重复测量设计的方差分析
- 格式:ppt
- 大小:695.50 KB
- 文档页数:15
心理学统计第五部分重复测量方差分析在心理学研究中,有时候研究者需要评估一个或多个因素对参与者的多个测量结果的影响。
这种情况下,重复测量方差分析(Repeated Measures Analysis of Variance,简称为RM ANOVA)是一种常用的统计方法。
重复测量方差分析是一种比较多个组内变量平均数差异的方法,它比较了每个组内变量的差异以及每个组间变量的差异。
与传统的方差分析不同,重复测量方差分析考虑了相同参与者在不同条件下的多次测量结果,因此能够更准确地评估因素对测量结果的影响。
首先,我们需要明确的是,在重复测量方差分析中,我们的因变量是一个连续的测量结果,而自变量是一个或多个处理条件。
例如,我们可能想要评估一个新药物是否对人们的注意力产生影响,我们可以将注意力测量结果作为因变量,而药物与安慰剂作为自变量。
重复测量方差分析有三个基本的假设。
首先,我们假设不同处理条件下的测量结果的总平均数相等,即每组的平均值相等。
其次,我们假设各个处理条件下的测量结果有一定的方差。
最后,我们假设不同处理条件下的测量结果相互独立。
重复测量方差分析有一些优点和注意事项。
首先,这种方法可以减少误差变异,因为我们可以通过比较同一参与者在不同条件下的测量结果来消除参与者间的差异。
其次,重复测量方差分析可以提高统计功效,以便检测到小的差异。
然而,我们需要注意确保多次测量结果之间的独立性,以及在数据分析中正确处理可能的违反方差齐性和正态分布的情况。
总结起来,重复测量方差分析是一种常用的心理学统计方法,用于评估一个或多个因素对参与者的多个测量结果的影响。
它是一种有效的方法,可以提供关于不同处理条件之间差异的信息。
在分析数据时,我们需要检查数据的正态性和方差齐性,并使用适当的修正方法来应对违反这些假设的情况。
重复测量方差分析为心理学研究提供了一个强有力的统计工具,使得研究者能够更好地理解和解释影响行为和心理过程的因素。
第六章方差分析(五)[测量实验设计的方差分析一、重复测量的方差分析(一)重复测量实验设计的相关含义⑴重复测量实验设计的定义又叫:被试内设计、受试者内设计、单组实验设计、相关样本设计。
是每个被试或每组被试必须接受自变量的所有情况的处理(每个被试接受所有的实验处理水平或处理水平的结合)。
由于被试的行为是重复测量的,所以被试内实验设计也称重复测量实验设计。
(2)重复测量设计的基本原理每个被试者参与所有的实验处理,然后比较相同被试者在不同处理下的行为变化。
这种实验设计下的同一被试者既为实验组提供数据,也为控制组提供数据。
因此,被试者内设计无需另找控制组的被试者。
被试内设计不但节省了被试人数,而且不同组的被试个体差异也得到了最好的控制,被试内设计比被试间设计更有力,能更好的考察实验组和控制组之间的差异,这个优点使得许多研究者更倾向于使用被试内设计。
和被试间设计相反,被试内设计不会受到来自被试个体差异的困扰但却必需面对实验处理之间相互污染的问题。
可以采用平衡技术来控制这些差异。
(3)使用重复测量设计的主要目的重复测量实验设计的目的是所有被试自已做控制,使被试的各方面特点在该因素所有水平上保持恒定,克服被试间设计中存在的被试不同质的问题,以最大限度地控制由被试的个体差异带来的变异。
如果实验者主要想研究一个被试者对实验处理所引起的行为上的变化,一般可以考虑采用被试者内设计。
(二)重复测量实验设计的方差分析的条件重复测量实验设计方差分析是一般方差分析的深化,也具有正态性、变异的可加性和方差齐性等先决条件,还要求各重复测量数据组成的协方差矩阵满足球形性假设。
博克斯指出,若球状性假设得不到满足,则方差分析的F值是有偏的,会增加犯I类错误的可能。
(三)重复测量实验设计的方差分析的过程①建立检验假设;②计算离差平方和与均方;③进行F检验;④列出方差分析表。
二、单因素重复测量的方差分析(一)重复测量实验设计的基本方法实验中每个被试接受所有的处理水平。
重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。
通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。
本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。
2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。
在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。
为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。
通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。
3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。
•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。
•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。
如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。
4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。
具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。
步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。
步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。
ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。
ε ˆ 的取值在 1.0 与 1/(a -1)之间。
ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。
具体计算时可用或ε 代替。
用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。
由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。
这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。
1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。
