇔≤.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小;⑵综合法:由因导果;⑶分析法:执果索因.基本步骤:要证…需证…,只需证…; ⑷反证法:正难则反;⑸放缩法:将不等式一侧适当的放大或缩小以达证题目的.放缩法的方法有:①添加或舍去一些项,||a n .②将分子或分母放大(或缩小)③利用基本不等式,如:(1)2n n ++.④利用常用结论:0111=;02 211111111(1)(1)1kk k kkk kk k++---=<<=-(程度大);0322111111211()kk k k --+<=-(程度小);⑹换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元代数换元.如:知222x y a +=,可设cos ,sin x a y a θθ==;知221x y +≤,可设cos x r θ=,sin y r θ=(01r ≤≤);知22221x y ab+=,可设cos ,sin x a y b θθ==;已知22221x y ab-=,可设sec ,tan x a y b θθ==.⑺最值法,如:()a f x >最大值,则()a f x >恒成立.(a f <立.七.直线和圆的方程 1.直线的倾斜角α的范围是[0,π);2.直线的倾斜角与斜率的变化关系2tan ()k παα=≠(3.直线方程五种形式:⑴点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.⑵斜截式:已知直线在y 轴上的截距为b和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线. ⑶两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为112121y y x xy y x x ----=,它不包括垂直于坐标轴的直线.⑷截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1x yab+=,它不包括垂直于坐标轴的直线和过原点的直线.⑸一般式:任何直线均可写成0Ax By C ++=(,A B 不同时为0)的形式.提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)⑵直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为1-或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.⑶截距不是距离,截距相等时不要忘了过原点的特殊情形. 4.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:⑴平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); ⑵相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=.5.直线系方程:①过两直线1l :1110A x B y C ++=,2l :2220A x B y C ++=.交点的直线系方程可设为111222()0A x B y C A x B y C λ+++++=;②与直线:0l Ax By C ++=平行的直线系方程可设为0()Ax By m m c ++=≠;③与直线:0l Ax By C ++=垂直的直线系方程可设为0Bx Ay n -+=.6.到角和夹角公式:⑴1l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角θ, (0,)θπ∈且2112121tan (1)k k k k k k θ-+=≠-;⑵1l 与2l 的夹角是指不大于直角的角2,(0,]πθθ∈且2112121tan ||(1)kk k k k k θ-+=≠-.7.点0(,)P x y 到直线0Ax By C ++=的距离公式d ;两条平行线10Ax By C ++=与20Ax By C ++=的距离是d =.8.设三角形ABC ∆三顶点11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心123123(,)33x x x y y y G ++++;9.有关对称的一些结论⑴点(,)a b 关于x 轴、y 轴、原点、直线y x =的对称点分别是(,)a b -,(,)a b -,(,)a b --,(,)b a .⑵曲线(,)0f x y =关于下列点和直线对称的曲线方程为:①点(,)a b :(2,2)0f a x b y --=;②x 轴:(,)0f x y -=;③y 轴:(,)0f x y -=;④原点:(,)0f x y --=;⑤直线y x =:(,)0f y x =;⑥直线y x =-:(,)0f y x --=;⑦直线x a =:(2,)0f a x y -=. 10.⑴圆的标准方程:222()()x a y b r -+-=. ⑵圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->.特别提醒:只有当2240D E F +->时,方程220x y Dx Ey F ++++=才表示圆心为22(,)D E --,的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆0A C ⇔=≠,且220,40B D E AF =+->). ⑶圆的参数方程:cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数),其中圆心为(,)a b ,半径为r .圆的参数方程主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;222cos ,sin (0x y t x r y r r θθ+=→==≤≤.⑷以11(,)A x y 、22(,)B x y 为直径的圆的方程1212()()()()0x x x x y y y y --+--=; 11.点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点00(,)P x y 及圆的方程222()()x a y b r -+-=.