(完整版)7-6旋转曲面和二次曲面解析
- 格式:ppt
- 大小:1.30 MB
- 文档页数:12
旋转曲面、柱面和二次曲面一、旋转曲面定义 一条曲线C 绕一条直线l 旋转所得的曲面称为旋转曲面。
l 称为轴,C 称为母线。
设旋转轴为z 轴,母线C 在yOz 平面上,其方程为⎩⎨⎧==00),(x z y f ,则旋转曲面的方程为0),(22=+±zy x f 。
坐标平面上的一条曲线绕该坐标面上的一条坐标轴旋转所得旋转曲面方程的求法:在该曲线在坐标平面上的方程中,保留与旋转轴同名的变量不动,而把另一个变量换成与旋转轴不同名的另两个变量的平方和的平方根。
例1 母线⎩⎨⎧==02:2x pzy C 绕z 轴旋转所得的旋转曲面方程为pz y x 222=+,这个曲面称为旋转抛物面。
例 2 母线⎪⎩⎪⎨⎧==-01:2222y c z a x C 绕z 轴旋转所得旋转曲面方程为122222=-+c z a y x ,这个曲面称为旋转单叶双曲面;绕x 轴旋转所得旋转曲面方程为122222=+-cz y a x 这个曲面称为旋转双叶双曲面。
二、柱面定义 一条直线l 沿着一条空间曲线C 平行移动所形成的曲面称为柱面。
l 称为母线,C 称为准线。
定理 在空间直角坐标系中,只含两个元的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元的同名坐标轴。
椭圆柱面:12222=+b y a x 双曲柱面:12222=-by a x 抛物柱面:px y 22=三、二次曲面(1) 椭圆锥面:22222z b y a x =+ (2) 椭球面:1222222=++cz b y a x(3) 单叶双曲面:1222222=-+c z b y a x (4) 双叶双曲面:1222222=--cz b y a x(5) 椭圆抛物面:z b y a x =+2222 (6) 双曲抛物面:z by a x =-2222。
旋转曲面知识点总结一、旋转曲面的概念旋转曲面是通过将一个曲线或者一个封闭曲线绕着某个轴进行旋转而形成的曲面。
简单来说,就是用一个曲线或者曲线围成的区域来绕着一条直线或者曲线旋转,就可以得到一个旋转曲面。
通常来说,绕直线旋转得到的曲面称为旋转抛物面,绕曲线旋转得到的曲面称为旋转曲线面。
二、旋转曲面的性质1. 旋转曲面是旋转对称的。
这意味着旋转曲面上的每一点都具有旋转对称性,即曲面上的任意一点和以曲面为轴的旋转曲面上的另一点关于曲面旋转中心对称。
2. 旋转曲面具有定向性。
这表示曲线或者曲线围成的区域旋转后得到的曲面具有确定的方向。
3. 旋转曲面是连续的。
这就是说曲线或者曲线围成的区域绕着轴旋转后,曲面上的点是连续的,并且形成了一个完整的曲面。
三、旋转曲面的参数方程求解旋转曲面的参数方程通常可以分为两种情况:一种是绕直线旋转得到的旋转抛物面,一种是绕曲线旋转得到的旋转曲线面。
1. 绕直线旋转得到的旋转抛物面设直线为z轴,旋转曲面为曲线y=f(x)绕z轴旋转得到的曲面。
则可得到参数方程如下:x = r*cosθy = r*sinθz = f(r)其中,r为y轴到曲线f(x)的距离(注意r与polar coordinates中的r不同,不要混淆),θ为极角。
2. 绕曲线旋转得到的旋转曲线面如果是曲线y=f(x)绕曲线y=g(x)旋转得到的曲面,则参数方程如下:x = g(x)*cosθy = g(x)*sinθz = f(x)其中,g(x)是旋转曲线的参数方程,f(x)是曲面的参数方程,θ为极角。
四、旋转曲面的表面积和体积1. 旋转曲面的表面积计算旋转曲面的表面积通常可以使用定积分进行求解。
对于绕x轴旋转得到的曲面,表面积的计算公式如下:S = 2π∫a^b f(x)*sqrt(1+(f'(x))^2)dx对于绕y轴旋转得到的曲面,表面积的计算公式如下:S = 2π∫c^d x*g(x)*sqrt(1+(g'(x))^2)dx2. 旋转曲面的体积计算旋转曲面的体积同样可以使用定积分进行求解。
