高中数学第一章常用逻辑用语章末综合检测一含解析新人教A版选修11
- 格式:doc
- 大小:109.50 KB
- 文档页数:6
【名师一号】2014-2015学年高中数学 第一章 常用逻辑用语单元同步测试(含解析)新人教A 版选修1-1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 本题考查充要条件的判断,∵a >0⇒|a |>0,|a |>0D ⇒/a >0,∴“a >0”是“|a |>0”的充分不必要条件.答案 A2.命题“∀x ∈R ,x 2-2x +4≤0”的否定为( ) A .∀x ∈R ,x 2-2x +4≥0 B .∀x ∉R ,x 2-2x +4≤0 C .∃x ∈R ,x 2-2x +4>0 D .∃x ∉R ,x 2-2x +4>0答案 C3.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 tan(2k π+π4)=tan π4=1,所以充分;但反之不成立,如tan 5π4=1.答案 A4.下列命题中的假命题是( ) A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2解析 对于B 选项x =1时,(x -1)2=0,故选B. 答案 B5.如果命题“綈p ”为真,命题“p ∧q ”为假,那么( ) A .q 为假 B .q 为真C .p 或q 为真D .p 或q 不一定为真解析 ∵命题“綈p ”为真,∴命题“p ”为假,又“p ∧q ”为假,∴q 可真也可以假.∴p 或q 可真也可以假,故应选D. 答案 D6.下列说法正确的是( )①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真; ③一个命题的逆命题为真,它的否命题一定为真; ④一个命题的逆否命题为真,它的否命题一定为真. A .①② B .②③ C .③④ D .②③④答案 B7.设{a n }是首项大于零的等比数列,则“a 1<a 2”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C8.下列命题中的假命题是( ) A. ∀x >0且x ≠1,都有x +1x>2B. ∀a ∈R ,直线ax +y =a 恒过定点(1,0)C. ∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减 解析 A .当x >0时,x +1x≥2x ·1x=2,∵x ≠1,∴x +1x>2,故A 为真命题.B .将(1,0)代入直线ax +y =a 成立,B 为真命题.C .当φ=π2时,函数y =sin(x +π2)是偶函数,C 为假命题.D .当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.答案 C9.下列选项中,p 是q 的必要不充分条件是( ) A .p :a +c >b +d ,q :a >b ,且c >dB .p :a >1,b >1,q :f (x )=a x-b (a >0,且a ≠1)的图象不过第二象限 C. p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数 答案 A10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈N ,x 3>x ”的否定是“∃x 0∈N ,x 30>x 0”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”的必要不充分条件 D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件解析 ∵“负数的平方是正数”即∀x <0,则x 2>0,是全称命题,∴A 不正确;∵对全称命题“∀x ∈N ,x 3>x ”的否定是“∃x 0∈N ,x 30≤x 0”,∴B 不正确;∵f (x )=cos 2ax -sin 2ax =cos2ax ,当最小正周期为π时,有2π|2a |=π.∴|a |=1D ⇒a =1,∴a =1是“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故C 不正确;D 正确.答案 D11.下列四个命题中,其中真命题是( ) ①“若xy =1,则lg x +lg y =0”的逆命题; ②“若a ·b =a ·c ,则a ⊥(b -c )”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④“等边三角形的三个内角均为60°”的逆命题. A .①② B .①②③④ C .②③④D .①③④解析 ①逆命题:“若lg x +lg y =0,则xy =1”为真命题.②逆命题:“若a ⊥(b -c ),则a ·b =a ·c ”为真命题,根据逆命题与否命题的等价性,则否命题也为真命题.