北师大版数学七年级下册第三章复习课 .ppt
- 格式:ppt
- 大小:589.18 KB
- 文档页数:19
素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-3-13抱犊崮,海拔584米,与龟龙湖交融一体,山水相连,壮观巍峨,为天下第一崮.恰值清明假期,小强一家前去踏春,兴之所至,小强用学过的变量的知识绘了一幅图(如图3-3-13)来表示他们当天的行程.其中横轴表示当时的时刻t(时),纵轴表示他们与家的距离s(千米).图3-3-14设疑:同学们,你能想象出他们一天的情境吗?说明:引导学生在欣赏抱犊崮秀丽的美景中,自然引入有趣的变量知识,既培养了学生从图象中获取信息的能力,又锻炼了学生的语言表达能力.建议:学生欣赏抱犊崮的美景,简单了解抱犊崮的有关知识.然后观察小强绘制的图象,从中获取两个变量之间关系的信息,叙述一天情境时,学生还是存在困惑,教师不要急着提示,进而指出这就是本节课要继续学习的内容——用图象表示的变量间关系.复习导入图3-3-15问题1:我们已经学习了哪几种表示变量之间关系的方法?问题2:某种西瓜子每千克2元,小明购买西瓜子的总价y元与购买的数量x千克之间有什么关系?(1)用表格的形式表示总价y与数量x的关系:(2)试写出y与x的关系式__y=2x__;(3)在下面的图象中能够正确表示总价y与数量x关系的图象是(C)图3-3-16说明:让学生通过表格、关系式、图象三种方式来表示西瓜子的总价与购买的数量之间的关系,旨在复习三种表示变量间关系的方法,并初步感受三种方法各自的优越性,为本节课的学习做好铺垫.建议:三种表示变量之间关系的方法可让学生快速回答,然后学生独立完成问题2中的三个题目,教师出示答案,及时纠正.教材母题挖掘74页随堂练习第2题一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?图3-3-17【模型建立】分析变量图形时要明确自变量和因变量,更要清楚每一个点对应的变量和它表示的实际意义以及整个图象变化的趋势,其中比较特殊的是当图象与横轴平行时,说明在对应的自变量的范围内因变量不发生变化.【变式变形】1.如图3-3-18,在直径为AB 的半圆O 上有一动点P 从点A 出发,按顺时针方向绕半圆匀速运动到点B ,然后再以相同的速度沿着直径回到点A 停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是(A )图3-3-18图3-3-19.如图3-3-19,爸爸从家(点O)出发,沿着扇形AOB 上OA →AB ︵→BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列各图中,能大致刻画s 与t 之间函数关系的图象是(C )图3-3-20图3-3-21.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等)又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(时),轮船距万州的距离为y(千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是(C )图3-3-214.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用的时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(A)图3-3-22图3-3-235.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图3-3-23所示,则下列说法正确的是(B)A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多6.小红的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小红爷爷离家的距离y(米)与时间x(分)之间的关系的大致图象是(C)图3-3-24图3-3-257.某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x(吨)之间的关系如图3-3-25所示,根据图象回答:(1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元?(2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费105=2(元);当x =8时,y =20.5,故超过5吨部分每吨交水费20.5-108-5=3.5(元).(2)因为x =3.5<5,所以y =3.5×2=7(元);若交17元水费,则用水5+17-103.5=7(吨).考情考向分析利用图象分析、体现变量变化的趋势结合图象中每个点对应的自变量和因变量,可以得到变量变化的趋势,一般是随着自变量的变大(图象从左向右),图象对应的因变量的值的变化情况(上升为变大,下降为变小).如课本第79页复习题第11题.例1 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是(B )图3-3-26例2 图3-3-27中所反映的过程是:张强从家跑步去体图3-3-27育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是(C )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/时 利用图象给出的信息计算用图象表示变量之间的关系时,每一个点都有一定的实际意义,过图象上一点向横轴作垂线,垂足对应的数就是自变量,向纵轴作垂线,垂足对应的数就是对应的因变量.图3-3-28例王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图3-3-28所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解:(1)根据图象可知王大爷自带的零钱是5元.