浙江省杭州市文澜中学2020-2021学年九年级上学期期末数学试题
- 格式:docx
- 大小:733.74 KB
- 文档页数:26
2020-2021杭州市九年级数学上期末试卷附答案一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=2.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .44.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( ) A .27B .36C .27或36D .185.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .96.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( ) A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象9.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>410.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m11.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件( )A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.612.二次函数y=3(x–2)2–5与y轴交点坐标为( )A.(0,2)B.(0,–5)C.(0,7)D.(0,3)二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.15.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.16.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.18.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.19.一元二次方程22x 20-=的解是______.20.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.三、解答题21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果; (2)求摸出的两个小球号码之和等于4的概率.22.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元. (1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠5a元()0a >,十月份乙种绿色植物每盆的价格比九月份的价格优惠2%5a .因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了1%2a ,十为份购买乙种绿色植物的数量比九月份的数量增加了%a .若该社区十月份的总花费与九月份的总花费恰好相同,求a 的值.23.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.24.如图7,某中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆,设矩形的宽为x,面积为y.(1)求y与x的函数关系式,并求自变量x的取值范围;(2)生物园的面积能否达到210平方米,说明理由.25.有4张看上去无差别的卡片,上面分别写着1,2,3,4,随机抽取1张后,放回并混在一起,再随机抽取1张.(1)请用树状图或列表法等方法列出各种可能出现的结果;(2)求两次抽到的卡片上的数字之和等于5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【解析】 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0), ∴4a+1=0, ∴a=-14, ∴方程a (x-2)2+1=0为:方程-(x-2)2+1=0,解得:x 1=0,x 2=4, 故选:A . 【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.D解析:D 【解析】 【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可. 【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.3.B解析:B 【解析】 【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可. 【详解】EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.5.C解析:C【解析】试题解析:∵m,n是方程x2﹣2x﹣1=0的两根∴m2﹣2m=1,n2﹣2n=1∴7m2﹣14m=7(m2﹣2m)=7,3n2﹣6n=3(n2﹣2n)=3∵(7m2﹣14m+a)(3n2﹣6n﹣7)=8∴(7+a)×(﹣4)=8∴a=﹣9.故选C.6.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:()2+=4001640x故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.8.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.9.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.10.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.11.C解析:C 【解析】 【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得. 【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax 2+bx+c=0的一个解x 的取值范围为1.4<x <1.5. 故选C . 【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.12.C解析:C 【解析】 【分析】由题意使x=0,求出相应的y 的值即可求解. 【详解】∵y=3(x ﹣2)2﹣5, ∴当x=0时,y=7, ∴二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率解析:25 【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 15.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.16.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A +∠C =180°,∵∠A =125°,∴∠C =55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.17.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0>,继而可求得a 的范围.【详解】关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根, ()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>,解得:1a 4>-, 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 18.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.19.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.20.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t=﹣1p=﹣1故答案为:解析:-1-1【解析】【分析】设方程的另一根为t,根据根与系数的关系得到2+t=-p,2t=-2,然后先求出t,再求出p.【详解】解:设方程的另一根为t,根据题意得2+t=﹣p,2t=﹣2,所以t=﹣1,p=﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 三、解答题21.(1)见解析;(2)13. 【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.22.(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a 的值为25【解析】【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a 的方程,用换元法,设%t a =,化简方程, 求解即可.【详解】 解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,由题意知,1100203027000x y x y +=⎧⎨+=⎩, 解得,600500x y =⎧⎨=⎩, 答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)由题意知,12(20)600(1%)30(1%)500(1%)27000525aa a a -⨯++-⨯+=, 令%t a =,原式可化为240t t -=,解得,10t =(舍去),20.25t =,∴25a =,∴a 的值为25.【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.23.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.24.(1)y= -2x 2+40x ;0<x≤403;(2)不能,理由见解析. 【解析】【分析】(1)设矩形的宽为x ,则长为40-2x ,根据矩形面积公式“面积=长×宽”列出函数的关系式;(2)令y=210,看函数方程有没有解.【详解】解:(1)设矩形的宽为x,则长为40-2x,y=x(40-2x)=-2x2+40x又要围成矩形,则40-2x≥x,x≤40 3x的取值范围:0<x≤40 3(2)令y=210,则-2x2+40x=210变形得:2x2-40x+210=0,即x2-20x+105=0,又∵△=b2-4ac=(-20)2-4×1×105<0,∴方程无实数解,∴生物园的面积达不到210平方米.【点睛】本题考查的是函数关系式的求法及最值的求法,同学们应该掌握.25.(1)见解析;(2)1 4【解析】【分析】(1)直接用树状图或列表法等方法列出各种可能出现的结果;(2)由(1)可知所有16种等可能的结果数,再找出两次抽到的卡片上的数字之和等于5的结果数。
浙江省文澜中学2020初三数学九年级上册期末试题和答案一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =4.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cm B .6cmC .12cmD .24cm 5.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内6.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .197.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐8.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤9.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( ) A .16B .13C .12D .5610.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .211.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)12.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值313.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .414.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 15.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.386cmD .7.64cm二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.二次函数23(1)2y x =-+图象的顶点坐标为________.18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.20.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .21.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.22.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.23.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;24.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.25.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 26.