电流互感器的原理与作用
- 格式:docx
- 大小:15.00 KB
- 文档页数:1
电流互感器工作原理及特点第三章互感器第2节电流互感器一、电流互感器的工作原理及特点电流互感器是二次回路中,供测量和保护用的电流源。
通过它正确反映电气一次没备的正常运行和故障情况下的电流。
目前农村配电网中均采用电磁式电流互感器(用字母TA表示)。
其特点是:一次绕组串联在电路中,并且匝数很少;一次绕组中的电流完全取决于被测电路的负荷电流,而与二次电流大小无关;电流互感器二次绕组所接仪表和继电器电流线圈阻抗很小所以在正常情况下,电流互感器在接近短路状态下运行。
电流互感器一、二次额定电流之比,称为电流互感器的额定互感比,即Ki=I1e/I2e。
LZZJ-10 LA-10Q LCWD-10500kV断路器及TA电流互感器工作原理二、电流互感器的误差电流互感器的等值电路及相量图,如图所示。
图中以二次电流I2为基准,画在第一象限水平轴上,即I2初相角为0。
二次电压U2较I2超前二次负荷功率因数角Ψ2,E2超前I2二次总阻抗角a。
铁芯磁通φ超前E290℃。
励磁磁势I0N1对φ超前铁芯损耗角Ψ。
根据磁势平衡原理I1N1?I2N2?I0N1和相量图可知,一次通过的实际电流与二次电流测量值乘以额定互感比以后所得的值在数值和相位上都有差异,即有测量误差。
这是由于电流互感器存在励磁损耗和磁饱和等而引起的。
这种误差,通常用电流误差和角误差(相对误差)来表示,其定义如下:电流误差为二次电流测量值乘额定互感比所得的值与实际一次电流之差,以后者的百分数表示,即?fi?kii2i1?100%i1由磁势平衡方程可知,当励磁损耗很小时, I1I2?KN?N2N1 ,所以上式也可以写成:IN?I1N1fi?22?10000I1N1?角误差为二次电流相量旋转180后与一次电流相量所夹的角,并规定?I2?超前I1?时,角误差为正值;反之,为负值。
当误差角很小时,上式也可写成:fi??I0N1sin(???)?100%I1N1角误差的公式如下:?i?sin?iI0N1cos(???)?3440分 I1N1三、电流互感器的运行参数对误差的影响如前所述,电流互感器的误差主要由励磁损耗和磁饱和等因素而引起。
电子式电流互感器原理
电子式电流互感器利用负载中的电流通过主线圈产生磁场,再由副线圈感应到的原理来测量电流。
其工作原理如下:
1. 工作原理:
电子式电流互感器由主线圈、副线圈、铁芯以及信号处理电路等部分组成。
当负载中有电流通过时,主线圈中会建立一个磁场。
2. 磁场感应:
主线圈产生的磁场会传导到副线圈中,副线圈中感应到的磁场与主线圈中的磁场方向相反,通过副线圈的磁场感应电流。
3. 信号处理:
通过增益放大器等信号处理电路将感应到的电流进行放大和滤波处理,然后将结果输出给后续的电路或设备进行处理或显示。
4. 铁芯的作用:
铁芯的存在可以加强磁场的传导效果,从而提高互感器的灵敏度和准确性。
5. 特点:
电子式电流互感器具有体积小、重量轻、精度高、能耗低的特点,适用于各种工业自动化控制系统中的电流测量和保护。
需要注意的是,在文中不能使用与标题相同的文字,以避免重复。
以上是电子式电流互感器的工作原理和特点的简要描述。
电流互感器的原理
电流互感器是一种用于测量电流的装置,它通过感应电流产生的磁场来实现电流的测量。
电流互感器的原理主要基于电磁感应和变压器的工作原理。
首先,电流互感器内部包含一个主线圈和一个副线圈。
当被测电流通过主线圈时,产生的磁场会通过铁芯传导到副线圈中,从而在副线圈中感应出一个与主线圈中电流成比例的电流。
这种通过电磁感应产生的副线圈中电流被称为次级电流,它与主线圈中的电流成一定的比例关系。
其次,电流互感器的工作原理还涉及到变压器的原理。
因为主线圈和副线圈通过铁芯连接,所以在电流互感器中也存在着变压器的作用。
主线圈中的电流产生的磁场会通过铁芯传导到副线圈中,从而在副线圈中感应出一个次级电流。
由于主线圈和副线圈的匝数不同,所以副线圈中的电流会与主线圈中的电流成一定的比例关系,这就实现了电流的测量。
除此之外,电流互感器还通过一些辅助电路来实现电流的测量和输出。
这些辅助电路可以对副线圈中的电流进行放大、滤波和线性化处理,从而得到准确的电流测量数值。
总的来说,电流互感器的原理基于电磁感应和变压器的工作原理,通过主线圈和副线圈之间的磁场耦合来实现电流的测量。
它具有结构简单、测量精度高、安全可靠等特点,在电力系统、工业自动化等领域得到了广泛的应用。
希望通过本文的介绍,能够让读者对电流互感器的原理有更深入的了解。
电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进展直接测量。