③当b ≤0时,Δ=4b 2-4(b 2+b )=-4b ≥0,知方程有实根,故原命题为真命题,所以逆否命题也为真命题.④真命题. 答案 B12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析 ∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,或a ≥1.∴a ≤-2,或a =1. 答案 A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.写出命题:“若方程ax 2-bx +c =0的两根均大于0,则ac >0”的一个等价命题是________.解析 一个命题与其逆否命题等价,因此只要写出原命题的逆否命题即可. 答案 若ac ≤0,则方程ax 2-bx +c =0的两根不都大于014.已知p :x 2-x ≥2,q :|x -2|≤1,且p ∧q 与綈q 同时为假命题,则实数x 的取值范围为________.解析 由x 2-x ≥2,得x ≥2,或x ≤-1, |x -2|≤1,得1≤x ≤3, ∵p ∧q 与綈q 同时为假命题, ∴q 为真命题,p 为假命题,∴1≤x <2. 答案 1≤x <215.已知直线l 1:2x -my +1=0与l 2:x +(m -1)y -1=0,则“m =2”是l 1⊥l 2的________条件.解析 若l 1⊥l 2,只需2×1+(-m )(m -1)=0, 即m 2-m -2=0,即m =2,或m =-1, ∴m =2是l 1⊥l 2的充分不必要条件. 答案 充分不必要 16.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”; ②若a ,b ∈R ,则2a <2b是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin(-3x -π4)(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为2π3,则|a +b |= 3.其中正确的说法是________. 解析 ①正确.②若2a <2b,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a <b ,∴2a<2b.故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin[-3(x -π4)]=sin(-3x+3π4),故③不正确. ④由题可知,a ·b =1×2cos 2π3=-1,∴|a +b |2=a 2+2a ·b +b 2=3,∴|a +b |=3,故④正确.答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)平面内,凸多边形的外角和等于360°; (2)有一些奇函数的图象过原点; (3)∃x 0∈R,2x 20+x 0+1<0; (4)∀x ∈R ,sin x +cos x ≤ 2.解 (1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题. (3)是特称命题.∵2x 20+x 0+1=2(x 0+14)2+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin(x +π4)≤2恒成立,∴对任意的实数x ,sin x+cos x ≤2都成立,故该命题是真命题.18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解 逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)设集合M ={x |y =log 2(x -2)},P ={x |y =3-x },则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?解 由题设知,M ={x |x >2},P ={x |x ≤3}. ∴M ∩P =(2,3],M ∪P =R 当x ∈M ,或x ∈P 时x ∈(M ∪P )=RD ⇒/x ∈(2,3]=M ∩P .而x ∈(M ∩P )⇒x ∈R∴x ∈(M ∩P )⇒x ∈M ,或x ∈P .故“x ∈M ,或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件. 20.(12分)写出下列各命题的否定形式并分别判断它们的真假. (1)面积相等的三角形是全等三角形; (2)有些质数是奇数; (3)所有的方程都不是不等式; (4)自然数的平方是正数. 解 原命题的否定形式:(1)面积相等的三角形不一定是全等三角形,为真命题. (2)所有质数都不是奇数,为假命题. (3)至少存在一个方程是不等式,为假命题. (4)自然数的平方不都是正数,为真命题.21.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.