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.27.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题31.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知O 的两条弦AB CD ⊥,则AB 、CD 互为“十字弦”,AB 是CD 的“十字弦”,CD 也是AB 的“十字弦”.(1)若O 的半径为5,一条弦8AB =,则弦AB 的“十字弦”CD 的最大值为______,最小值为______. (2)如图1,若O 的弦CD 恰好是O 的直径,弦AB 与CD 相交于H ,连接AC ,若12AC =,7DH =,9CH =,求证:AB 、CD 互为“十字弦”;(3)如图2,若O 的半径为5,一条弦8AB =,弦CD 是AB 的“十字弦”,连接AD ,若60ADC ∠=︒,求弦CD 的长.32.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.33.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).34.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.35.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.39.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.B解析:B 【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.4.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.5.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B . 【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.6.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B .考点:平行线分线段成比例.7.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键8.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.9.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π2共2个,∴卡片上的数为无理数的概率是21=63. 故选B.【点睛】本题考查了无理数的定义及概率的计算.10.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.11.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .12.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.13.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.14.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.15.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】【分析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 20.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,21.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.22.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.23.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE. 【详解】 ∵AB 是半圆O 的直径, ∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8, ∴22221086AC AB BC =-=-=,∵点D 为BC 的中点, ∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上, ∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.24.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 25.60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例. 26.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.27.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分,则两个正方形的边长分别是cm,cm,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm和(200﹣解析:1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题31.(1)10,6;(2)见解析;(3)433.【解析】【分析】(1)根据“十字弦”定义可得弦AB 的“十字弦”CD 为直径时最大,当CD 过A 点或B 点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH ∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH ⊥CD ,根据“十字弦”定义可得;(3)过O 作OE ⊥AB 于点E ,作OF ⊥CD 于点F,利用垂径定理得出OE=3,由正切函数得出3设DH=x ,在Rt △ODF 中,利用线段和差将边长用x 表示,根据勾股定理列方程求解.【详解】解:(1)当CD 为直径时,CD 最大,此时CD=10,∴弦AB 的“十字弦”CD 的最大值为10;当CD 过A 点时,CD 长最小,即AM 的长度,过O 点作ON ⊥AM,垂足为N,作OG ⊥AB ,垂足为G,则四边形AGON 为矩形,∴AN=OG,∵OG ⊥AB,AB=8,∴AG=4,∵OA=5,。
2020-2021学年浙教新版九年级上册数学期末复习试题一.选择题(共10小题,满分30分,每小题3分)1.已知线段b是线段a、c的比例中项,a=3,c=2,那么b的长度等于()A.B.6C.D.2.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等3.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.164.如图,⊙O中,点D,A分别在劣弧BC和优弧BC上,∠BDC=130°,则∠BOC=()A.120°B.110°C.105°D.100°5.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm26.国际象棋决赛在甲、乙两名选手之间进行,比赛规则是:共下8局棋,每局胜方得1分,负方得0分,平局则各得0.5分,谁的积分先达到4.5分便夺冠,不维续比赛:若8局棋下完双方积分相同,则继续下,直到分出胜负为止已知他们下完6局时,甲3胜1平.若以前6局棋取胜的频率为各自取胜的概率,那么在后面的两局棋中,甲夺冠的概率是()A.B.C.D.7.如图,已知∠ACD=∠B,若AC=6,AD=4,BC=10,则CD长为()A.B.7C.8D.98.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A的值是()A.B.C.D.9.A(﹣,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣2)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1 10.如图,四边形ACBD是⊙O的内接四边形,AB是⊙O的直径,点E是DB延长线上的一点,且∠DCE=90°,DC与AB交于点G.当BA平分∠DBC时,的值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.2sin45°+2cos60°﹣tan60°=.12.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.13.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为度.14.如图,在正六边形ABCDEF中,AC=2,则它的边长是.15.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC 于点E,作DF∥BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为.16.已知二次函数y=(x+1)(x﹣3),则该二次函数的对称轴为.三.解答题(共7小题,满分66分)17.某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.18.如图,在△ABC中,sin B=,tan C=,BC=3.求AC的长.19.如图,AB为⊙O的弦,半径OC,OD分别交AB于点E,F.且=.(1)求证:AE=BF;(2)作半径ON⊥AB于点M,若AB=12,MN=3,求OM的长.20.如图,已知正三角形ABC的边长为4,矩形DEFG的DE两个点在正三角形BC边上,F,G点在AB,AC边上,求矩形DEFG的面积最大值是多少?21.如图,在△ABC中,CD是边AB上的高,且=,(1)求∠ACB的大小;(2)求证BC2=BD•AB.22.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B (2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;23.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.。
2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若,则的值为()A.1B.C.D.2.二次函数y=﹣2(x+1)2﹣4,下列说法正确的是()A.开口向上B.对称轴为直线x=1C.顶点坐标为(1,4)D.当x<﹣1时,y随x的增大而增大3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是平面内一动点,且∠APB=90°,取BC的中点E,连结PE,则线段PE的最大值为()A.2B.2C.2+D.3+5.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁6.把抛物线y=﹣2x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A.y=﹣2(x+1)2﹣3B.y=﹣2(x﹣1)2+3C.y=﹣2(x+1)2+3D.y=﹣2(x﹣1)2﹣37.小明在边长为a的正方形硬纸板上挖去一个最大的圆,则剩余部分的面积是()A.a2﹣πa2 B.a2﹣πa2 C.(a2﹣πa2)D.a2+πa28.半径为R的圆的内接正九边形的边长是()A.R sin20°B.R sin40°C.2R sin20°D.2R sin40°9.如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=AD,则图中阴影部分的面积为()A.25B.30C.35D.4010.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°二.填空题(共6小题,满分24分,每小题4分)11.若tan(α﹣15°)=,则锐角α的度数是.12.抛物线y=﹣(x+1)2+3与y轴交点坐标为.13.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为,则a=.14.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD =8,CF交AB于点G,则弦CF的长为,AG的长为.16.当﹣1≤a≤时,则抛物线y=﹣x2+2ax+2﹣a的顶点到x轴距离的最小值.三.解答题(共7小题,满分66分)17.(6分)如图,在△ABC中,∠C=90°,∠A=30°,BC=1,点D在边AC上,且∠DBC=45°,求sin∠ABD的值.18.(8分)如图,有大小质地相同仅颜色不同的两双拖鞋(分左.右脚)共四只,放置于地板上.【可表示为(A1.A2),(B1.B2)】注:本题采用“长方形”表示拖鞋.(1)若先从两只左脚拖鞋中取一只,再从两只右脚拖鞋中随机取一只,求恰好匹配成一双相同颜色的拖鞋的概率.(2)若从这四只拖鞋中随机取出两只,利用“树形图”或“表格”列举出所有可能出现的情况,并求恰好匹配成一双相同颜色的拖鞋的概率.19.(8分)菱形的两条对角线的和为40cm.(1)如果菱形的面积为y(cm2),一条对角线的长为x(cm),写出y与x的表达式,并指出自变量x的取值范围;(2)当这两条对角线的长分别为多少时,菱形的面积最大?最大面积是多少?20.(10分)如图所示,AB是⊙O的直径,其半径为1,扇形AOC的面积为.(1)求∠AOC的度数;(2)求的长度.21.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交D的延长线于点F,AF交⊙O 于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求AH的长22.(12分)如图,抛物线y=ax2+2ax﹣3a(a≠0)与x轴交于A,B两点(A在B的左侧).