互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。
电流互感器作用及工作原理电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流〔我国标准为5安倍〕,以供测量和继电保护只之用。
大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。
则为了能够对这些线路的电路进展监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。
有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个"钳〞便是穿心式电流互感器。
电流互感器的构造如下列图所示,可用它扩大交流电流表的量程。
在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。
电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。
原线圈串接在待测电路中时,它两端的电压降极小。
副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。
由于I1/I2=Ki〔Ki称为变流比〕所以I1=Ki*I2由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比Ki之乘积。
如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。
电流互感器次级电流最大值,通常设计为标准值5A。
不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。
电流互感器和电压互感器的结构原理及作用电流互感器(Current transformer 简称CT)电气符号:TA电流互感器的原理:电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而电流互感器变换的是电流罢了。
电流互感器接被测电流的绕组(匝数为N1),称为一次绕组(或原边绕组、初级绕组);接测量仪表的绕组(匝数为N2)称为二次绕组(或副边绕组、次级绕组)。
电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
电流互感器的结构:电流互感器是由闭合的铁心和绕组组成。
它的一次侧绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。
电流互感器的作用:电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路。
在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。
为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。
电流互感器就起到电流变换和电气隔离作用。
需掌握电流互感器的相关知识:准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。
为了保证准确度误差不超过规定值电流互感器 - 使用注意事项电流互感器运行时,副边不允许开路。
因为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。
因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。
电流互感器运行时,副边不允许开路。
电流互感器的作用和原理
电流互感器是测量高电流的一种电器元件,其作用是将高电流转换为与之成比例的低电流,方便进行测量和监控。
其原理是基于电磁感应定律,通过在电流互感器的磁芯中产生磁场,使被测电流的变化产生反应并转换为次级线圈中的电压。
具体原理如下:
1. 线圈:电流互感器内部有一个主线圈和一个次级线圈。
主线圈绕在铁芯上,被测电流通过主线圈,形成主磁场。
2. 磁芯:电流互感器的铁芯是由磁导率高的材料制成,如铁、硅钢等。
铁芯起到增强和引导磁场的作用,使其能够有效地感应次级线圈中的电压。
3. 次级线圈:主磁场的变化会在磁芯中感应出次级电流,次级电流在次级线圈中产生电压。
次级线圈通常是由细导线绕成,绕制成比主线圈匝数更多的线圈,以增加电压的变化比例。
4. 变比:电流互感器的变比是次级线圈匝数与主线圈匝数的比值。
通过适当选择匝数比,可以实现将高电流转换成相对较低的电压量,方便进行测量和监控。
综上所述,电流互感器通过电磁感应定律将高电流转化为低电流,并利用变比使测量更加方便和准确。