第四章柱面·锥面·旋转曲面与二次曲线教学目的:1.掌握消去参数法,能运用此法熟练地求出一般柱面、锥面、旋转曲面的方程.2.能识别母线平行于坐标轴的柱面方程,顶点在坐标原点的锥面方程,旋转轴为坐标轴的旋转曲面的方程.掌握求这些特殊位置的特殊曲面方程的方法,并能识别曲面的大致形状.3.掌握平行截线法,能运用此法讨论二次曲面的方程,认识曲面的形状.4.掌握椭球面、双曲面与抛物面的标准方程与主要性质.5.了解单叶双曲面与双曲抛物面的直纹性,并能掌握求直母线的方法.6.能根据给定条件,较准确地作出空间区域的简图.重点难点:1.柱面、锥面、旋转曲面的定义和一般方程的求法是重点,寻找柱面、锥面、旋转曲面的准线是难点.2. 椭球面、双曲面与抛物面的标准方程、性质与形状是重点,一般二次曲面方程的灵活多样是难点.3.二次直纹面的性质及直母线方程求法是重点,证明单叶双曲面与双曲抛物面的一些性质难点.4.空间区域的作图是重点,其中在作空间区域时,分析并作出几个曲面的交线是难点.§4.1柱面一. 柱面的定义空间中由平行于定方向且与定曲线相交的一族平行直线所产生的曲面叫柱面.柱面的方向:定方向;准线:定曲线;母线:一族平行线中的每一条直线.柱面由其准线和定方向唯一确定,但对于一柱面,准线不唯一.二.柱面的方程在空间直角坐标系下,柱面准线方程(1) 母线的方向数X,Y,Z.即(2) 任取柱面准线上一点则过此点的母线方程为且有,.从而消去参数最后得到一个三元方程,这就是以为准线, 母线的方向数X,Y,Z的柱面方程.三.例题讲解例1.柱面的准线方程为母线的方向数为-1,0,1.求这柱面的方程.解设是准线上的点,那么过的母线为, 且(1)设,那么,, 代入(1)得可得,即求得柱面方程为.例 2. 已知圆柱面的轴为,点(-1,-2,1)在此圆柱上, 求这柱面的方程.解法一因为圆柱面的母线平行于其轴,所以母线的方向数即为轴的方向数-1,-2,-2.若能求出圆柱面的准线圆,问题即解决了.空间的圆总可以看成是某一球面与一平面的交线, 此圆柱面的准线圆可以看成是以轴上的点(0,-1,-1)为中心, 点(0,-1,-1)到已知点(-1,-2,1)的距离为半径的球面与过知点(-1,-2,1)且垂直于轴的平面的交线,即准线圆的方程为设为准线圆上的点,那么,且过的母线为.消去参数即得所求的圆柱面方程.解法二将圆柱面看成是动点到轴线等距离的点的轨迹,这里的距离就是圆柱面的半径.轴的方向矢量为,轴上的定点为,而圆柱面上的点为,所以,因此到轴的距离为再设为圆柱上任意点,那么有即化简整理得.定理4.1.1 在空间直角坐标系中,只含两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。
旋转曲面方程总结旋转曲面是指由平面曲线绕着某一直线旋转而形成的曲面。
在三维空间中,旋转曲面具有很多重要的应用,例如在机械制造、建筑设计和工程计算等领域中都有广泛的应用。
因此,掌握旋转曲面的方程及其性质对于理解和解决实际问题具有重要意义。
一、旋转曲面的方程1. 绕x轴旋转当平面曲线y=f(z)绕x轴旋转时,所得到的旋转曲面方程为:x^2+y^2=f(z)^2其中,z表示平面曲线上任意一点到x轴的距离。
2. 绕y轴旋转当平面曲线x=f(z)绕y轴旋转时,所得到的旋转曲面方程为:x^2+y^2=f(z)^2其中,z表示平面曲线上任意一点到y轴的距离。
3. 绕斜轴旋转当平面曲线y=f(x)绕斜轴y=kx(k≠0)旋转时,所得到的旋转曲面方程为:(x-kz)^2+y^2=f(z)^2其中,z表示平面曲线上任意一点到斜轴的距离。
二、旋转曲面的性质1. 对称性旋转曲面具有轴对称性,即绕旋转轴对称后仍然保持不变。
2. 曲率旋转曲面的曲率与平面曲线在相应点的曲率有关,具体而言,当平面曲线在某一点处的切线与旋转轴垂直时,该点处的曲率最大;当平面曲线在某一点处的切线与旋转轴平行时,该点处的曲率为0。
3. 面积和体积设平面曲线y=f(z)绕x轴旋转一周所得到的旋转曲面为S,则其表面积为:S=2π∫f(z)√(1+f'(z)^2)dz设平面曲线y=f(x)绕斜轴y=kx(k≠0)旋转一周所得到的旋转曲面为S,则其体积为:V=π∫f(x)^2dx4. 其他性质除了上述性质之外,还有许多其他重要的性质。
例如,如果将一个圆形绕着其直径旋转,则所得到的是一个球体;如果将一个矩形绕着其中一条边旋转,则所得到的是一个圆柱体等等。
总之,旋转曲面是一类非常重要的曲面,在工程计算、建筑设计和机械制造等领域中具有广泛的应用。
通过掌握旋转曲面的方程及其性质,可以更好地理解和解决实际问题。