解 对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点, 那么Δ=(2a -3)2-4>0, 即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题, 那么0<a <12或a >52.如果q 为假命题,那么12≤a <1,或1<a ≤52.∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假. 如果p 真q 假,那么⎩⎪⎨⎪⎧0<a <1,12≤a <1,或1<a ≤52,⇔12≤a <1.如果p 假q 真,那么⎩⎪⎨⎪⎧a >1,0<a <12,或a >52,⇔a >52.∴a 的取值范围是[12,1)∪(52,+∞).22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0.命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)当a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解 (1)由x 2-4ax +3a 2<0,得a <x <3a (a >0). 当a =1时,1<x <3,所以p :1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得2<x ≤3,所以q :2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是{x |2<x <3}.(2)设A ={x |x 2-4ax +3a 2<0,a >0}={x |a <x <3a ,a >0},B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x 2-x -6<0,x 2+2x -8>0={x |2<x ≤3}.根据题意可得B A ,则0<a ≤2且3a >3,即1<a ≤2. 故实数a 的取值范围是{a |1<a ≤2}.。
优质教案 推荐下载第一章检测 (B)(时间 :90 分钟满分 :120 分)一、选择题 (本大题共 10 小题 ,每小题 5 分,共 50 分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 )1.命题 ?x 0∈?R Q∈ Q 的否定是 ()A. ?x 0?? R Q∈ Q B. ?x 0∈ ?R Q ? QC.? x?? R Q ,x 3∈ Q D. ?x ∈ ?R Q ,x 3? Q 答案 :D2.已知命题 p:?x 0∈ (-∞,0) 命题 ? x ∈ (0,1),log 2x< 0,则下列命题为真命题的是 () A. p ∧ q B. p ∨( q) C.( p)∧ q D. p ∧ (q)答案 :C3.设 a,b 为正实数 ,则 “a>b> 1”是“ log 2a> log 2b> 0”的 ( )A. 充要条件B. 充分不必要条件C.必要不充分条件D. 既不充分也不必要条件解析 :因为函数 y= log 2x 在 (0,+∞)上是增函数 .故 a>b> 1? log 2a> log 2b> log 21= 0.且 log 2a> log 2b> 0? a>b> 1.故 a>b> 1 是 log 2a> log 2b> 0 的充要条件 .答案 :A4.一元二次方程 ax 2+ 4x+3= 0(a ≠ 0)有一个正根和一个负根的充分不必要条件是() A. a< 0B. a> 0C.a<- 1D. a> 1解析 :一元二次方程 ax 2+4x+ 3= 0(a ≠ 0)有一个正根和一个负根 ? 解得 a< 0,故 a<- 1 是它的一个充分不必要条件 . 答案 :C5.已知 “x>k ”是 的充分不必要条件 则 的取值范围是A.[2, +∞)B.[1, +∞)C.(2,+∞)D.( -∞,-1]解析 :由 可得-的充分不必要条件 ,所以 x<- 1 或 x> 2.因为 “x>k ”是所以 k ≥2.答案 :A6.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A. 原命题真 ,逆命题假B. 原命题假 ,逆命题真C.原命题真 ,逆命题真D. 原命题假 ,逆命题假解析 :原命题的逆否命题:若 a,b 都小于 1,则 a+b< 2,是真命题 ,所以原命题为真命题 ; 原命题的逆命题 : 若 a,b 中至少有一个不小于1,则 a+b ≥2,如 a= 3,b=- 3 满足条件 a,b 中至少有一个不小于1,但此时a+b= 0,故逆命题为假命题 .答案 :A7.f(x),g(x)是定义在 R 上的函数,h( x)=f (x)+g (x), f(x),g(x)“均为偶函数”是“h(x)为偶函数”的 ( )A. 充要条件B. 充分不必要条件C.必要不充分条件D. 