①222()()x a y b r -+->⇔点P 在圆外;②222()()x a y b r -+-<⇔点P 在圆内;③222()()x a y b r -+-=⇔点P 在圆上.12.圆上一点的切线方程:点00(,)P x y 在圆222x y r +=上,则过点P 的切线方程为:200x x y y r +=;过圆222()()x a y b r -+-=上一点00(,)P x y 切线方程为200()()()()x a x a y b y b r --+--=.13.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x 轴垂直的直线.14.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①d r >⇔相离 ②d r =⇔相切 ③d r <⇔相交 15.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d ,两圆的半径分别为,r R :d R r >+⇔两圆相离;d R r =+⇔两圆相外切; ||R r d R r -<<+⇔两圆相交;||d R r =-⇔两圆相内切; ||d R r <-⇔两圆内含;0d =⇔两圆同心.16.过圆1C :221110x y D x E y F ++++=,2C :222220x y D x E y F ++++=交点的圆(相交弦)系方程为2222111222()()0x y D x E y F x y D x E y F λ+++++++++=.1λ=-时为两圆相交弦所在直线方程.17.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等).18.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标函数(判断几何意义);(3)确定目标函数的最优位置,从而获得最优解.八.圆锥曲线方程1.椭圆焦半径公式:设00(,)P x y 为椭圆22221(0)x y a b a b+=>>上任一点,焦点为1(,0)F c -,2(,0)F c ,则120,PF a ex PFa ex =+=-(“左加右减”);2.双曲线焦半径:设0(,)P x y 为双曲线22221(0,0)x y a b ab-=>>上任一点,焦点为1(,0)F c -,2(,0)F c ,则:⑴当P 点在右支上时,120||,||PF a ex PF a ex =+=-+;⑵当P 点在左支上时,1||PF a ex =--,20||PF a ex =-;(e 为离心率).另:双曲线22221(0,0)x y a b a b-=>>的渐近线方程为22220x y a b-=.3.抛物线焦半径公式:设0(,)P x y 为抛物线22(0)y px p =>上任意一点,F 为焦点,则02||p PF x =+;22(0)y px p =->上任意一点,F 为焦点,则02||p PF x =-+.4.共渐近线b ay x =±的双曲线标准方程为2222x y a bλ-=(λ为参数,0λ≠).5.两个常见的曲线系方程: ⑴过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).⑵共焦点的有心圆锥曲线系方程22221x ya kb k+=--,其中 22max{,}k a b <.当22min{,}k a b <时,表示椭圆;当2222min{,}max{,}a b k a b <<时,表示双曲线.6.直线与圆锥曲线相交的弦长公式AB或12|AB x x -12]|y y -(弦端点1122(,),(,)A x yB x y ,由方程(,)0y kxc bF x y =+⎧⎨=⎩消去 y 得到02=++c bx ax ,0∆>,k 为斜率). 这里体现了解几中“设而不求”的思想;7.椭圆、双曲线的通径(最短弦)为22b a,焦准距为2bcp =,抛物线的通径为2p ,焦准距为p ;双曲线22221(0,0)x y a b a b -=>>的焦点到渐近线的距离为b ;8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为221Ax By +=(对于椭圆0,0A B >>);9.抛物线22(0)y px p =>的焦点弦(过焦点的弦)为AB ,11(,)A x y 、22(,)B x y ,则有如下结论:⑴12||AB x x p =++;⑵2124p x x =,212y y p =-; ⑶112||||pAF BF +=.10.椭圆22221(0)x y a b a b +=>>左焦点弦12||2()AB a e x x =++,右焦点弦12||2()AB a e x x =-+.11.对于22(0)y px p =≠抛物线上的点的坐标可设为200(,)2y y p,以简化计算.12.圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆22221x y ab+=中,以00(,)P x y 为中点的弦所在直线斜率202b x k a y =-;在双曲线22221x y a b-=中,以0(,)P x y 为中点的弦所在直线斜率202b x k a y =;在抛物线22(0)y px p =>中,以0(,)P x y 为中点的弦所在直线的斜率0p y k =.13.求轨迹方程的常用方法:⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹的最基本的方法.⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可.⑶代入法(相关点法或转移法).⑷定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程.⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.14.解析几何与向量综合的有关结论:⑴给出直线的方向向量(1,)u k =或(,)u m n =.