研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。
ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。
1.重复测量数据的主要特征是什么?答:(1)重复测量设计中“处理”是在区组(受试者)间随机分配,区组内的备时间点是固定的,不能随机分配。
(2)重复测量设计区组内实验单位彼此不独立。
在医学研究中.常见的情况是每个受试者的某项指标重复测量若干次,如住院患者人院后定期测量的体温、血压等。
同一受试者的重复测量结果通常高度相关,而且越相邻的数据相关性越高。
2.前后测量设计、设立对照的前后测量设计为什么不等同于配对设计和随机区组设计?答:(l)前后测量设计不能同期观察试验结果,虽然可以在前后测量之间安排处理,但本质上比较的是前后差别,推论处理是否有效是有条件的,即假定测量时间对观察结果没有影响。
配对设计中同一对子的两个实验单位可以随机分配处理,两个实验单位同期观察试验结果,可以比较处理组间差别。
(2)前后测量设计前后两次观察结果通常与差值不独立,大多数情况第一次观察结果与差值存在负相关的关系。
配对t检验和随机区组设计要求同一区组的实验单位的观察结果相互独立。
3.重复测量设计、随机区组设计、两因素析因试验三者有何联系与区别?答:(1)联系:在数据处理时,三者都采用两因素方差分析。
(2)区别:实验设计和处理的分配方式不同。
重复测量设计在区组间随机分配处理,随机区组设计在区组内随机分配处理,两因素析因试验有两个干预因素,每个试验单位只接受一种处理。
重复测量设计与方差分析重复测量设计医学与卫生研究领域,尤其是临床医学中十分常见的一种实验设计方法,其显著特点是同一实验单位(如人、动物、实验室样品)的某一观察指标在不同的场合(最常见的场合是时间)多次被反复观测。
按重复测量设计进行实验而获得的数据被称为重复测量数据(repeated measures data)。
如果重复测量的场合是几个不同的时间点,则重复测量数据又称为追踪数据或纵向数据(longitudinal data),医学科研中经常遇到的便是这种重复测量数据。
重复测量数据的统计分析方法众多且较复杂,常用的分析方法有考虑重复测量因素效应的单变量方差分析(univariate analysis of variance,ANOV A)、轮廓分析(profile analysis)、多变量方差分析(multivariate analysis of variance,MANOV A)、正交多项式回归分析模型以及混合效应模型(mixed effect models)也称多水平模型(multilevelmodels)或随机效应模型(random effect models)等,其中轮廓分析、多变量方差分析、正交多项式回归分析模型和混合效应模型的计算繁杂,有赖于专业软件(如SAS、SPSS、MLn)的应用。
第十五章重复测量设计的方差分析通过学习本章,您可以了解:●进行重复测量设计的方差分析的前提假设●如何逐步进行重复测量设计的方差分析●如何进行简单效应分析和多重比较。
在重复测量设计中,每个被试需接受所有水平的实验处理,即同一因变量先后被观测多次。
用于区分各个实验水平的变量通常是定性变量(Qualitative Variable),顺序变量或名义变量均可,SPSS称之为重测因素,或被试内因素。
被观测的因变量必须是数量变量(Quantitative Variable)。
单因素的重复测量设计只包括一个被试内因素。
多因素的重复测量设计可以有多个被试内因素或被试间因素。
本章将重点介绍单因素重复测量设计的方差分析过程,以及简单介绍多因素重复测量设计的分析思路。
在使用SPSS处理重复测量设计(被试内设计)的数据时,其数据的组织方式不同于被试间设计。
在数据窗口中不需要定义自变量和因变量。
对于单因素设计,数据文件中变量的个数等于自变量(因素)的水平;对于多因素设计,变量的个数等于因素之间的水平组合数。
而且变量的性质都是连续型变量。
在进行方差分析的过程中,需要对因素的个数及变量间的关系进行定义。
1. 前提假设如果被试内因素只有两个水平,则Repeated Measure执行一次标准的一元方差分析。
如果被试内因素有两个以上的水平,则执行三种检验:标准一元方差分析、备选的一元方差分析和多元方差分析。
事实上,三种分析检验的零假设相同,即因素各水平上的均值相同。
但具体采用哪一种分析的结果需要浏览全部三种分析的结果之后才能决定。
当因素水平数超过两个时,需要查看球形假设是否能够满足。
当球形假设可以满足时,可以使用标准一元方差分析的结果。
但是由于球形假设通常无法满足,此时方差分析的显著性水平p值不准确,所以标准一元方差分析在这种情况下并不常用。
备选一元方差分析适用于球形假设(Sephericity Assumption)不满足的情况。
重复测量方差分析1.理论重复测量:指对同一批研究对象先后施加不同的实验(或在不同的场合)进行测量。
重复测量方差分析:研究在不同的实验或(不同场合)之间是否有差异,或条件和处理间交互项是否有差异。
变量应满足:因变量为连续型随机变量,因素为分类变量。
正态性:不同条件下的个体取自相互独立的随机样本,其总体需满足近似正态分布。
方差齐性:不同条件下的总体方差相等。
满足球形假设:因变量的方差-协方差矩阵满足球形交互项项两两比较结果需要借助语法。
图1交互项两两比较语法2.重复测量方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值,后点击分析、一般线性模型、重复测量。
图2重复测量方差分析操作步骤第一步操作步骤第二步:进入图中对话框后首先定义主体因子名及实验次数点击添加,后添加测量名称(先在测量名称框中输入名称、后点击添加)点击定义。
图3定义因子操作步骤第三步:定义完成后进入图中对话框后、先将对应的变量放入对应的变量框中,点击事后比较将因子框内的因子放入事后比较框中,勾选假定等方差(LSD)、不假定等方差(塔姆黑尼),点击继续。
图4事后比较勾选操作步骤第四步:点击选项将因子框中的因子放入平均值框中,勾选描述统计、齐性检验,点击继续、确定。
图5选项勾选然后重复测量方差分析的主体间因子、描述统计、等同性检验、主体内效应检验、主体因子事后比较结果就出来了。
图6描述统计结果图7主体内效应操作步骤第一步:点击分析、一般线性模型、重复测量。
图8操作步骤第一步第二步:点击定义。
图9点击定义第三步:进入图中对话框后,点击粘贴。
图10点击粘贴第四步:进入语法编辑窗:在红色框内放入对应的语法(可参考图中语法进行编辑),后选中语法点击红色框内的绿色箭头。
图11语法编写5.交互项结果然后重复测量方差分析的主体因子和因子交互项的主体内因子、主体间因子、描述统计、博克斯等同性酱油结果就出来了。
图12描述统计主体内效应检验、主体内对比检验、误差方差的莱文等同性检验。