既不充分也不必要条件解析 :若 f(x),g(x)均为偶函数,则 h(-x)=f (-x) +g (-x)=f (x)+g (x)=h (x),所以 h(x)为偶函数 ;若 h(x)为偶函数 ,则 f(x),g(x)不一定均为偶函数.可举反例说明 ,如 f(x)=x ,g(x)=x 2-x+ 2,则 h(x)=f (x)+g (x)=x 2+ 2 为偶函数 .答案 :B8.下列命题中是假命题的是()A. ?m0∈R ,f(x)= (m0-1 - 是幂函数且在上单调递减B.? x∈ (0,+∞),sin x<xC.? α0,β0∈R,cos(α0+ β0) =cos α0+ sin β0D.? φ∈R ,函数 f(x)= sin(2x+ φ)都不是偶函数解析 :对于选项 A, 当 m0 =2 时 ,满足 f(x)= (m0-1 - 是幂函数 ,即 f(x) 则 f( x)在 (0,+∞)上单调递减,故选项 A 为真命题 ;对于选项 B, 由三角函数线知当 x∈ , 时 ,sin x<x ;当 x∈ , 时 ,sinx≤1故选项 B 为真命题 ; 对于选项 C,当β0= 0 时 ,cos(α0+ β0)= cos α0+sin β0成立 ,所以选项 C 为真命题 ;对于选项 D,当φ时 ,f(x)= cos 2x 为偶函数 ,所以选项 D 为假命题 ,故选 D.答案 :D9.已知平面α,命题甲:若a∥ α,b∥ α,则a∥b,命题乙:若a⊥ α,b⊥ α,则a∥b,则下列说法正确的是()A. 当 a,b 均为直线时 ,命题甲、乙都是真命题B.当 a,b 均为平面时 ,命题甲、乙都是真命题C.当 a 为直线 ,b 为平面时 ,命题甲、乙都是真命题D.当 a 为平面 ,b 为直线时 ,命题甲、乙都是假命题解析 :对于选项 A, 当 a,b 均为直线时 ,命题甲是假命题、乙是真命题,故不正确 ;对于选项 B,当 a,b 均为平面时 ,命题甲是真命题、乙是假命题,故不正确 ;对于选项 C,当 a 为直线 ,b 为平面时 ,命题甲、乙都是假命题 ,故不正确 ;对于选项D,当 a 为平面 ,b 为直线时 ,命题甲、乙都是假命题,正确 .答案 :D10.有下列命题 :① “若 x+y> 0,则 x>0,且 y> 0”的否命题 ; ② “矩形的对角线相等 ”的否命题 ;③ “若 m ≥ 1,则 mx 2-2(m+ 1)x+m+ 3> 0 的解集是 R ”的逆命题 ;④ “若 a+ 7 是无理数 ,则 a 是无理数 ”的逆否命题 .其中真命题是()A. ①②③B. ②③④C.①③④D. ①④解析 :① 的逆命题为 “若 x> 0,且 y> 0,则 x+y> 0”为真 ,故否命题为真;② 的否命题为 “不是矩形的图形对角线不相等”,为假 ;③ 的逆命题为 “若 mx 2-2(m+ 1)x+m+ 3> 0 的解集为 R ,则 m ≥ 1.”∵当 m= 0 时 ,解集不是 R ,∴ 应有, 即 m> 1.∴③ 是真命题 ;,④ 原命题为真 ,逆否命题也为真 .答案 :C二、填空题 (本大题共 5 小题 ,每小题 5 分,共 25 分.把答案填在题中的横线上 )11.命题 “若 a>b ,则 2a >2b- 1”的否命题为 .a b答案 :若 a ≤b,则 2 ≤2-112.命题 p:若 a,b ∈ R ,则 “ab= 0”是“a= 0”的充分条件 ;命题 q: 函数 y - 的定义域是 则 ∨q ”“p ∧ q ”“ p ”中是真命题的为.解析 :p 为假命题 ,q 为真命题 ,故 p ∨ q 为真命题 ,p 为真命题 .答案 :p ∨ q, p13.已知 p(x):x 2+ 2x-m> 0,若 p(1)为假 ,p(2)为真 ,则实数 m 的取值范围为.解析 :因为 p(1) 为假 ,所以 1+ 2-m ≤0,解得 m ≥3;又 p(2) 为真 ,所以 4+ 4-m> 0,解得 m< 8.故实数 m 的取值范围是 [3,8) .答案 :[3,8)14.已知 p:-4<x-a< 4,q:(x-2)(3-x)> 0,若 p 是 q 的充分条件 ,则实数 a 的取值范围是.解析 :p:a-4<x<a+ 4,q:2<x< 3.由 p 是 q 的充分条件 ,可知 q 是 p 的充分条件 ,即 q? p,-, 解得 - 1≤a ≤6.,答案 :[-1,6]15.给出以下四个命题 :①若 ab≤0,则 a≤0或 b≤0;2 2③在△ABC 中 ,若 sin A= sin B,则 A=B ;2 2④在一元二次方程 ax +bx+c= 0 中 ,若 b -4ac< 0,则方程有实数根 .其中原命题、逆命题、否命题、逆否命题均为真命题的是.(填序号 )解析 :对命题① ,其原命题和逆否命题为真,但逆命题和否命题为假;对命题② ,其原命题和逆否命题为假,但逆命题和否命题为真 ;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④ ,其原命题、逆命题、否命题、逆否命题全部为假.答案 :③三、解答题 (本大题共 5 小题 ,共 45 分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)写出命题“若-则且的逆命题、否命题、逆否命题并判断它们的真假解 :逆命题 : 若 x=2,且 y=- 1,则-真命题.