(1)点A,B的坐标;(2)若该抛物线过C(﹣1,4)①请问C点是否是抛物线的顶点,请说明理由;②连接CO,并延长交抛物线于D点,连接BD,AD,求△ABD的面积.23.(12分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.2020年12月15日宫老师的初中数学平行组卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵,∴=2=2﹣=;故选:B.2.解:∵二次函数y=﹣2(x+1)2﹣4,∴a=﹣2,该函数的图象开口向下,故选项A错误;对称轴是直线x=﹣1,故选项B错误;顶点坐标为(﹣1,﹣4),故选项C错误;当x<﹣1时,y随x的增大而增大,故选项D正确;故选:D.3.解:①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件;③13个人中至少有两个人的生日是在同一个月份,是必然事件;④射击运动员射击一次,命中靶心,是随机事件;⑤水中捞月,是不可能事件;⑥冬去春来,是必然事件;故选:B.4.解:取AB的中点O,以O为圆心,AB为直径作圆,连接EO,EO的延长线与⊙O交于点P′,如图,此时EP′就是EP的最大值为:EP′=OE+OP′=+3,故选:D.5.解:∵△RPQ∽△ABC,∴,即,∴△RPQ的高为6.故点R应是甲、乙、丙、丁四点中的乙处.故选:B.6.解:把抛物线y=﹣2x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为:y=﹣2(x﹣1)2﹣3.故选:D.7.解:正方形的面积是a2;圆的面积是π()2=.则剩余部分的面积是a2﹣πa2.故选:B.8.解:如图所示,过O作OD⊥AB于点D,则AD=BD=AB,∵此多边形是正九边形,∴∠AOB==40°,∴∠AOD==20°,在Rt△AOD中,AD=OA sin∠AOD=R×sin20°,∴AB=2AD=2R sin20°.故选:C.9.解:过点G作GN⊥AD于N,延长NG交BC于M,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵EF =AD ,∴EF =BC ,∵AD ∥BC ,NG ⊥AD ,∴△EFG ∽△CBG ,GM ⊥BC ,∴GN :GM =EF :BC =1:2,又∵MN =AB =6,∴GN =2,GM =4,∴S △BCG =×10×4=20,∴S △EFG =×5×2=5,S 矩形ABCD =6×10=60,∴S 阴影=60﹣20﹣5=35.故选:C .10.解:连接O 1P ,O 2P ,如图,∵P 在小量角器上对应的刻度为63°,即∠O 1O 2P =63°,而O 1P =O 1O 2,∴∠O 1PO 2=∠O 1O 2P =63°,∴∠PO 1O 2=180°﹣63°﹣63°=54°,即点P 在大量角器上对应的刻度为54°(只考虑小于90°的角). 故选:A .二.填空题(共6小题,满分24分,每小题4分)11.解:∵tan(α﹣15°)=,∴α﹣15°=60°,∴α=75°.故答案为:75°.12.解:把x=0代入y=﹣(x+1)2+3得,y=﹣1+3=2,因此与y轴的交点坐标为(0,2),故答案为:(0,2)13.解:根据题意,得:=,解得a=8,经检验:a=8是分式方程的解,故答案为:8.14.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.15.解:连结BC,DF,OC,连结DO并延长交CF于点H,∵弦CD⊥AB于点E,CD=8,∴CE==4,设OC=x,则OE=x﹣2,∵OE2+CE2=OC2,∴(x﹣2)2+42=x2,解得x=5,∴OC=5,∴OE=5﹣2=3,∵,∴DF=CD,∠CFD=∠COB,DH⊥CF,∴∠FHD=∠OEC=90°,∴△DHF∽△CEO,∴=,∴,∴FH=,DH=,∴CF=2FH=,OH=DH﹣OD=,∵∠CFD=∠COB=∠BOD,∠BOD=∠GOH,∴∠GOH=∠DFH,∵∠GHO=∠OEC=90°,∴△GHO∽△CEO,∴,∴,∴OG=,∴AG=OA﹣OG=5﹣=.故答案为:,.16.解:∵抛物线y=﹣x2+2ax+2﹣a的顶点纵坐标==2﹣a+a2,当a=﹣1时,2﹣a+a2=2+1+1=4;当a=时,2﹣+=,∵4>,∴顶点到x轴距离的最小值是.故答案为:.三.解答题(共7小题,满分66分)17.解:如图,过点D作DM⊥AB于M,在BA上取一点H,使得BH=DH,连接DH.设DM=a.∵∠C=90°,∠A=30°,∴∠ABC=90°﹣30°=60°,∵∠DBC=45°,∴∠ABD=60°﹣45°=15°,∵HB=HD,∴∠HBD=∠HDB=15°,∴∠DHM=∠HBD+∠HDB=30°,∴DH=BH=2a,MH=a,BM=2a+a,∴BD===(+)a,∴sin∠ABD===.18.解:(1)用列表法表示所有可能的情况有:共4种情况,其中配成一双相同颜色的有2种,==;∴P配成一双相同颜色(2)用列表法表示所有可能的情况有:共12种情况,其中配成一双相同颜色的有4种,==.∴P配成一双相同颜色19.解:(1)根据题意得,y==,即y=+20x(0<x<40);(2)∵y=+20x=﹣,∴当x=20时,y有最大值为200,答:当这两条对角线的长分别为20cm时,菱形的面积最大,最大面积是200cm2.20.解:(1)由扇形面积公式S=得:,∴n=60,∴∠AOC=60°.(2)∵∠AOC=60°,∴∠BOC=120°,∴的长度为l=.21.(1)证明:连接OC,如图所示:∵AB是⊙O的直径,点C是弧AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD的中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∴BD是⊙O的切线;(2)解:由(1)得:OC∥BD,∴△OCE∽△BFE,∴==,∵OB=2,∴OC=OB=2,AB=4,∴=,∴BF=3,∵∠ABD=90°,∴∠ABF=90°,∴AF===5,∵△ABF的面积AF×BH=AB×BF,∴BH==,∴AH===.22.解:(1)当y=0时,ax2+2ax﹣3a=0,解得x1=﹣3,x2=1,所以点A的坐标为(﹣3,0),B点坐标为(1,0);(2)①C点是抛物线的顶点.理由如下:把C(﹣1,4)代入y=ax2+2ax﹣3a得a﹣2a﹣3a=4,解得a=﹣1,所以抛物线解析式为y=﹣x2﹣2x+3,因为y=﹣(x+1)2+4,所以抛物线的顶点坐标为(﹣1,4),即C点是抛物线的顶点.②设直线OC的解析式为y=kx,把C(﹣1,4)代入得﹣k=4,解得k=﹣4,即直线OC的解析式为y=﹣4x,解方程组得或,所以D点坐标为(3,﹣12),所以△ABD的面积=×(1+3)×12=24.23.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE•AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.1、三人行,必有我师。
2020--2021学年浙江省杭州市九年级(上)期末数学考试模拟试卷一.选择题1.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为( )A .12B .310C .15D .7102.AB 和CD 是⊙O 的两条平行弦,AB =6,CD =8,⊙O 的半径为5,则AB 与CD 间的距离为( )A .1B .7C .1或7D .3或43.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( )A .正比例函数B .一次函数C .二次函数D .以上均不正确4.函数y =﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A .y =﹣2(x ﹣1)2+2B .y =﹣2(x ﹣1)2﹣2C .y =﹣2(x+1)2+2D .y =﹣2(x+1)2﹣25.若x y =25,则x+y y 的值为( )A .25B .72C .57D .756.如图,△ABC 内接于⊙O ,BD 是⊙O 的直径.若∠DBC =33°,则∠A 等于( )A .33°B .57°C .67°D .66°7.已知二次函数y =﹣x 2+2x +4,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是(1,3)C .当x <1时,y 随x 的增大而增大D .图象与x 轴有唯一交点8.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是() A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.99.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN 分别垂直AB、AC,垂足为M、N,交于点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个10.如图,直线l1:y=x+1与直线l2:y=12x+12相交于点P(﹣1,0).直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B2014,A2014,…则当动点C到达A2014处时,运动的总路径的长为()A.20142B.22015﹣2 C.22013+1 D.22014﹣1二.填空题11.两个相似三角形的面积比为4:9,那么它们对应中线的比为.12.如图,AB是半圆的直径,O是圆心,BĈ=2AĈ,则∠ABC=度.13.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是.14.如图,点G 是△ABC 的重心,过点G 作GE ∥BC ,交AC 于点E ,连结GC ,若△ABC 的面积为1,则△GEC 的面积为 .15.如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B . ①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3; ③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 .三.解答题16.已知a b =23,求3a−4b 2a+b 的值.17.已知二次函数y1=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0),与y轴交于点C,与x轴另一交点交于点D.(1)求二次函数的解析式;(2)求点C、点D的坐标;(3)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.18.在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,利用她所测数据,求旗杆的高.19.把大小和形状完全相同的6张卡片分成两组,每组3张,分别都标上数字1,2,3,将这两组卡片分别放入两个不透明的盒子中搅匀,再从中各随机抽取一张.(1)请用画树状图或列表的方法求取出的两张卡片上的数字都为奇数的概率.(2)若取出的两张卡片上的数字都为奇数,则甲胜;取出的两张卡片上的数字为一奇一偶,则乙胜;试分析这个游戏是否公平?请说明理由.20.在数学课上,老师提出利用尺规作图完成下面问题:已知:△ABC是⊙O的内接三角形.求作:△ABC中∠BAC的平分线.小明的作法如下:(1)作BC边的垂直平分线DE,交BC于点D,交弧BC于点E;(2)连接AE,交BC边于点F;则线段AF为所求△ABC中∠BAC的平分线.根据小明设计的尺规作图过程,(1)在图中补全图形(尺规作图,保留作图痕迹);(2)完成下面的证明.证明:∵OB=OC,DE是线段BC的垂直平分线∴圆心O在直线DE上().∵DE⊥BC,̂=CÊ().∴BE∴∠BAE=∠CAE(),∴线段AF为所求△ABC中∠BAC的平分线.21.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)在前50天销售过程中,为了给顾客发放福利,每售出一件商品就返还2a元给顾客,且要求售价不低于80元,但是前50天的销售中,仍可以获得最大利润5850元,求出a的值.22.如图,在平面直角坐标系xOy中,O为坐标原点,点A(6,0),点B(0,6),△ABO的中线AC与y 轴交于点C,且⊙M经过O,A,C三点.(1)圆心M的坐标为;(2)抛物线经过点B,且以圆心M为顶点,求抛物线的解析式;(3)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(4)若(2)中的抛物线上有一动点P,过点P作PE∥y轴,交(3)中的直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.求EF的最小值.参考答案与试题解析一.选择题1.【解答】解:搅匀后任意摸出一个球,是黄球的概率为32+3+5=310,故选:B.2.【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE=√52−42=3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF=√52−32=4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.3.【解答】解:设y1=k1x,y2=k2x2,则y=k1x﹣k2x2,所以y是关于x的二次函数,故选:C.4.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.5.【解答】解:∵x y =25, ∴x+y y =x y +y y =25+1=75, 故选:D .6.【解答】解:连结CD ,如图,∵BD 是⊙O 的直径,∴∠BCD =90°,而∠DBC =33°,∴∠D =90°﹣33°=57°,∴∠A =∠D =57°.故选:B .7.【解答】解:∵y =﹣x 2+2x +4=﹣(x ﹣1)2+5,∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x =1,当x <1时,y 随x 的增大而增大,令y =0,则﹣x 2+2x +4=0,解方程解得x 1=1+√5,x 2=1−√5,∴△=4﹣4×(﹣1)×4=20>0,∴抛物线与x 轴有两个交点.