它广泛应用于电能计量、电力系统保护、电力负荷管理等领域。
电流互感器的工作原理电流互感器是一种广泛应用于电力系统中的电力测量仪器。
它通过对电流的变换和测量,能够提供准确的电流信号,并将其传递给继电保护设备或仪表。
一、电流互感器的基本结构电流互感器主要由铁芯、一次绕组、二次绕组和防护外壳等部分组成。
1. 铁芯铁芯是电流互感器的核心部分,其主要用途是提供磁通通路,确保一次绕组和二次绕组之间能够有效地感应电磁感应。
2. 一次绕组一次绕组是电流互感器中负责承载被测电流的线圈,它与被测电流直接相连,并通过电流在其上产生的磁场来感应二次绕组。
3. 二次绕组二次绕组是电流互感器中负责输出测量信号的线圈,它与继电保护设备或仪表相连,将通过一次绕组感应的电磁场转换为相应的电流信号输出。
4. 防护外壳防护外壳是用来保护电流互感器内部结构的,通常由绝缘材料或金属材料制成,能够对内部零部件起到良好的保护作用。
二、电流互感器的工作原理电流互感器的工作原理基于法拉第电磁感应定律。
当一次绕组中的电流通过时,产生的磁场会穿过铁芯并感应到二次绕组中。
根据法拉第电磁感应定律,磁通的变化会在二次绕组中产生感应电动势。
根据电磁感应定律,感应电动势的大小与磁通的变化率成正比。
因此,如果被测电流越大,一次绕组中产生的磁通量就越大,感应到二次绕组的感应电动势也就越大。
为了保证电流互感器的准确性和安全性,在一次绕组和二次绕组之间需要有一个适当的变比关系。
这个变比通常由互感器的额定变比来确定。
例如,如果一个电流互感器的额定变比为1000:5,那么它将会将1000安培的一次电流变换为5安培的二次电流输出。
三、电流互感器的应用领域电流互感器在电力系统中有着广泛的应用。
它主要用于以下几个方面:1. 电流测量和保护电流互感器能够将高电流值变换为适合测量和保护装置的低电流值,有效降低了与高电流相关的测量和保护器件的成本和复杂度。
2. 功率测量和补偿电流互感器能够提供准确的电流信号,用于计算电路的有功功率、无功功率和视在功率。
电流互感器的作用及原理
电流互感器(Current Transformer,简称CT)是一种用来将高
电流变为可以方便测量和保护的小电流的装置,主要用于电力系统中的电流测量、保护和控制等应用。
其主要作用有以下几个方面:
1. 电流测量:电流互感器可以将高电流变为相对较小的次级电流,使得电流可以通过电流表、计算机监测系统等装置进行测量和监测,方便实时获得电流的数值。
2. 绝缘保护:电流互感器在高电流电路中起到隔离的作用,可以将高压电路与低压电路相隔离,保护操作人员和设备的安全。
3. 过流保护:电流互感器可用于电力系统中的过流保护,当电流超过额定值时,电流互感器会产生电流信号,触发保护装置进行对相应设备或线路的断电保护。
4. 故障检测:电流互感器用于电力系统中的故障检测,当发生短路或其他故障时,电流互感器可感应到异常电流信号,触发保护装置进行处理。
电流互感器的工作原理如下:
电流互感器是基于电磁感应原理工作的。
电流互感器主要由铁芯和绕组构成。
高电流通过电流互感器的一侧线圈(一次侧),铁芯产生强磁场。
磁场的变化穿过另一侧线圈(二次侧),在二次侧感应出相应的次级电流,在二次侧线圈中可以通过电流
表等装置进行测量和监测。
电流互感器通常具有多个一次侧线圈和二次侧线圈,可以根据需要选择合适的线圈进行连接和使用。
根据电流互感器的类型和设计,可以实现不同的变比,从而适应不同的电流测量和保护需求。
电流互感器在电力系统中的作用1. 引言大家好,今天我们聊聊电力系统中一个不太显眼但超级重要的家伙——电流互感器。
说到电力,很多人脑海中可能浮现出高压电线、变电站,甚至电流表的那些复杂图案。
但其实,在这些“高大上”的设备背后,藏着一位默默奉献的英雄,那就是电流互感器。
它的作用就像厨房里的调料,不见得引人注目,但缺了它,整道菜就没味道。
2. 电流互感器的基本概念2.1 什么是电流互感器?电流互感器,顾名思义,就是把大电流转变为小电流的一种设备。
想象一下,你在家里用的电器,虽然它们的功率可能很高,但为了保护电路,我们需要用小电流来进行监测和控制。
电流互感器就像个聪明的小助手,把那些巨大的电流“缩小”,让我们轻松掌握电流的“脉搏”。
2.2 为啥要用电流互感器?那我们为什么要用它呢?首先,它能有效保护设备和线路,防止过载。
试想,如果没有它,电流就像一头发狂的牛,随便冲撞,后果可想而知。
而电流互感器就像那位温文尔雅的牛仔,稳稳地控制住局面,让电流在安全的范围内行驶。
其次,它还能提供准确的电流信息,帮助我们实时监控电力系统的运行状态,确保一切正常。
3. 电流互感器的作用3.1 保护电力设备说到保护设备,咱们可不能小看电流互感器的作用。