(2)降价前,每千克土豆的价格是(20-5)÷30=0.5(元).(3)降价前,他一共卖了30千克土豆,手中的钱有20元;降价后,他卖完剩余的土豆,手中的钱有26元,降价后他收入了26-20=6(元),按每千克0.4元卖出,他卖出了6÷0.4=15(千克)土豆,他一共带的土豆有30+15=45(千克).素材四教材习题答案P74随堂练习1.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?解:(3).2.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶. 过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?解:(2).P74习题3.41.根据图3-7填写下面的表格:解:2.亮亮今天发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么发烫了.下面哪一幅图能较好地刻画出亮亮今天体温的变化情况?解:(3).3.下面的图表示小明放学回家途中骑车速度与时间的关系,你能想象出他回家路上的情境吗?解:小亮刚出校门时加速行驶一段后改成匀速行驶,在离家不远处减速行驶,到家后停下.4.小明站在离家不远的公共汽车站等车.图中哪一个图能最好地刻画等车这段时间离家距离与时间的关系?解:(3).图书增值练习专题一曲线型图象1.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.2.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题二折线型图象1.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.【知识要点】图象法:用图象来表示两个变量之间的关系的方法叫做图象法.在用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,图象上每个点都表示自变量和因变量之间的相互关系.【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】1.借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.1.借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.答案:1.(1)4 10(2)10 14 -2 4(3)12(4)4 h~14 h 0 h~4 h和14 h~24 h(5)1℃2.解:(1)对应关系连接如下:(2)当容器中的水恰好达到一半高度时,关系图上T的位置如上图.3.解:(1)A点表示匀速运动,B点表示停止;(2)0到3分钟加速,3到12分钟匀速,速度为90 km/h,12到15分钟减速,减到约每小时20千米,后再匀速到18分钟开始减速,19分钟运动停止.(3)司机休息5分钟后的运动情况如图所示.素材六数学素养提升情景中图象信息题将实际生活中蕴涵的变量关系,用图形的方式呈现出来,图文并茂,富有生活气息,不仅提高我们从图形中获取信息的能力,而且是数形结合思想应用的重要体现,请看举例..例1商店里把塑料凳整齐地叠放在一起,据图1的信息,解答下列问题(1)当有10张塑料凳整齐地叠放在一起时的高度是多少?(2)求叠放塑料凳的个数x(个)与叠放的高度y(cm)之间的变量关系?图1分析:本题是一道图形信息试题,从图形观察可知:三个塑料凳的叠放在一起的高度是29cm,此时的29cm 包括凳子腿的高度和三个凳子面的厚度;五个塑料凳叠放在一起的高度为35cm,此时的35cm包括凳子腿的高度和5个塑料凳面的厚度.由此可知两个凳子面的厚度为35-29=6cm.所以一个凳子面的厚度为3cm,三个凳子叠放在一起高度减去三个凳子面的厚度,即可29-3×3=20为凳子腿的高度.这样可以求解(1),(2)两问.解:(1)观察图形,可得一个凳子面的厚度为3cm,凳子腿的高度为20cm.所以叠放10个凳子的高度为10×3+20=50cm;(2)y与x之间的关系为y=3x+20.评注:解决本题需要仔细观察图形中的数据信息以及塑料凳叠放的特征,根据这些特征确定一个凳子面的厚度以及凳子腿的高度 .例2请根据图2中给出的信息,解答下列问题:图2(1)放入一个小球量筒中水面升高 cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的关系式;(3)量筒中至少放入几个小球时有水溢出?分析:本题是图形信息问题,解决问题需要从图形中正确得到解题信息,从前两个量筒可以观察到,当放入三个球时,水面增加6cm,这样可得到放入一个球水上升的高度,由此可得到放x个球时,水面高度y与x之间的关系式.解: (1)(36-30)÷3=2; 即放入一个小球量筒中水面升高2cm.(2) 放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式y=30+2x(3) 当y=49时,30+2x=49,x=9.5, 所以至少放入10个小球时有水溢出.评注:解决图形信息问题,其关键是认真观察图形中的信息,从图形中发现存在的数量关系.。
七年级下册第三章变量之间的关系复习题(教学设计)教材分析函数是研究世界变化规律的一个重要模型,对它的学习是初中阶段数学学习的一个重要内容。
变量之间的关系是函数概念的一个核心要素。
通过这一章的学习,让学生对变量有一个初步认识,这是学习函数的基础。
现实生活中,存在着大量用变量来描述的数量关系。
这一章把学生从研究不变的量引导到研究变量之间的相依关系方面;把知识的学习置于与学生身边有关的情境之中,使学生怀着了解自己、认识世界的愿望积极投身探索活动之中,在探索变量之间关系的过程中,体会数学的思想方法,体会用数学的符号语言表示多彩世界的作用,发展学生的符号感,发展观察、分析、归纳能力和解决问题的能力。
学情分析在本章的学习中,学生已经分别从三种表示方法中对变量之间的关系进行了讨论。
本节课让学生对全章所学的内容进行回顾,系统地复习表示变量之间关系的三种方法,为学生以后顺利过渡到函数学习打下基础。