故选:C .8.【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A 、B 、C 错误,D 正确,故选:D .9.【解答】解:∵DM 、EN 分别垂直AB 、AC ,垂足为M 、N ,∴∠AMF =∠ANF =90°,又∵∠BAC =90°,∴四边形AMFN 是矩形;∵△ABC 为等腰直角三角形,∴AB =AC ,∠ABC =∠C =45°,∵DM ⊥AB ,EN ⊥AC ,∴△BDM和△CEN均为等腰直角三角形,又∵BD=CE,∴△BDM≌△CEN(AAS),∴BM=CN∴AM=AN,∴四边形AMFN是正方形,故①正确;∵BD=CE,∴BE=CD,∵△ABC为等腰直角三角形,∴∠ABC=∠C=45°,AB=AC,∴△ABE≌△ACD(SAS),故②正确;如图所示,将△ACE绕点A顺时针旋转90°至△ABE',则CE=BE',∠E'BA=∠C=45°,由于△BDM≌△CEN,故点N落在点M处,连接ME',则D、M、E'共线,∵∠E'BA=45°,∠ABC=45°,∴∠DBE'=90°,∴BE'2+BD2=DE'2,∴CE2+BD2=DE'2,当∠DAE=45°时,∠DAE'=∠DAM+∠EAN=90°﹣45°=45°,AE=AE',AD=AD,∴△ADE≌△ADE'(SAS),∴DE'=DE,∴在没有∠DAE=45°时,无法证得DE'=DE,故③错误;∵AB=AC,∠ABD=∠C,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∴当∠DAE=45°时,∠ADE=∠AED=67.5°,∵∠C=45°,∴∠DAE=∠C,∠ADE=∠CDA,∴△ADE ∽△CDA ,∴AD DE =CD AD ,∴AD 2=DE •CD ,故④正确.综上,正确的有①②④,共3个.故选:C .10.【解答】解:由直线直线l 1:y =x +1可知,A (0,1),根据平行于x 轴的直线上两点纵坐标相等,平行于y 轴的直线上两点横坐标相等,及直线l 1、l 2的解析式可知,B 1(1,1),AB 1=1,A 1(1,2),A 1B 1=2﹣1=1,AB 1+A 1B 1=2,B 2(3,2),A 2(3,4),A 1B 2=3﹣1=2,A 2B 2=4﹣2=2,A 1B 2+A 2B 2=2+2=4=22,…,由此可得A n ﹣1B n +A n B n =2n ,所以,当动点C 到达A 2014处时,运动的总路径的长为2+22+23+..+22014=22014+1﹣2=22015﹣2, 故选:B .二.填空题11.【解答】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比=√49=23.故答案为2:3.12.【解答】解:∵AB 是半圆的直径,O 是圆心,∴∠AOB =180°;又∵BĈ=2AC ̂, ∴2∠AOC =∠BOC ,∴∠BOC =120°;∵OB =OC (⊙O 的半径),∴∠OBC =∠OCB (等边对等角);∴∠BOC +∠OBC +∠OCB =2∠ABC +∠COB =180°(三角形内角和定理),∴∠ABC =30°.故答案是:30°.13.【解答】解:如图,旋转中心M 即为所求.M (1,﹣1).故答案为(1,﹣1).14.【解答】解:连接AG并延长交BC于D,∵点G是△ABC的重心,∴BD=CD,AGGD =21,∴S△ABD=S△ADC=12S△ABC=12,∵GE∥BC,∴△AGE∽△ADC,∴AGAD =GEDC=AEAC=22+1=23,∴S△AGES△ADC =49,∴S△AGE=49S△ADC=29∴S△GEC=12S△AGE=12×29=19,15.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B ′(﹣1,3),作C 点关于x 轴的对称点C ′(2,﹣2),连接B ′C ′,与x 轴、y 轴分别交于D 、E 点,如图,则BE +ED +CD +BC =B ′E +ED +C ′D +BC =B ′C ′+BC ,根据两点之间线段最短,知B ′C ′最短,而BC 的长度一定,∴此时,四边形BCDE 周长=B ′C ′+BC 最小,为:√B ′M 2+C ′M 2+√BM 2+CM 2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.三.解答题16.【解答】解:∵a b =23, ∴a =23b ,∴3a−4b 2a+b =3×23b−4b 2×2b 3+b =−67. 17.【解答】解:(1)由已知得{4a +2b +c =−3a −b +c =0,解得{a =1b =−2, ∴所求的二次函数的解析式为y =x 2﹣2x ﹣3;(2)令x =0,可得y =﹣3,∴C (0,﹣3),令y =0,可得x 2﹣2x ﹣3=0,解得:x 1=3;x 2=﹣1,∴D (3,0)(3)x <0或x >3.18.【解答】解:设旗杆高AB =x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD =1.5,GF =27+3=30,HF =3,所以EH =3.5﹣1.5=2,AG =x ﹣1.5.由△AGF ∽△EHF ,得AG EH =GF HF ,即x−1.52=303,所以x ﹣1.5=20,解得x =21.5(米)答:旗杆的高为21.5米.19.【解答】解:(1)画树状图得:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为奇数的结果有4种,则取出的两张卡片上的数字都为奇数的概率是49;(2)公平;理由:由(1)可得出:取出的两张卡片上的数字都为奇数的有4种,一奇一偶有4种,则取出的两张卡片上的数字都为奇数的概率是49, 取出的两张卡片上的数字为一奇一偶的概率为49,因此这个游戏公平.20.【解答】解:(1)如图,(2)证明:∵OB =OC ,DE 是线段BC 的垂直平分线∴圆心O 在直线DE 上(到线段两端点距离相等的点在线段的垂直平分线上).∵DE ⊥BC ,∴BE ̂=CE ̂(垂径定理).∴∠BAE =∠CAE (圆周角定理),∴线段AF 为所求△ABC 中∠BAC 的平分线.故答案为到线段两端点距离相等的点在线段的垂直平分线上;垂径定理;圆周角定理.21.【解答】解:(1)当1≤x <50时,y =(200﹣2x )(x +40﹣30)=﹣2x 2+180x +2000,当50≤x ≤90时,y =(200﹣2x )(90﹣30)=﹣120x +12000,综上所述:y ={−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90);(2)当1≤x <50时,y =﹣2x 2+180x +2000,y =﹣2(x ﹣45)2+6050.∴a =﹣2<0,∴二次函数开口下,二次函数对称轴为x =45,当x =45时,y 最大=6050,当50≤x ≤90时,y 随x 的增大而减小,当x =50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)根据题意得,y =(200﹣2x )(x +40﹣30﹣2a )=﹣2x 2+(180+4a )x +2000﹣400a ,x +40≥80,则x ≥40,即40≤x <50,函数的对称轴x =45+a ,在40≤x <50内(a <5时),当x =45+a 时,函数取得最大值,即y =(200﹣2x )(x +40﹣30﹣2a )=(200﹣90﹣2a )(45+a +10﹣2a )=2(55﹣a )(55﹣a )=5850, 即(55﹣a )=±√2925=±15√13 解得:a =55﹣15√13(不合题意的值已舍去);故a 的值为55﹣15√13.22.【解答】解:(1)∵点B (0,6),△ABO 的中线AC 与y 轴交于点C ,∴C (0,3),∵⊙M 经过O ,A ,C 三点,∠AOC =90°,∴AC 为⊙M 的直径,∴M 点为AC 的中点,∵点A (6,0),∴M (3,1.5),故答案为:(3,1.5);(2)设经过点B ,且以圆心M 为顶点的抛物线的解析式为:y =a (x ﹣3)2+1.5(a ≠0), 将B (0,6)代入得,6=9a +1.5,解得a =12,∴所求抛物线的解析式为:y =12(x −3)2+32,即y =12x 2−3x +6;(3)∵直线AD 与⊙M 相切于点A ,∴∠CAD =90°,∴∠CAO +∠DAO =90°,∵∠DAO +∠OADO =90°,∴∠CAO =∠ADO∵∠AOC =∠DOA =90°,∴△AOC ∽△DOA ,∴OA OD =OC OA ,∵A (6,0),C (0,3),∴OA =6,OC =3,∴OD =12,∴D (0,﹣12),设直线AD 的解析式为y =kx +b (k ≠0),则{6k +b =0b =−12, 解得,{k =2b =−12, ∴直线AD 的解析式为:y =2x ﹣12;(4)设P (m ,12m 2−3m +6),则E (m ,2m ﹣12), ∴PE =12m 2−5m +18,过点P 作PN ⊥EF 于点N ,则EF =2EN ,如图,∵PE ∥OD ,∴∠PEN =∠ADO ,∵∠PNE =∠AOD =90°,∴△PNE ∽△AOD ,∴EN PE =DO AD,即EN 12m 2−5m+18=√122+62, ∴EN =√55m 2−2√5m +36√55, ∴EF =2EN =2√55m 2−4√5m +72√55=2√55(m −5)2+22√55, ∴当m =5时,EF 取最小值为22√55.。
2020-2021学年浙教版九年级数学第一学期期末测试卷考试时间:120分钟满分:150分一、选择题(本大题有12小题,每小题4分,共48分)下面每小题给出的四个选项中,只有一个是正确的.1.若,则等于()A. B. C. D.2.如图,点A,B,P是⊙O上的三点,若,则∠APB的度数为()A. 80°B. 140°C. 20°D. 50°(第2题图)(第4题图)(第7题图)(第8题图)3.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A. 抽一次不可能抽到一等奖B. 抽次也可能没有抽到一等奖C. 抽次奖必有一次抽到一等奖D. 抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A. =B. =C. =D. =5.二次函数的图像的顶点坐标是()A. B. C. (1,2) D.6.已知⊙O的直径为10,圆心O到弦AB的距离OM为3,则弦AB的长是()A. 4B. 6C. 7D. 87.如图,在平行四边形ABCD中,点E为CD的中点,AE交BD于点O,下列说法错误的是()A. AB:DE=2:1B. S△ODE:S△AOB=1:2C. S△ABD:S△BDC=1:1D. S△AOB=4S△ODE8.如图等腰三角形的顶角=45°,以AB为直径的半圆O与BC,AC相较于点D,E两点,则弧AE所对的圆心角的度数为()A. 40°B. 50°C. 90°D. 100°9.抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A. ﹣4<x<1B. ﹣3<x<1C. x<﹣4或x>1D. x<﹣3或x>110.如图,D是△ABC的边BC上一点,AB=4,AD=2.∠DAC=∠B.若△ACD的面积为a,则△ABD的面积为()A. 2aB. 3aC. 4aD. 5a(第9题图)(第10题图)(第11题图)11.如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,连结CD与AB相交于点P,则tan∠APD的值是( )A. 2B.C.D.12.如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为()A. B. 4 C. 5 D. 6(第12题图)(第13题图)二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.如图,,直线a、b与、、分别相交于点A、B、C和点D、E、F.若,,,则________.14.已知(-10≤x≤0),则函数y的取值范围是________15.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为________时,△ADP和△ABC相似.16.如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为________.17.如图,已知△中,,,点、分别在边、上,,,那么的长是________.18.如图,在平面直角坐标系中,点P是以C()为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最大值是________.(第15题图)(第16题图)(第17题图)(第18题图)三、解答题(本大题有8小题,共78分)解答应写出文字说明,证明过程或推演步骤.19.(6分)(1)计算:sin30°-3tan60°+cos245°。