它的工作原理其实很简单,电流互感器通过变比的方式,把一次侧的大电流转化为二次侧的小电流,然后这个小电流就可以被各种保护装置和测量仪器所接受了。
这就像是把大象变成小猫,大家都能轻松应对,谁还怕呢?3.2 提高系统的安全性而且,电流互感器还能够提高系统的安全性。
在电力系统中,一旦出现故障,电流互感器能迅速感知到,并通过相关的保护装置进行切断,避免更大的损失。
这就像是你在开车的时候,突然刹车系统亮灯了,那可得立马减速,不然就麻烦了。
电流互感器就像你车上的安全气囊,确保你在关键时刻不会“飞出去”。
3.3 监测和计量此外,电流互感器还是监测和计量的重要工具。
它能将电流的变化实时反馈到控制系统,帮助我们了解电力的使用情况。
电流互感器饱和波形1. 什么是电流互感器?电流互感器(Current Transformer,简称CT)是一种用来测量高电压电流的装置。
它通过将高电压线路中的电流转换为低电压,使得测量和保护设备能够安全、准确地进行工作。
2. 电流互感器的原理电流互感器基于法拉第定律和磁感应定律,利用线圈的磁场与被测电流的磁场相互作用来实现电流的测量。
具体来说,电流互感器由一个一次线圈(主线圈)和一个二次线圈组成。
一次线圈串联在被测电路中,当通过被测电路的电流发生变化时,一次线圈中产生的磁场也随之变化。
这个磁场将通过铁芯传导到二次线圈中,从而在二次线圈中诱导出一个与一次线圈中磁场变化成正比的信号。
3. 什么是饱和?在物理学中,当一个系统达到其能力极限时,无法再继续响应外部激励或输入时,被称为饱和。
在电流互感器中,饱和是指当被测电流过大时,导致互感器无法准确地进行电流测量的现象。
4. 电流互感器的饱和波形当被测电流超过电流互感器的额定测量范围时,会导致电流互感器发生饱和。
这种情况下,电流互感器的输出波形将出现明显的失真。
饱和波形通常表现为波形扁平化或削峰现象。
具体来说,在正半周中,波形会出现上升缓慢、平顶、下降急剧的特点;而在负半周中,波形会出现下降缓慢、平底、上升急剧的特点。
这种失真会导致测量误差增大,严重时甚至可能无法正确地测量电流值。
5. 饱和原因及影响因素5.1 饱和原因•超过额定测量范围:当被测电流超过电流互感器的额定测量范围时,将导致饱和。
•高频干扰:高频干扰信号会对电流互感器的测量造成影响,可能导致饱和。
•非线性磁芯:电流互感器使用的磁芯材料存在非线性特性,当被测电流较大时,非线性效应会导致饱和。
•磁通密度过高:当磁通密度达到磁芯材料的饱和磁感应强度时,将导致饱和。
5.2 影响因素•频率:电流互感器的饱和特性随着频率的增加而变化。
一般来说,高频信号更容易导致饱和。
•负载:电流互感器的负载对饱和特性有一定影响。
电流互感器的原理和接线图电流互感器的作用:从通过大电流的电线上,按照一定的比例感应出小电流供测量使用,也可以为继电保护和自动装置提供电源。
举例说明:比如说现在有一条非常粗的电缆,它的电流非常大。
如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。
由于它非常粗,电流非常大,需要规格很大的电流表。
但是实际上是没有那么大的电流表,因为电流仪表的规格都5A以下。
那怎么办呢?这时候就需要借助电流互感器了。
先选择合适的电流互感器,然后把电缆穿过电流互感器。
这时电流互感器就会从电缆上感应出电流,感应出来的电流大小刚好缩小了一定的倍数。
把感应出来的电流送给仪表测量,再把测量出来的结果乘以一定的倍数就可以得到真实结果。
我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
01 测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
(1)普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
(2)穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
02 电流互感器接线图电流互感器接线总体分为四个接线方式:(1)单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
(2)三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(3)两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
简述电流互感器的原理和作用
电流互感器的原理是利用电磁感应的原理,将高电流通过互感器的线圈产生磁场,从而在次级线圈中感应出低电流信号。
电流互感器的主要组成部分是铁芯和线圈,铁芯是由高导磁率的材料制成,线圈则是绕在铁芯上的导线。