为了发展学生对函数思想的理解,提高学生的分析能力、表达能力及逻辑思维能力,鼓励学生运用自己的语言进行表述。
学生在本节课也将逐渐了解掌握几种常见的数学思想。
教学目标1、知识目标:回顾总结表示变量之间的方法,学会用变量之间关系的各种形式分析变量之间的关系,并做出预测。
2、能力目标:从常量的世界走入变量的世界,能用运动变化的观点去认识数学对象,发展符号感和抽象思维。
3、情感目标:体验从运动变化的角度认识数学对象的过程,体验成就感,获得学习的快乐,发展对数学更高层次的认识。
教学重难点1、重点:能从表格、图象中分析变量之间的关系,发展有条理地进行思考及表达的能力。
2、难点:根据各种表示方法对变量之间的关系作出预测。
教学方法自主探究与合作交流相结合。
教学过程(第一学时)【第一环节】完善知识结构在教师的引导下,师生总结本单元知识结构:(活动一)小组合作讨论交流:举一个生活中变量之间的关系的例子。
指出其中的自变量、因变量各是什么?(活动二)将复习题1~7,10~12题按其所用的表示方法进行分类,将题号直接写在相应方法的后面。
(新教材)北师大版精品数学资料期末复习(三) 变量之间的关系01 知识结构本章知识是学习函数的基础,要求掌握表示变量之间关系的三种方法,学会分析变量之间的关系,并能进行简单的预测.02 典例精讲【例1】 下面的表格列出了一个试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是(C )A .b =d 2B .b =2C .b =d2D .b =d +25【思路点拨】 这是一个用图表表示的关系,可以看出d 是b 的2倍,即可得关系式.【方法归纳】 利用表格表示两个变量之间关系,其对应值清晰明了,但它们之间的关系不够明朗,要结合数据加以分析才能发现潜在的规律.从表示自变量与因变量的表格中辨识自变量与因变量,一般第一栏为自变量,第二栏为因变量.【例2】 下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序(D )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系). A .①②④③ B .③④②① C .①④②③ D .③②④①【思路点拨】 观察图象的走势,并与实际情景相联系是解决此题的关键.【方法归纳】 解决此类题重在观察图象并对图象上的数量关系和走势进行分析,抓住图象的转折点,这些转折点往往是运动状态发生改变或者相互的数量关系发生改变的地方.【例3】 如图所示,圆柱的高为10 cm ,当圆柱的底面半径变化时,圆柱的体积也发生变化.(1)在这个变化过程中,圆柱的底面半径是自变量,圆柱的体积是因变量;(2)请你求出圆柱的体积V(cm 3)与圆柱的底面半径R(cm )之间的关系式; (3)R 的值能为负值吗?为什么?(4)当圆柱的底面半径从2 cm 变化到5 cm 时,圆柱的体积变化了多少?(最后结果保留π)【思路点拨】 (1)题目中有两个变量,主动变化的量是圆柱的底面半径,随之变化的是圆柱的体积;在(2)中,根据圆柱的体积=底面积×高即可求出V 与R 之间的关系式;由于R 为圆柱的底面半径,所以(3)中R 不能为负值;在(4)中,分别求出R 1=2 cm 和R 2=5 cm 时圆柱的体积,其差值即为体积的变化量. 【解答】 (2)因为圆柱的体积=底面积×高,所以V =πR 2×10=10πR 2.(3)因为R 为圆柱的底面半径,所以R>0,因此R 不能为负值.(4)因为10πR 22-10πR 21=10π·52-10π·22=10π·(52-22)=210π,所以圆柱体积增加了210π cm 3. 【方法归纳】 当变量之间的关系以图形形式表示时,可根据图形特点寻找有关变量的等量关系.然后根据等量关系列出关系式.值得注意的是,为使实际问题有意义,在求出变量之间的关系式后,要根据具体的题目要求,确定自变量的取值范围. 03 整合集训一、选择题(每小题3分,共30分)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是(C ) A .8和s ,t 都是变量 B .8和t 都是变量 C .s 和t 都是变量 D .8和s 都是变量2.已知三角形ABC 的面积为2 cm 2,则它的底边a(cm )与底边上的高h(cm )之间的关系为(D ) A .a =4h B .h =4a C .a =h 4 D .a =4h3.对关系式的描述,不正确的是(D )A .x 看作自变量时,y 就是因变量B .x ,y 之间的关系也可以用表格表示C .x 在非负数范围内,y 的最大值为2D .当y =0时,x 的值为-24.如图所示y =2-x 是某市某天的气温随时间变化的图象,通过观察可知,下列说法中错误的是(C )A .这天15时气温最高B .这天3时气温最低C .这天最高气温与最低气温的差是13℃D .这天有两个时刻气温是30℃5.2017年1月4日上午,小华同学接到通知,他的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是(C )6则表中a 的值为(B )A .21.5B .20.5C .21D .19.57.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示变量y 与x 之间关系的选项是(B )8.(衡阳中考)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的关系,根据图象,下列信息错误的是(A )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8 A.861 B.863 C.865 D.86710.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S(阴影部分),则变量S 与t 的大致图象为(A )二、填空题(每小题4分,共20分)11.圆的周长C 与圆的半径r 之间的关系式为C =2πr ,其中常量是2,π.12.