2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=(x+1)2﹣2的最小值是()A.﹣2B.﹣1C.1D.22.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.3.若=,则的值为()A.5B.C.3D.4.在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.B.C.D.5.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.当x=﹣1时,y有最大值是2C.对称轴是x=﹣1D.顶点坐标是(1,2)6.下列线段不成比例的是()A.1cm,2cm,3cm,4cm B.1cm,2cm,6cm,12cmC.2cm,1cm,6cm,3cm D.3cm,4cm,6cm,8cm7.对于函数y=x2﹣2|x|﹣3,下列说法正确的有()个①图象关于y轴对称;②有最小值﹣4;③当方程x2﹣2|x|﹣3=m有两个不相等的实数根时,m>﹣3;④直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点时,﹣<b≤﹣3.A.1B.2C.3D.48.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A .80°B .60°C .40°D .30°9.中国最早的一部数学著作《周髀算经》中记载着勾股定理.约1400年后的汉代数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的证明.这就是如图所示的“赵爽弦图”,若|sin a ﹣cos a |=,则小正方形与直角三角形的面积比为( )A .1:B .1:1C .2:D .1:510.如图,在Rt △ABC 中,∠ABC =90°.AB =BC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①=;②若点D 是AB 的中点,则AF =AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若=,则S △ABC =9S △BDF ,其中正确的结论序号是( )A .①②B .③④C .①②③D .①②③④二.填空题(共6小题,满分24分,每小题4分)11.计算:sin30°•cot60°= .12.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么该镇在日常生活中会进行垃圾分类的人数大约为 人.13.如果点P 是线段AB 的黄金分割点(AP >BP ),那么的值是 . 14.如图,AB ∥CD ,∠B =120°,∠D =145°,则∠BED 等于 °.15.圆O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是.16.如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.三.解答题(共7小题,满分66分)17.用配方法求二次函数y=﹣x2﹣x+的对称轴和顶点坐标.18.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.19.如图,在Rt△ABC中,∠A=90°,AC=16cm,AB=8cm,动点D从点B出发,沿BA 方向运动;同时动点E从点A出发,沿AC方向运动.如果点E的运动速度为4cm/s,点D的运动速度为2cm/s,那么运动几秒时,△ABC和△ADE相似?20.如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积21.如图,⊙O的直径AB=16,半径OC⊥AB,D为上一动点(不包括B,C两点),DE⊥OC,DF⊥AB,垂足分别为E,F.(1)求EF的长.(2)若点E为OC的中点,①求劣弧CD的长度;②若点P为直径AB上一动点,直接写出PC+PD的最小值.22.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1.(1)求抛物线顶点C的坐标(用含m的代数式表示);(2)已知点A(0,3),B(2,3),若该抛物线与线段AB有公共点,结合函数图象,求出m的取值范围.23.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:二次函数y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),因此当x=﹣1时,y=最小﹣2,故选:A.2.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.解:由=,得4b=a﹣b.,解得a=5b,==5,故选:A.4.解:在Rt△ABC中,∵∠C=90°,AC=2,又∵cos A==,∴AB=,故选:B.5.解:二次函数y=(x﹣1)2+2的图象的开口向上,故A错误;当x=1时,函数有最小值2,故B错误;对称轴为直线x=1,故C错误;顶点坐标为(1,2),故D正确.故选:D.6.解:A、1×4≠2×3,不成比例;B、1×12=2×6,成比例;C、2×3=1×6,成比例;D、8×3=4×6,成比例;故选:A.7.解:①∵a2﹣2|a|﹣3=(﹣a)2﹣2|﹣a|﹣3,∴y=x2﹣2|x|﹣3的图象关于y轴对称,故①正确;②∵y=x2﹣2|x|﹣3=(|x|﹣1)2﹣4,∴当|x|=1即x=±1时,y有最小值为﹣4,故②正确;③当m=﹣4时,方程x2﹣2|x|﹣3=m为x2﹣2|x|﹣3=﹣4,可化为(|x|﹣1)2=0,解得x=±1,有两个不相等的实数根,此时m=﹣4<﹣3,故③错误;④∵直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点,∴方程x2﹣2|x|﹣3=x+b,即x2﹣2|x|﹣x﹣3﹣b=0有3个解,∴方程x2﹣3x﹣3﹣b=0(x≥0)与方程x2+x﹣3﹣b=0(x<0)一共有3个解,∴当方程x2﹣3x﹣3﹣b=0(x≥0)有两个不相等的非负数根,则方程x2+x﹣3﹣b=0(x <0)有两个相等的负数根;或当方程x2﹣3x﹣3﹣b=0(x≥0)有两个不相等的非负数根,则方程x2+x﹣3﹣b=0(x<0)有一个负数根;或方程x2﹣3x﹣3﹣b=0(x≥0)有一个非负数根或两个相等的非负数根,则方程x2+x﹣3﹣b=0(x<0)有两个不相等的负数根.即或或,解得,b=﹣,或b=﹣3,∴当b=﹣或b=﹣3时,直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点,故④错误;故选:B.8.解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选:C.9.解:如图.在Rt△ABC中,∵∠ACB=90°,∴sinα=,cosα=.∵|sin a﹣cos a|=,∴(﹣)2=()2,∴()2=,即=.设S小正方形=k,则S大正方形=5k,∴S直角三角形=(S大正方形﹣S小正方形)=k,∴==1.故选:B.10.解:依题意可得BC∥AG,∴△AFG∽△CFB,∴,又AB=BC,∴.故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,,∴△ABG ≌△BCD (ASA ),∴AG =BD ,又∵BD =AD ,∴AG =AD ;∵△ABC 为等腰直角三角形,∴AC =AB ;∴AG =AD =AB =BC ;∵△AFG ∽△BFC ,∴=,∴FC =2AF ,∴AF =AC =AB .故结论②正确;当B 、C 、F 、D 四点在同一个圆上时,∵∠ABC =90°,∴CD 是B 、C 、F 、D 四点所在圆的直径,∵BG ⊥CD ,∴, ∴DF =DB ,故③正确;∵,AG =BD ,,∴, ∴=, ∴AF =AC ,∴S △ABF =S △ABC ;∴S △BDF =S △ABF ,∴S △BDF =S △ABC ,即S △ABC =12S △BDF .故结论④错误.故选:C .二.填空题(共6小题,满分24分,每小题4分)11.解:原式=×=.故答案为:. 12.解:由题意可得,该镇在日常生活中会进行垃圾分类的人数大约为: 150000×=30000(人).故答案为:30000.13.解:∵点P 是线段AB 的黄金分割点(AP >BP ),∴==. 故答案为. 14.解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵AB ∥EF ,∴∠BEF =180°﹣∠B =60°;∵CD ∥EF ,∴∠DEF =180°﹣∠D =35°.∴∠BED =∠BEF +∠DEF =95°.故答案为:95.15.解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥ACAC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8,同理可得:OF=6,∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14,综上所述两弦之间的距离为2或14,故答案为:2或14.16.解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三.解答题(共7小题,满分66分)17.解:∵二次函数为,∴二次函数y=﹣(x2+2x+1)++=﹣(x+1)2+2,∴对称轴是直线x=﹣1,顶点坐标为(﹣1,2).18.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.19.解:设同时运动ts时两个三角形相似,根据题意可知:AC=16,AB=8,AD=AB﹣DB=8﹣2t,AE=4t,当△DAE∽△CAB,则=,=,解得t=0.8;当△DAE∽△BAC,则=,=,解得t=2.答:同时运动0.8s或者2s时两个三角形相似.20.解:作AD⊥BC于点D,在Rt△ABD中,sin B=,∴AD=AB•sin B=4×=2,∴△ABC的面积=×BC×AD=×3×2=9.21.解:(1)如图,连接OD,∵⊙O的直径AB=16,∴圆的半径为16÷2=8.∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴EF=OD=8.(2)①∵点E为OC的中点,∴,∴∠EDO=30°,∴∠DOE=60°,∴劣弧CD的长度为.②延长CO交⊙O于点G,连接DG交AB于点P,则PC+PD的最小值为DG.∵,,∴,∴PC+PD的最小值为.22.解:(1)y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,∴抛物线顶点为C(m,﹣1).(2)把A(0,3)的坐标代入y=x2﹣2mx+m2﹣1,得3=m2﹣1,解得,m=±2.把B(2,3)的坐标代入y=x2﹣2mx+m2﹣1,得3=22﹣2m×2+m2﹣1,即m2﹣4m=0,解得,m=0或m=4.结合函数图象可知:﹣2≤m≤0或2≤m≤4.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.。
2020-2021学年浙教版九年级上册数学期末试卷一.选择题(共10小题,满分27分)1.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°2.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生3.国旗上的五角星需要旋转多少度后才能与自身重合()A.36°B.60°C.45°D.72°4.如图,在△ABC中,DE∥BC交AB于点D,交AC于点E,下列比例式中不成立的是()A.=B.=C.=D.=5.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.06.如图.在△ABC中,DE∥BC,∠B=∠ACD,则图中相似三角形有()A.2对B.3对C.4对D.5对7.如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°8.如图,在Rt△ABC中,AC=BC,CD⊥AB于点D,E为BC中点,CD、AE交于点G,则下列结论中不一定正确的是()A.AG=2EGB.C.DG:AD=1:3D.△ADG的面积=四边形BEGD的面积9.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限10.如图,已知⊙O的半径为6,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB 与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.3D.6二.填空题(共6小题,满分24分,每小题4分)11.若a是2,4,6的第四比例项,则a=;若x是4和16的比例中项,则x=.12.在学习了“用频率估计概率”这一节内容后,某课外兴趣小组利用计算器进行模拟试验来探究“6个人中有2个人同月过生日的概率”,他们将试验中获得的数据记录如下:试验次数100300500100016002000“有2个人同月过生日”的次数8022939277912511562“有2个人同月过生日”的频率0.80.7630.7840.7790.7820.781通过试验,该小组估计“6个人中有2个人同月过生日”的概率大约是(精确到0.01).13.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.15.如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.16.如图,平面直角坐标系中,点A(﹣3,﹣3),B(1,﹣1),若抛物线y=ax2+2x﹣1(a≠0)与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是.三.解答题(共7小题)17.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.18.如图,AB、CD为两个建筑物,建筑物AB的高度为90米,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号)19.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.20.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x……﹣3﹣2﹣101……y……03430……(1)求这个二次函数的解析式;(2)在直角坐标系中画出二次函数的图象;(3)结合图象,直接写出当y>0时,x的取值范围.21.如图,在平面直角坐标系中,A、B、C是⊙M上的三个点,A(0,4)、B(4,4)、C(6,2).(1)圆心M的坐标为;(2)判断点D(4,﹣3)与⊙M的位置关系.22.在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣的对称轴与x轴交于点A.(1)求点A的坐标(用含a的代数式表示);(2)若抛物线与x轴交于P,Q两点,且PQ=2,求抛物线解析式;(3)点B的坐标为(0,),若该抛物线与线段AB恰有一个公共点,结合函数图象直接写出a的取值范围.23.