等于已知直线的斜率k 或nm;⑵给出OB OA +与AB 相交,等于已知OB OA +过AB 的中点;⑶给出0=+PN PM ,等于已知P 是MN 的中点;⑷给出()AP AQ BP BQ λ+=+,等于已知Q P ,与AB 的中点三点共线;⑸给出以下情形之一: ①AC AB //; ②存在实数λ,使AB AC λ=; ③若存在实数,αβ,且1αβ+=;使OC OA OB αβ=+,等于已知C B A ,,三点共线.⑹给出1OA OB OP λλ++=,等于已知P 是的定比分点,λ为定比,即λ=⑺给出=⋅,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m MB MA ,等于已知AMB ∠是钝角或反向共线,给出0>=⋅m MB MA ,等于已知AMB ∠是锐角或同向共线.⑻给出||||()MAMBMA MB MP λ+=,等于已知MP 是AMB ∠的平分线.⑼在平行四边形ABCD 中,给出0)()(=-⋅+AD AB AD AB ,等于已知ABCD 是菱形.⑽在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形.⑾在ABC ∆中,给出222==,等于已知O 是ABC ∆的外心(三角形的外心是外接圆的圆心,是三角形三边垂直平分线的交点).⑿在ABC ∆中,给出=++,等于已知O 是ABC ∆的重心(三角形的重心是三角形三条中线的交点).⒀在ABC ∆中,给出⋅=⋅=⋅,等于已知O 是ABC ∆的垂心(三角形的垂心是三角形三条高的交点). ⒁在ABC ∆中,给出+=||||()AB AC AB AC λ+)(+∈R λ等于已知通过ABC∆的内心.⒂在ABC ∆中,给出0=⋅+⋅+⋅c b a 等于已知O 是ABC ∆的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点).⒃在ABC ∆中,给出12()AD AB AC =+,等于已知AD 是ABC ∆中BC 边的中线.九.直线、平面、简单几何体1.从一点O 出发的三条射线OA 、OB 、OC .若AOB AOC ∠=∠,则点A 在平面BOC 上的射影在 BOC ∠的平分线上;2.立平斜三角余弦公式:(图略)AB 和平面所成的角是1θ,AC 在平面内,AC 和AB 的射影1AB 成2θ,设3BAC θ∠=,则123cos cos cos θθθ=;3.异面直线所成角的求法:⑴平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线.⑵补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;4.直线与平面所成角:过斜线上某个特殊点作出平面的垂线段,是产生线面角的关键.5.二面角的求法:⑴定义法;⑵三垂线法;⑶垂面法;⑷射影法:利用面积射影公式cos S S θ=射斜其中θ为平面角的大小,此方法不必在图形中画出平面角; 6.空间距离的求法:⑴两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算.⑵求点到直线的距离,一般用三垂线定理作出垂线再求解.⑶求点到平面的距离,一是用垂面法,借助面面垂直的性质来作.因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解.7.用向量方法求空间角和距离:⑴求异面直线所成的角:设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角||||||arccos a b a b α⋅⋅=.⑵求线面角:设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角||||||arcsin l n l n α⋅⋅=. ⑶求二面角(法一)在α内a l ⊥,在β内b l ⊥,其方向如图(略),则二面角l αβ--的平面角||||arccosa b a b α⋅⋅=.(法二)设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角1212||||arccosn n n n α⋅⋅=.(4)求点面距离:设n 是平面α的法向量,在α内取一点B ,则A 到α的距离|||||cos |||AB n d AB n θ⋅==(即AB 在n 方向上投影的绝对值).8.正棱锥的各侧面与底面所成的角相等,记为θ,则cos S S θ=侧底. 9.正四面体(设棱长为a )的性质:①全面积2S =;②体积312V a =;③对棱间的距离2d a =;④相邻面所成二面角13arccos α=;⑤外接球半径4R a =;⑥内切球半径12r =;⑦正四面体内任一点到各面距离之和为定值3h =.10.直角四面体的性质:(直角四面体—三条侧棱两两垂直的四面体).在直角四面体O ABC -中,,,OA OB OC 两两垂直,令,,OA a OB b OC c ===,则⑴底面三角形ABC 为锐角三角形;⑵直角顶点O 在底面的射影H 为三角形ABC 的垂心;⑶2BOC BHC ABC S S S ∆∆∆=; ⑷2222AOB BOC COA ABCS S S S ∆∆∆∆++=;⑸22221111OHabc=++;⑹外接球半径R=R =11.已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,,αβγ因此有22cos cos αβ+2cos 1γ+=或222sin sin sin 2αβγ++=;若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,αβγ,则有222sin sin sin 1αβγ++=或222cos cos cos 2αβγ++=.12.正方体和长方体的外接球的直径等与其体对角线长;13.球的体积公式343V R π=,表面积公式24S R π=;掌握球面上两点A 、B间的距离求法:⑴计算线段AB 的长;⑵计算球心角AOB ∠的弧度数;⑶用弧长公式计算劣弧AB 的长. 十.排列组合和概率1.排列数公式:!!()!(1)(1)(,,*)m nn m n m A n n n m m n m n N -=--+=≤∈,当m n =时为全排列!n nAn =.2.组合数公式:(1)(1)()!(1)(2)321m m nnA n n n m C m n m m m m ⋅-⋅⋅⋅--==≤⋅-⋅-⋅⋅⋅⋅⋅,01n n n C C ==.。