否命题 :若 - ≠ 0,则 x≠2或 y≠-1,真命题 .逆否命题 : 若 x≠2或 y≠-1,则-≠ 0,真命题.17.(8分)设p:关于x的不等式如果 p 和 q 有且仅有一个为真解 :当 p 真时 ,0<a< 1.x 2a > 1(a> 0,且 a≠ 1)的解集为 { x|x< 0}; q:函数 y= lg(ax -x+a )的定义域为R.当 q 真时,即 a - ,∴p 假时 ,a> 1,q 假时 ,a≤又 p 和 q 有且仅有一个为真,∴当 p 真 q 假时 ,0<a ≤当 p 假 q 真时 ,a> 1. 综上 ,得 a∈,∪ (1,+∞).18.(9 分) 已知 m ∈ R ,设 p:x 1 和 x 2 是方程 x 2-ax-2= 0 的两个根 ,不等式 |m-5|≤|x 1-x 2|对任意实数 a ∈ [1,2] 恒成立 ;q:函数 f(x)= 3x 2+ 2mx+m 有两个不同的零点 求使 且 为真命题的实数 的取值范围解 :由题设 ,得 x 1+x 2=a ,x 1x 2=- 2,∴ |x 1-x 2| ) -当 a ∈ [1,2] 时的最小值为 3.要使 |m-5|≤|x 1-x 2| 对任意实数 a ∈[1,2] 恒成立 ,只需 |m-5|≤ 3,即 2≤m ≤8.2的判别式 Δ=4m 2解得 m<- 1由已知 ,得 3x + 2mx+m-1或 m>4.综上 ,要使 “p 且 q ”为真命题 ,只需 p 和 q 都是真命题 ,即,解得实数 m 的取值范 , - 或围是 (4,8] .19.(10 分 )已知 a> 1,命题 p:a(x-2)+ 2> 0,命题 q:(x-1) 2>a (x-2)+1.若 p 或q 为真 , q 为假 ,求实数 x 的取值范围 .解 :命题 p:a(x-2)+ 2> 0,即 x-2>解得 x> 22命题q:x -(2+a )x+ 2a> 0,即 (x-2)(x-a)> 0.若 p 或 q 为真 , q 为假 ,则 p 真 ,q 真.① 若 1<a< 2,则 q:x<a 或 x>2.若命题 p,q 同时成立 ,则 2或x> 2.即 x 的取值范围是- ,∪ (2,+∞).② 若 a= 2,则 p:x>1,q:x ≠2.若命题 p,q 同时成立 ,则 x> 1,且 x ≠2.即 x 的取值范围是 (1,2)∪ (2,+∞).③ 若 a> 2,则 q:x<2 或 x>a.若命题 p,q 同时成立 ,则 2或x>a.即 x 的取值范围是- ,∪ (a,+∞).20.(10分)已知c> 0,设命题p:y=c x为减函数,命题q:函数f(x)=x在,上恒成立若∨q 为真命题 ,p∧ q 为假命题 ,求 c 的取值范围 .解 :由 p∨ q 为真 ,p∧ q 为假 ,知 p 与 q 为一真一假 ,对 p,q 进行分类讨论即可.若p 真 ,由 y=c x为减函数 ,得 0<c< 1.当 x∈,时,由不等式x≥ 2x= 1时取等号)知,f(x)=x在,上的最小值为2,若q 真,则即c若p 真 q 假,则 0<c< 1,c≤所以 0<c ≤若 p 假 q 真,则 c≥1,c所以c≥1.综上可得 ,c∈,∪ [1,+∞).7。
第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。
第一章 §2 第1课时一、选择题1.“x >1”是“|x |>1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查了充要条件.判定不是充分(或必要)条件,可用“特例法”.当x >1时,一定有|x |>1成立,而|x |>1时,不一定有x >1,如x =-5.所以“x >1”⇒“|x |>1”而“|x |>1” ⇒/ x >1.2.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 本题考查两条直线垂直的充要条件.当a =1时,直线x -ay =0化为直线x -y =0,∴直线x +y =0与直线x -y =0垂直; 当直线x +y =0和直线x -ay =0互相垂直时,有1-a =0,∴a =1,故选C.3.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 本题考查充要条件,解一元二次不等式.由2x 2+x -1>0得(x +1)(2x -1)>0,即x <-1或x >12,所以x >12⇒2x 2+x -1>0,而2x 2+x -1>0⇒/ x >12,选A. 4.(2014·郑州市质检)设向量a =(x,1),b =(4,x ),则“a ∥b ”是“x =2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件[答案] B[解析]a∥b⇔x2-4=0⇔x=±2,故a∥b是x=2的必要不充分条件.5.