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.参考答案与试题解析一.选择题(共10小题,满分27分)1.解:由∠A为锐角,且sin A=,得∠A=45°,故选:C.2.解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.3.解:根据旋转对称图形的概念可知:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而国旗上的每一个正五角星绕着它的中心至少旋转72度能与自身重合.故选:D.4.解:∵DE∥BC,∴△ADE∽△ABC,∴==,=,=,∴=,∴选项A,B,C正确,故选:D.5.解:∵二次函数y=x2﹣(m﹣2)x+4=(x﹣)2﹣+4,∴该函数的顶点坐标为(,﹣+4),∵二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,∴=0或﹣+4=0,解得m=2或m1=﹣2,m2=6,故选:D.6.解:∵∠B=∠ACD,∠A=∠A,∴△ACD ∽△ABC , ∵DE ∥BC , ∴△ADE ∽△ABC , ∴△ACD ∽△ADE , ∵DE ∥BC , ∴∠EDC =∠DCB , ∵∠B =∠DCE , ∴△CDE ∽△BCD , 故共4对, 故选:C . 7.解:∵BC =CD , ∴=,∵∠ABD 和∠ACD 所对的弧都是,∴∠BAC =∠DAC =35°, ∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .8.解:∵在Rt △ABC 中,AC =BC ,CD ⊥AB 于点D , ∴D 为AB 的中点,CD =AD , 又∵E 为BC 中点, ∴点G 为△ABC 的重心,∴AG =2EG ,CG =CD ,DG =CD =AD , ∴DG :AD =1:3, 如图,连接BG ,则S △ADG =S △BDG <S 四边形BDGE ,即D 选项错误, 故选:D .9.解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.10.解:作OE⊥AB于点E,∵⊙O的半径为6,弦CD=6,∴OC=OD=CD,∴△DOC是等边三角形,∴∠DOC=60°,∵∠AOB与∠COD互补,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵OA=6,OE⊥AB,∴AE=OA•cos30°=6×=3,∴AB=2AE=6,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵a是2,4,6的第四比例项,∴2:4=6:a,∴a=12;∵x是4和16的比例中项,∴x2=4×16,解得x=±8.故答案为:12;±8.12.解:通过图表给出的数据得出,该小组估计“6个人中有2个人同月过生日”的概率大约是0.78.故答案为:0.78.13.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.14.解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是两点之间,线段最短.故答案为:小;两点之间,线段最短.15.解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,∴CK=KF==,OK==,∵OB=OC,CK=KF,∴BF=2OK=,∵BC是直径,∴∠BFC=90°,∵∠CBH=90°,∴∠CBF+∠FCB=90°,∠HBF+∠FBC=90°,∴∠HBF=∠FCB,∵∠BFH=∠BFC=90°,∴△BFH∽△CFB,∴BF2=CF•FH=.故答案为.16.解:①a<0时,x=1时,y≤﹣1,x=﹣3时,y≤﹣3,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,x=1时,y≥﹣1,即a≥,点A、B的坐标得,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;故答案为≤a<或a≤﹣2.三.解答题(共7小题)17.解:(1)列表如下:小亮和小明234 22+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.18.解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=90,∴两建筑物底部之间水平距离BD的长度为90米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=90,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=90×=30,又∵FD=90,∴CD=90﹣30,∴建筑物CD的高度为(90﹣30)米.19.解:(1)连接OB,∵OA⊥BC,∴=,∴∠AOC=∠AOB,由圆周角定理得,∠AOB=2∠ADB=60°,∴∠AOC=∠AOB=60°;(2)∵OA⊥BC,∴BE=BC=4,在Rt△BOE中,∠AOB=60°,∴OB==,∴劣弧BC的长==π(cm).20.解:(1)∵抛物线经过点(﹣3,0),(1,0),(0,3),∴设抛物线解析式为y=a(x+3)(x﹣1),把(0,3)代入得3=a(0+3)(0﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)如图,(3)当y>0时,x的取值范围为﹣3<x<1.21.解:(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0)故答案为:2,0.(2)圆的半径AM==2,线段MD==<2,所以点D在⊙M内.22.解:(1)函数的对称轴为:x=a,则点A(a,0);(2)△=4a2﹣4(a2﹣)=4×>0,解得:a>0,x2﹣2ax+a2﹣=0,x1+x2=2a,x1x2=a2﹣,PQ===2,解得:a=1,故抛物线的表达式为:y=x2﹣2x;(3)若该抛物线与线段AB恰有一个公共点,则抛物线与y轴的交点应该在点B的上方,即:≤a2﹣,解得:﹣≤a<0或a≥.23.解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.1、三人行,必有我师。
2020-2021学年初三数学上册期末测试题一、选择题(每小题3分,共30分)1.(3分)若,则=()A.B.C.D.2.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.(3分)下列几何体中,左视图不是矩形的是()A.圆柱B.正四棱锥C.正方体D.直三棱柱4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD,若∠BAD=27°,则∠ACD 的大小为()A.73°B.63°C.54°D.53°5.(3分)下列对二次函数y=2x2+x的图象的描述,正确的是()A.开口向下B.对称轴是x=C.经过原点D.当x<0时,y随x值的增大而增大6.(3分)如图是某几何体的三视图,这个几何体的侧面积是()A.6πB.2πC.πD.3π7.(3分)如图,AD、AE和BC分别切⊙O于点D、E、F,如果AD=18,则△ABC的周长为()A.18 B.27 C.36 D.548.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为()A.B.5 C.或D.2或59.(3分)已知对于抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,M=y2;②当x <0时,M随x值的增大而增大;③M<2;④使得M=1的x值是﹣或.其中正确的个数是()A.1个B.2个C.3个D.4个10.(3分)如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:如图2,在等腰△DEF中,DF=EF,FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ=9,=,则DQ+EQ=()A.10 B.C.6+6D.7二、填空题(每小题3分,共24分)11.(3分)在△ABC中,BC=4,AC=3,AB=5,则tan A的值为.12.(3分)把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为.13.(3分)从2019,﹣2019,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.14.(3分)如图,四边形ABCD∽四边形EFGH,∠A=∠D=100°,∠G=65°,则∠F=.15.(3分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为.16.(3分)如图,在▱ABCD中,AF、BE分别平分∠DAB、∠ABC,点G是AF、BE的交点,AB =5,BC=3,则S△EFG:S△ABG=.17.(3分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C 的坐标为.18.(3分)如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C 作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为.三、解答题(共46分)19.(5分)计算:sin60°+cos245°﹣sin30°•tan60°.20.(6分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=64°,∠BPC=25°.一汽车从点A到点B用时4秒,求这辆汽车在该路段的平均速度.(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05).21.(6分)如图,网格中的每个小正方形的边长为1个单位长度,△ABC的顶点均在格点上.(1)将△ABC绕点A顺时针旋转90°得△ADE(B的对应点是D,C的对应点是E),请画出△ADE.(2)连接BE,在图中所给的网格中找一个格点F,使得△BEF∽△BCA.22.(6分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.23.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线;(2)若BC=6,CD=6,求弦AD的长.24.(8分)如图,在平面直角坐标系中,二次函数y=与x轴交A、B两点(点A在点B的左侧),经过点B的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD=3BC.(1)求点B的坐标及直线l的函数表达式;(2)点E在y轴正半轴上,且ED=EC,求OE的长;(3)点F是抛物线上第一象限内的一点,以F为圆心的圆与直线l相切,切点为G,且以点D、F、G为顶点的三角形与△BOC相似,求点F的坐标.25.(9分)如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若,则=()A.B.C.D.【分析】利用合比性质解答.【解答】解:由,得==.故选:A.2.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件【分析】直接利用概率的意义以及随机事件的概念分别分析得出答案.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,不符合题意;B.“两直线被第三条直线所截,同位角相等”是随机事件,不符合题意;C.天气预报说“明天的降水概率为40%”,表示明天有40%的可能性都在降雨,不符合题意;D.“篮球队员在罚球线上投篮一次,投中”为随机事件,符合题意;故选:D.3.(3分)下列几何体中,左视图不是矩形的是()A.圆柱B.正四棱锥C.正方体D.直三棱柱【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解【解答】解:A.左视图是矩形;B.左视图是三角形;C.左视图是正方形,属于矩形;D,左视图是矩形;故选:B.4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD,若∠BAD=27°,则∠ACD 的大小为()A.73°B.63°C.54°D.53°【分析】先利用圆周角定理得到∠ADB=90°,利用互余计算出∠ABD=63°,然后根据圆周角定理得到∠ACD的度数.【解答】解:连接BD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣27°=63°,∴∠ACD=∠ABD=63°.故选:B.5.(3分)下列对二次函数y=2x2+x的图象的描述,正确的是()A.开口向下B.对称轴是x=C.经过原点D.当x<0时,y随x值的增大而增大【分析】由二次函数的性质利用二次函数的性质可排除A,B,D选项,再利用二次函数图象上点的坐标特征可求出二次函数y=2x2+x的图象经过原点.【解答】解:∵a=2,b=1,c=0,∴二次函数y=2x2+x的图象开口向上;对称轴为直线x=﹣=﹣;在对称轴左侧,y随x值的增大而增大,在对称轴右侧,y随x值的增大而减小,∴选项A,B,D不正确;当x=0时,y=2x2+x=0,∴二次函数y=2x2+x的图象经过原点,选项C正确.故选:C.6.(3分)如图是某几何体的三视图,这个几何体的侧面积是()A.6πB.2πC.πD.3π【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为1,高为3,利用勾股定理求得圆锥的母线长为,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为1,高为3,∴圆锥的母线长为,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×1=2π,∴圆锥的侧面积=lr=×2π×=π,故选:C.7.