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h =20-4t .13.如图是某个计算y 值的程序,若输入x 的值是32,则输出的y 值是12.14.(义乌中考)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的图象,则小明回家的速度是每分钟步行80米.15.下面由小木棒拼出的系列图形中,第n 个图形由n 个正方形组成,请写出第n 个图形中小木棒的根数S 与n 的关系式S =3n +1.三、解答题(共50分)16.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间关系如表:(1)(2)从上表可知:收费y(元)随印刷数量x(张)的增加而增大; (3)若要印制1 000张宣传单,收费多少元?解:(1)上表反映了印刷数量和收费两个变量之间的关系,印刷数量是自变量,收费是因变量. (3)由上表可知:印刷数量每增加100张,收费增加15元,所以每张的价格是0.15元. 所以收费y(元)与印刷数量x(张)之间的关系式为y =0.15x. 当x =1 000时,y =0.15×1 000=150(元). 故要印制1 000张宣传单,收费150元.17.(10分)青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A点表示小军和小蕊在11岁时身高都是140厘米,B点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同;不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些.18.(10分)如图所示,在△ABC中,底边BC=8 cm,高AD=6 cm,E为AD上一动点,当点E从点D沿DA向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y(cm2),求y与x之间的关系式.解:(1)ED长度是自变量,△BEC的面积是因变量.(2)y与x的关系式为y=4x.19.(10分)新成药业集团研究开发了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?解:(1)服药后2小时血液中含药量最高,最高是4微克.(2)A点表示血液中含药量为0.(3)有效期为5小时.20.(10分)如图,用一段长为60 m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为x m,菜园的面积为y m2.(1)试写出y与x之间的关系式;(2)当AB 的长分别为10 m 和20 m 时,菜园的面积各是多少?解:(1)因为与墙平行的篱笆AB 的长为x m , 所以长方形的另一边长为60-x2 m ,则长方形的面积为60-x2·x m 2.所以y 与x 之间的关系式为: y =60-x 2·x =-12x 2+30x. (2)当x =10时,y =-12×102+30×10=250(m 2);当x =20时,y =-12×202+30×20=400(m 2).21.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h ),两车之间的距离为y(km ),图中的折线表示y 与x 之间的关系.根据图象解答下列问题: (1)甲、乙两地之间的距离为900km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度.解:(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇. (3)由图象可知,慢车12 h 行驶的路程为900 km , 所以慢车的速度为90012=75(km /h ).当慢车行驶 4 h 时,慢车和快车相遇,两车行驶的路程之和为900 km ,所以慢车和快车行驶的速度之和为9004=225(km /h ),所以快车的速度为225-75=150(km /h ).。
北师大版七年级数学下册说课稿(含解析):第三章变量之间的关系章末复习一. 教材分析北师大版七年级数学下册第三章《变量之间的关系》章末复习,主要目的是让学生巩固和掌握本章所学的内容,提高学生运用函数知识解决实际问题的能力。
本章主要包括一次函数、正比例函数和反比例函数的性质,以及如何根据实际问题建立函数关系式。
通过本章的学习,学生应能理解函数的概念,掌握三种基本函数的性质,并能运用函数知识解决实际问题。
二. 学情分析面对七年级的学生,他们在之前的学习中已经接触过一次函数、正比例函数和反比例函数的概念和性质,但对于如何运用这些知识解决实际问题可能还有一定的困难。
因此,在复习过程中,需要引导学生回顾和巩固所学知识,并通过具体的实例来提高他们运用函数知识解决实际问题的能力。
三. 说教学目标1.知识与技能:通过复习,使学生能熟练掌握一次函数、正比例函数和反比例函数的性质,理解函数的概念,提高学生运用函数知识解决实际问题的能力。
2.过程与方法:通过自主学习、合作交流的方式,培养学生主动探索、积极思考的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生自信,使学生感受数学在生活中的重要性。
四. 说教学重难点1.教学重点:一次函数、正比例函数和反比例函数的性质,函数的概念。
2.教学难点:如何运用函数知识解决实际问题,对函数概念的理解。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生回顾和巩固所学知识,并通过具体的实例来提高学生运用函数知识解决实际问题的能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习任务单、小组讨论等新型教学方式,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题,引导学生回顾本章所学内容,激发学生的学习兴趣。
2.自主学习:学生自主完成学习任务单,回顾和巩固一次函数、正比例函数和反比例函数的性质,以及函数的概念。