电流互感器的作用是将高电流变成低电流,以便于测量和控制。
在电力系统中,电流互感器可以将高电流变成低电流,从而减少对测量和控制设备的负担,同时也可以提高电力系统的安全性和可靠性。
电流互感器广泛应用于电力系统中,包括变电站、发电厂、输电线路等。
在变电站中,电流互感器用于测量和控制变压器的电流,从而保证变压器的正常运行。
在发电厂中,电流互感器用于测量和控制发电机的电流,从而保证发电机的安全和稳定。
在输电线路中,电流互感器用于测量和控制电力系统的电流,从而保证电力系统的安全和可靠。
电流互感器电流互感器原理是依据电磁感应原理的。
电流互感器是由闭合的铁心和绕组组成。
它的一次绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。
基本介绍·作用电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A 的电流转变为5A的电流。
·使用1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联2)按被测电流大小,选择合适的变化,否则误差将增大。
同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。
电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危机工作人员的安全及仪表的绝缘性能。
另外,一次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。
因此,电流互感器二次侧都备有短路开关,防止一次侧开路。
在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。
一切处理好后方可再用。
4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。
对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。
电流电压互感器的原理和作用
电流电压互感器是一种用于测量电流或电压的电气检测设备,主
要用于保护继电器和电力仪表。
它的原理是根据法拉第电磁感应定律,利用感应线圈和铁芯对电流或电压进行感应,将其转换为标准的信号
输出。
在电力系统中,电流电压互感器常常被用来将高电压(例如
110kV、220kV)降为较低的电压,以便用于中小型电器设备的测量和
保护。
同时,电流电压互感器还可以用来进行电力系统的无功补偿。
因此,电流电压互感器是电力系统中一个非常重要的元件,其作用在
电站、变电站、电缆配电等电力应用中均有广泛的应用。
讲师:靳红波
徒弟:马富敏胡振敏
内容:电流互感器的原理与作用
1、电流互感器的工作原理
电流互感器是电力系统中很重要的电力元件,作用是将一次高压侧的大电流通过交变磁通转变为二次电流供给保护,测量,虑波,计度等使用,本局所用电流互感器二次侧额定电流均为5A,也就是铭牌上标注为100/5、200/5等,表示一次侧如果100A或者200A电流,转换到二次侧电流就是5A。
电流互感器在二次侧必须有一点接地,目的是防止俩侧绕组的绝缘击穿后一次高压引入二次回路造成设备与人身伤害。
同时电流互感器也只能有一点接地,如果有俩点接地,电网之间可能存在的潜电流会引起保护等设备的不正确动作。
在一般的电流回路中都是选择在该电流回路所在的端子箱接各个比较电流都在各自的端子箱接地,有可能由于地网的分流从而影响工作。
所以对于差动保护规定所有电流回路都在差动保护屏一点接地。
电力系统中广泛采用的是电磁式电流互感器(简称电流互感器)它的工作原理和和变压器相似。
电流互感器的原理接线电流互感器的特点:(1)一次线圈串联在电路中,并且匝数很少,因此一次线圈中的电流而与二次电流无关等。
1、电流互感器不满足10%误差时,可采取哪些措施?
(1)增大二次电缆截面
(2)将同名相两组电流互感器二次绕组串联
(3)改用饱和倍数较高的电流互感器
2、为什么不允许电流互感器长时间过负荷运行?
答:电流互感器长时间过负荷运行,会使误差增大,表计指示不正确。
另外,由于一、二次电流增大,会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器。
3、什么电压互感器和电流互感器的二次侧必须接地?
答:电压互感器和电流互感器的二次侧接地属于保护接地。
因为一、二次侧绝缘如果损坏,一次侧高压串到二次侧,就会威胁人身和设备的安全,所以二次则必须接地。
在平时的实践中注意认真学习,才能真正的掌握这些理论知识,以及亲自动手实践。
通过这短时间的培训、增加了徒弟们的团队合作精神、提高了徒弟们的动手能力。