(3分)如图,AD、AE和BC分别切⊙O于点D、E、F,如果AD=18,则△ABC的周长为()A.18 B.27 C.36 D.54【分析】根据切线长定理,将△ABC的周长转化为切线长求解.【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=2AD=36故选:C.8.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC 的长为()A.B.5 C.或D.2或5【分析】过D作DE⊥AC于E,设DE=x,先根据直角三角形30度角的性质和勾股定理得:x的值,分情况根据三角形相似列比例式计算可得BC的长.【解答】解:如图,过D作DE⊥AC于E,设DE=x,∵∠ACD=30°,∴CE=x,AE=﹣x,Rt△ADE中,由勾股定理得:AD2=DE2+AE2,∴,18x2﹣27x+10=0,(3x﹣2)(6x﹣5)=0,解得:,,①当x=时,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=2,②当x=时,同理得:,BC=5,综上,BC的长为2或5;故选:D.9.(3分)已知对于抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,M=y2;②当x <0时,M随x值的增大而增大;③M<2;④使得M=1的x值是﹣或.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】当x>0时,一次函数图象位于二次函数上方,可对①做出判断;当x<0,两个函数的函数随着x的增大而增大,故可对②做出判断;当x=0时,M=y1=y2有最大值2,故可对③做出判断;分别令y1=1,y2=1结合图象可求得x的取值.【解答】解:当x>0时,一次函数图象位于二次函数上方,∴y2>y1,∴M=y1,故①错误;∵当x<0,两个函数的函数随着x的增大而增大,∴M随x值的增大而增大,故②正确;当x=0时,函数M=y1=y2=2,故③错误;令y1=1,即:﹣2x2+2=1.解得:x1=,x2=﹣(不合题意舍去)令y2=1,得:2x+2=1,解得:x=﹣.故④正确.故选:B.10.(3分)如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:如图2,在等腰△DEF中,DF=EF,FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ=9,=,则DQ+EQ=()A.10 B.C.6+6D.7【分析】由等腰三角形的性质和勾股定理可求EF的长,通过证明△DQE∽△EQF,可得=,即可求解.【解答】解:∵DF=EF,FG是△DEF的中线,∴DG=GE,FG⊥DE,∠FDE=∠FED,∵=,∴设DE=x,则FG=x,∴DG=x∴EF=DF===x∵点Q为△DEF的布洛卡点,∴∠QDF=∠QED=∠QFE,且∠FDE=∠FED,∴∠QDE=∠QEF,且∠QED=∠QFE,∴△DQE∽△EQF∴=∴QE=6,DQ=4∴QE+DE=10故选:A.二、填空题(每小题3分,共24分)11.(3分)在△ABC中,BC=4,AC=3,AB=5,则tan A的值为.【分析】根据勾股定理的逆定理可以判断三角形是直角三角形;根据三角函数的定义求解.【解答】解:∵32+42=52∴△ABC是直角三角形.∴由正切的定义知,tan A===.12.(3分)把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为y=﹣x2+x ﹣3 .【分析】直接利用二次函数图象平移规律进而得出答案.【解答】解:把抛物线y=﹣x2+x向下平移3个单位,则平移后抛物线的解析式为:y=﹣x2+x﹣3.故答案为:y=﹣x2+x﹣3.13.(3分)从2019,﹣2019,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.【分析】画出树状图得出所有等可能的情况数,找出刚好在坐标轴上的点的个数,即可求出所求的概率.【解答】解:根据题意画图如下:所有等可能的情况有6种,其中该点在坐标轴上的情况有4种,所以该点在坐标轴上的概率==;故答案为:.14.(3分)如图,四边形ABCD∽四边形EFGH,∠A=∠D=100°,∠G=65°,则∠F=95°.【分析】利用相似多边形的性质得到∠A=∠D=∠E=∠H=100°,然后根据四边形的内角和计算∠F的度数.【解答】解:∵四边形ABCD∽四边形EFGH,∴∠A=∠D=∠E=∠H=100°,∴∠F=360°﹣∠E﹣∠H﹣∠G=360°﹣100°﹣100°﹣65°=95°.故答案为95°.15.(3分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.【分析】连接OA、OB,根据三角形的面积公式求出S△AOB,根据扇形面积公式求出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,∴S△AOB=×8×8=32,扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.16.(3分)如图,在▱ABCD中,AF、BE分别平分∠DAB、∠ABC,点G是AF、BE的交点,AB =5,BC=3,则S△EFG:S△ABG=1:25 .【分析】要证S△EFG:S△ABG,只要证明△EFG∽△ABG,则有,即可求解.【解答】解:∵BE分别平分ABC∴∠ABE=∠EBC∵在▱ABCD中,DC∥AB∴∠ABE=∠EBC=∠BEC∴CE=BC=3同理可得∠DAF=∠DFA,AD=DF=3∵在▱ABCD中,AB=DC=5∴EF=1∵在△EFG和△ABG中,∴△EFG∽△ABG∴==故答案为:1:2517.(3分)如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C 的坐标为(﹣2,﹣7).【分析】根据待定系数法求得b,得到二次函数的解析式,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,依据全等三角形的性质,即可得出F(2,1),进而得出直线AC的解析式,解方程组即可得到C点坐标.【解答】解:∵点A(3,3)在二次函数y=x2+bx﹣9的图象上,∴9+3b﹣9=3,解得b=1,∴二次函数为y=x2+x﹣9,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB(AAS),设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,∴F(2,1),设直线AC的解析式为y=kx+b,则,解得,∴y=2x﹣3,解方程组,可得或,∴C(﹣2,﹣7),故答案为:(﹣2,﹣7).18.(3分)如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C 作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为﹣.【分析】连接OC、BC,P点为BC的中点,作PH⊥AB于H,如图,利用点C是以AB为直径的半圆的中点得到OC⊥OB,则可判断△BOC、△BPH为等腰直角三角形,再利用∠BEC =90°判断点E在⊙P上,连接AP交⊙P于E′,此时AE′的长为AE的最小值,然后利用勾股定理计算出AP,计算AP﹣PE′即可得到AE的最小值.【解答】解:连接OC、BC,P点为BC的中点,作PH⊥AB于H,如图,∵点C是以AB为直径的半圆的中点,∴OC⊥OB,∴△BOC、△BPH为等腰直角三角形,∴BC=OB=2,BP=,PH=1,∵CE⊥BD,∴∠BEC=90°,∴点E在⊙P上,连接AP交⊙P于E′,此时AE′的长为AE的最小值,在Rt△APH中,AH=3,PH=1,∴AP==,∴AE′=﹣,∴AE的最小值为﹣.故答案为﹣.三、解答题(共46分)19.(5分)计算:sin60°+cos245°﹣sin30°•tan60°.【分析】首先代入特殊角的三角函数值,再计算乘方,后算乘除,最后算加减即可.【解答】解:原式=+﹣×,=+﹣,=.20.(6分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=40米,∠APC=64°,∠BPC=25°.一汽车从点A到点B用时4秒,求这辆汽车在该路段的平均速度.(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05).【分析】直接利用锐角三角函数关系得出AC,BC的长,进而得出AB的长,即可得出答案.【解答】解:在Rt△APC中,AC=PC•tan∠APC≈40×0.47=18.8(m),在Rt△BPC中,BC=PC•tan∠BPC≈40×2.05=82(m),∴AB=AC﹣BC=82﹣18.8=63.2(m),∴汽车的速度为:63.2÷4=15.8(米/秒),答:这辆汽车在该路段的平均速度为15.8米/秒.21.(6分)如图,网格中的每个小正方形的边长为1个单位长度,△ABC的顶点均在格点上.(1)将△ABC绕点A顺时针旋转90°得△ADE(B的对应点是D,C的对应点是E),请画出△ADE.(2)连接BE,在图中所给的网格中找一个格点F,使得△BEF∽△BCA.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用相似三角形的判定方法分析得出答案.【解答】解:(1)如图所示:△ADE,即为所求;(2)如图所示:△BEF∽△BCA.22.(6分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.【分析】(1)设布袋里红球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)设布袋里红球有x个,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,所以布袋里有1个红球;(2)列表如下:白黑黑红白(白,黑)(白,黑)(白,红)黑(黑,白)(黑,黑)(黑,红)黑(黑,白)(黑,黑)(黑,红)红(红,白)(红,黑)(红,黑)由表知,共有12种等可能结果,其中两个球中有红球的有6种情况,两个球中没有红球的有6种情况,∴P(小亮胜)=P(小丽胜)=,∴这个游戏公平.23.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线;(2)若BC=6,CD=6,求弦AD的长.【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(6)2=3CA,推出CA=12,推出AB=CA﹣BC=6,,设BD=k,AD=2k,在Rt △ADB中,可得2k2+4k2=36,求出k即可解决问题.【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)解:连接BD.∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB•CA,∴(6)2=3CA,∴CA=12,∴AB=CA﹣BC=6,,设BD=k,AD=2k,在Rt△ADB中,2k2+4k2=36,∴k=,∴AD=2.24.(8分)如图,在平面直角坐标系中,二次函数y=与x轴交A、B两点(点A在点B的左侧),经过点B的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD=3BC.(1)求点B的坐标及直线l的函数表达式;(2)点E在y轴正半轴上,且ED=EC,求OE的长;(3)点F是抛物线上第一象限内的一点,以F为圆心的圆与直线l相切,切点为G,且以点D、F、G为顶点的三角形与△BOC相似,求点F的坐标.【分析】(1)把y=0代入解析式得出B的坐标,进而利用待定系数法得出直线的解析式即可;(2)过点D作DM⊥y轴,利用勾股定理解答即可;(3)(a)根据△FGD与△COB时,利用相似三角形的性质解答即可;(b)根据△DGF与△COB时,利用相似三角形的性质解答即可.【解答】解:(1)当y=0时,,∴x1=﹣2,x2=1,所以点B的坐标为(1,0),由CD=3BC可得:x D=﹣3,所以点D的坐标为(﹣3,2),设直线l:y=kx+b,把B,D代入得:,解得:,所以直线l的函数解析式为:y=﹣x+;(2)由(1)得:C(0,),设OE=m,则DE=EC=m﹣,过点D作DM⊥y轴,如图1,则DM=3,ME=m﹣2,由勾股定理,得,解得:m=,即OE=;(3)(a)如图2,当△FGD∽△COB时,∵∠FDG=∠CBO,∴DF∥x轴,∴y F=2,∴,解得:x1=2,x2=﹣3(舍去),∴F(2,2);(b)如图3,当△DGF∽△COB,∴∠FDG=∠ECO=∠BCO,∴ED=EC,由(2)得,F为直线DE与抛物线的另一个交点,设直线DE的解析式为:y=,把D(﹣3,2)代入,得:,解得:k=,所以y=,由,解得:,x2=﹣3(舍去),此时,所以点F的坐标为(,),综上所述,点F坐标为(2,2)或(,).25.(9分)如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;(2)根据题意,三角形相似、勾股定理可以求得的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出的值.【解答】解:(1)∵BC=OB=OC,∴∠COB=60°,∴∠CDB=∠COB=30°,∵OC=OD,点E为CD中点,∴OE⊥CD,∴∠GED=90°,∴∠DGE=60°;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3∵∠COB=60°∴OH==1,∴HF=OH=,HB=OB﹣OH=2,在Rt△BHF中,BF==,由OC=OB,∠COB=60°得:∠OCB=60°,又∵∠OGB=∠DGE=60°,∴∠OGB=∠OCB,∵∠OFG=∠CFB,∴△FGO∽△FCB,∴,∴GF=,∴;(3)过点F作FH⊥AB于点H,设OF=1,则CF=k,OB=OC=k+1,∵∠COB=60°,∴OH=,∴HF=,HB=OB﹣OH=k+,在Rt△BHF中,BF=,由(2)得:△FGO∽△FCB,∴,即,∴GO=,过点C作CP⊥BD于点P∵∠CDB=30°∴PC=CD,∵点E是CD中点,∴DE=CD,∴PC=DE,∵DE⊥OE,∴.1、三人行,必有我师。
2020-2021学年浙教新版九年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()千米.A.672B.1008C.3362.如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=()A.(180﹣n)°B.n°C.(90﹣n)°D.(90+n)°3.过钝角三角形的三个顶点作圆,其圆心在()A.三角形内B.三角形上C.三角形外D.以上都有可能4.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为y=﹣2(x﹣3)2+1.A.y=﹣2(x﹣5)2+2B.y=﹣2(x﹣1)2C.y=﹣2(x﹣2)2﹣1D.y=﹣2(x﹣4)2+35.已知⊙O的直径为13cm,圆心O到直线l的距离为6.5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切6.青田林业局考察一种树苗移植的成活率,将调查数据绘制成统计图,则可估计这种树苗移植成活的概率约是()A.0.95B.0.90C.0.85D.0.807.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04 A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,则OP长的取值范围为()A.OP<5B.8<OP<10C.3<OP<5D.3≤OP≤59.如图,AB为⊙O的直径,AB=4,点C为半圆AB上动点,以BC为边在⊙O外作正方形BCDE,(点D在直线AB的上方)连接OD.当点C运动时,则线段OD的长()A.随点C的运动而变化,最大值为2+2B.不变C.随点C的运动而变化,最大值为2D.随点C的运动而变化,但无最值10.如图,矩形ABCD中,AB=6cm,BC=3cm,动点P从A点出发以1cm/秒向终点B运动,动点Q同时从A点出发以2cm/秒按A→D→C→B的方向在边AD,DC,CB上运动,设运动时间为x(秒),那么△APQ的面积y(cm2)随着时间x(秒)变化的函数图象大致为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.12.如图,△ABC中,DE∥BC,G为BC上一点,连接AG交DE于F,已知AD=3、AB =8、FG=4,则AG=.13.要用半径为1的圆形铁片截出一个最大的正方形,这个正方形的边长为.14.已知抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),比较y1与y2的大小:y1 y2(选择“>”或“<”或“=”填入空格).15.如图,在平面直角坐标系中,等边△OAB的边长为6,把△OAB沿AB所在的直线翻折,点O落在点C处,则点C的坐标为.16.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.三.解答题(共8小题,满分66分)17.计算:①②.18.如图1,一扇窗户打开一定角度,其中一端固定在窗户边OM上的点A处,另一端B 在边ON上滑动,图2为某一位置从上往下看的平面图,测得∠ABO为37°,∠AOB为45°,OB长为35厘米,求AB的长(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)19.有A、B两个不透明的盒子,A盒里有两张卡片,分别标有数字1、2,B盒里有三张卡片,分别标有数字3、4、5,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡片、抽到的卡片上标有数字为奇数的概率是;(2)从A盒、B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于5的概率.20.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).21.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.22.如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.(1)如图1,AB是⊙O的直径;(2)如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;(3)如图3,在(2)的条件下,MN与⊙O相切于点M,交E B的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN=AB,EN=26,求线段CD的长.23.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.24.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:5.6÷×(﹣)=168000000×=33600000(厘米),33600000厘米=336千米.故两天行的路程差是336千米.故选:C.2.解:∵四边形A BCD是⊙O的内接四边形,∴∠DCE=∠A=n°,故选:B.3.解:过三角形的三个顶点的圆是三角形外接圆,当过锐角三角形三个顶点,圆心在三角形内部;当过直角三角形三个顶点,圆心在三角形斜边上;当过钝角三角形三个顶点,圆心在三角形外部;故选:C.4.解:∵将y=﹣2(x﹣3)2+1,先向上平移1个单位长度,再向右平移2个单位长度得到y=﹣2(x﹣5)2+2,∴平移前抛物线的解析式是:y=﹣2(x﹣5)2+2.故选:A.5.解:∵⊙O的直径为13cm,∴⊙O的半径为6.5cm,∵圆心O到直线l的距离为6.5cm,∴直线l与⊙O相切.故选:B.6.解:这种树苗成活的频率稳定在0.9,成活的概率估计值约是0.9.故选:B.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:OP最长时,应该与A或B重合,此时OP=5;OP最短时,应该是OP⊥AB时,此时OP==3.故选:D.9.解:通过旋转观察如图可当DO⊥AB时,DO最长,设DO与⊙O交于点M,连接CM,BD,OC.理由:∵△OBM,△BCD都是等腰直角三角形,∴∠OBM=∠CBD,∴∠OBC=∠MBD,∵==,∴△OBC∽△MBD,∴MD:OC=BD:BC=,∴MD=OC=2,∴点D的运动轨迹是以M为圆心2为半径的圆,∴当D,M,O共线,即DO⊥AB时,DO最长.∵∠MCB=∠MOB=×90°=45°,∴∠DCM=∠BCM=45°,∵四边形BCDE是正方形,∴C、M、E共线,∠DEM=∠BEM,在△EMD和△EMB中,,∴△MED≌△MEB,∴DM=BM===2,∴OD的最大值=2+2.故选:A.10.解:根据题意可知:AP=x,AQ=2x,①当点Q在AD上运动时,y=•AP•AQ=x•2x=x2,为开口向上的二次函数;②当点Q在DC上运动时,y=AP•DA=x×3=x,为一次函数;③当点Q在BC上运动时,y=•AP•BQ=•x•(12﹣2x)=﹣x2+6x,为开口向下的二次函数.结合图象可知A选项函数关系图正确.故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),∴圆锥的底面半径为10π÷2π=5(cm),∴圆锥的高为:=5(cm).故答案是:5cm.12.解:∵DE∥BC,∴,即,∴AF=,∴AG=AF+FG=+4=,故答案为:.13.解:如图:要使截得的正方形最大,则ABCD应是⊙O的内接正方形,连接OA,OB,在直角三角形AOB中,AB==.故答案为:.14.解:∵抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),∴y1=(﹣1)2﹣2×(﹣1)+c=3+c,y2=22﹣2×2+c=c,∵y1﹣y2=3>0,∴y1>y2,故答案是:>.15.解:过B作BD⊥x轴于D;在Rt△OBD中,OB=6,∠BOD=60°,则:OD=3,BD=3;∴B(3,3);由折叠的性质知:BC=OB=6,故C(9,3).故答案为:(9,3).16.解:如图所示,共有4种涂黑的方法,故答案为:4.三.解答题(共8小题,满分66分)17.解:①原式=2×﹣=6﹣;②原式=4+1﹣=4+1﹣1=4.18.解:作AC⊥OB于点C,如右图2所示,则∠ACO=∠ACB=90°,∵∠AOC=45°,∴∠AOC=∠COA=45°,∴AC=OC,设AC=x,则OC=x,BC=35﹣x,∵∠ABC=37°,tan37°≈0.75,∴=0.75,解得,x=15,∴35﹣x=20,∴AB==25(厘米),即AB的长为25厘米.19.解:(1)从A盒里抽取一张卡片,抽到的卡片上标有数字为奇数的概率为;故答案为:;(2)画树状图得:共有6种等可能的结果,抽到的两张卡片上标有的数字之和大于5的有3种情况,∴两次抽取的卡片上数字之和大于5的概率为=.20.解:(1)七块拼板的总面积=(2)×2=8,故答案为8.(2)答案如图所示.(3)答案如图所示.21.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,=18000元,∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.22.解(1)如图1,连接BD.∵=,∴∠BDC=∠ADC=45°,∴∠ADB=90°,∴AB是圆O的直径.(2)如图2,连接OG、OD、BD.则OA=OD=OB,∴∠OAD=∠ODA,∠OBD=∠ODB,∴∠DOB=∠OAD+∠ODA=2∠BAD,∵∠FGC=2∠BAD,∴∠DOB=∠FGC=∠BGD,∴B、G、O、D四点共圆,∴∠ODE=∠OBG,∵BE⊥CD,∠BDC=45°,∴∠EBD=45°=∠EDB,∴∠OBE=∠ODE=∠OBG,∴BA平分∠FBE.(3)如图3,连接AC、BC、CO、DO、EO、BD.∵AC=BC,∴AC=BC,∵AB为直径,∴∠ACB=90°,∠CAB=∠CBA=45°,CO⊥AB,延长CO交圆O于点K,则∠DOK=∠OCD+∠ODC=2∠ODC=2∠OBE=2∠FBA,连接DM、OM,则∠MOD=2∠MAD,∵2∠MAD+∠FBA=135°,∴∠MOD+∠FBA=135°,∴2∠MOD+2∠FBA=270°,∴2∠MOD+∠DOK=270°,∵∠AOM+∠DOM+∠KOK=270°,∴∠AOM=∠DOM,∴AM=DM,连接MO并延长交AD于H,则∠MHA=∠MHD=90°,AH=DH,设MH与BC交于点R,连接AR,则AR=DR,∵∠ADC=45°,∴∠ARD=∠ARC=90°,△ADR是等腰直角三角形,∴∠BRH=∠ARH=45°∵∠ACR+∠BCE=∠BCE+∠CBE=90°,∴∠ACR=∠CBE,∴△ACR≌△CBE(AAS),∴CR=BE=ED,作EQ⊥MN于Q,则∠EQN=∠EQM=90°,连接OE,则OE垂直平分BD,∴OE∥AD∥MN,∴四边形OEQM是矩形,∴OM=EQ,OE=MQ,延长DB交MN于点P,∵∠PBN=∠EBD=45°,∴∠BNP=45°,∴△EQN是等腰直角三角形,∴EQ=QN=EN=13,∴OA=OB=OC=OD=OM═13,AB=2OA=26,∴BC=OC=26,∵MN=AB=20,∴OE=MQ=MN﹣QN=20﹣13=7,∵∠ORE=45°,∠EOR=90°,∴△OER是等腰直角三角形,∴RE=OE=14,设BE=CR=x,则CE=14+x,在Rt△CBE中:BC2=CE2+BE2,∴262=(x+14)2+x2,解得x=10,∴CD=CR+RE+DE=10+14+10=34.23.解:(1)如图1中,连接BE,CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∠BAD=∠CAD=30°,∴AD=BD=4,∵△AEF是等边三角形,∴∠EAF=60°,∴∠EAG=∠GAF=30°,∴EG=GF,∵AE=2,∴DE=AE=2,∴BE===2,∵△ABC,△AEF是等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EN=CN,EG=FG,∴GN=CF=.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=,∵BJ=AD=4,∴BN≤BJ+JN,∴BN≤5,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=,JN=,∴KN=,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=×=,=•AD•NH=×4×=7.∴S△ADN24.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+4x﹣1;(2)设直线AB的表达式为:y=kx+t,则,解得,故直线AB的表达式为:y=x﹣1,过点P作y轴的平行线交AB于点H,设点P(x,x2+4x﹣1),则H(x,x﹣1),△PAB面积S=×PH×(x B﹣x A)=(x﹣1﹣x2﹣4x+1)×(0+3)=﹣x2﹣x,∵<0,故S有最大值,当x=﹣时,S的最大值为;(3)抛物线的表达式为:y=x2+4x﹣1=(x+2)2﹣5,则平移后的抛物线表达式为:y=x2﹣5,联立上述两式并解得:,故点C(﹣1,﹣4);设点D(﹣2,m)、点E(s,t),而点B、C的坐标分别为(0,﹣1)、(﹣1,﹣4);①当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即﹣2+1=s且m+3=t①或﹣2﹣1=s且m﹣3=t②,当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=﹣1,t=2或﹣4(舍去﹣4),故点E(﹣1,2);联立②④并解得:s=﹣3,t=﹣4±,故点E(﹣3,﹣4)或(﹣3,﹣4﹣);②当BC为菱形的的对角线时,则由中点公式得:﹣1=s﹣2且﹣4﹣1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=﹣3,故点E(1,﹣3),综上,点E的坐标为:(﹣1,2)或(﹣3,﹣4)或(﹣3,﹣4﹣)或(1,﹣3).。