(2014·甘肃省三诊)设a,b∈R,则(a-b)·a2<0是a<b的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析](a-b)a2<0⇒a-b<0⇒a<b,而a<b,a=0时(a-b)·a2=0,∴a<b⇒/(a-b)a2<0∴选A.6.(2014·豫东、豫北十所名校联考)已知数列{a n}为等比数列,则p:a1<a2<a3是q:a4<a5的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]由a1<a2<a3可知等比数列{a n}为递增的,所以a4<a5,充分性成立,但a4<a5时,不能确定{a n}为递增数列,也可能是正负交替数列,例如a n=2·(-1)n-1,所以必要性不成立.二、填空题7.命题p:x1、x2是方程x2+5x-6=0的两根,命题q:x1+x2=-5,那么命题p是命题q的________条件.[答案]充分不必要[解析]∵x1,x2是方程x2+5x-6=0的两根,∴x1+x2=-5.当x1=-1,x2=-4时,x1+x2=-5,而-1,-4不是方程x2+5x-6=0的两根.8.已知数列{a n},那么“对任意的n∈N+,点P n(n,a n),都在直线y=2x+1上”是“{a n}为等差数列”的______条件.[答案]充分不必要[解析]点P n(n,a n)都在直线y=2x+1上,即a n=2n+1,∴{a n}为等差数列,但是{a n}是等差数列时却不一定有a n=2n+1.9.命题p:sinα=sinβ,命题q:α=β,则p是q的________条件.[答案]必要不充分[解析] sin α=sin β⇒/ α=β,α=β⇒sin α=sin β,故填必要不充分.三、解答题10.是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围.[答案] p ≥4[解析] x 2-x -2>0的解是x >2或x <-1,由4x +p <0得x <-p 4. 要想使x <-p 4时,x >2或x <-1成立,必须有-p 4≤-1,即p ≥4,所以当p ≥4时,x <-p 4⇒x <-1⇒x 2-x -2>0.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.一、选择题11.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 由于直线方程中含有字母m ,需对m 进行讨论.(m +2)x +3my +1=0与(m -2)x +(m +2)y -3=0互相垂直的充要条件是(m +2)(m -2)+3m (m +2)=0,即(m +2)(4m -2)=0,所以m =-2或m =12. 显然m =12只是m 取值的一种情况.故为充分不必要条件. 12.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] “tan x =1”的充要条件为“x =k π+π4(k ∈Z )”,而“x =2kx +π4(k ∈Z )”是“x =kx +π4(k ∈Z )”的充分不必要条件,所以“x =2k π+π4(k ∈Z )”是“tan x =1”成立的充分不必要条件,故选A.13.(2013·浙江文,3)设α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 由α=0可以得出sin α=0,cos α=1,sin α<cos α,但当sin α<cos α时,α不一定为0,所以α=0是sin α<cos α的充分不必要条件,选A.14.(2014·江西临川十中期中)已知平面向量a 、b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.二、填空题15.“a =12”是“y =cos 2ax -sin 2ax 的最小正周期为2π”的________条件. [答案] 充分不必要[解析] 由a =12,得y =cos 212x -sin 212x =cos x ,T =2π;反之,y =cos 2ax -sin 2ax =cos2ax ,由T =2π|2a |=2π,得a =±12.故是充分不必要条件. 16.下列说法正确的是________.①x 2≠1是x ≠1的必要条件;②x >5是x >4的充分不必要条件;③xy =0是x =0且y =0的充要条件;④x 2<4是x <2的充分不必要条件.[答案] ②④[解析] “若x 2≠1,则x ≠1”的逆否命题为“若x =1,则x 2=1”,易知x =1是x 2=1的充分不必要条件,故①不正确.③中,由xy =0不能推出x =0且y =0,则③不正确.②④正确.三、解答题17.对于实数x 、y ,判断“x +y ≠8”是“x ≠2或y ≠6”的什么条件.[答案] 充分不必要条件[解析] 可从集合角度判断,考虑集合A ={(x ,y )|x +y ≠8}与B ={(x ,y )|x ≠2或y ≠6}的包含关系,A 是平面直角坐标系内除去直线y =-x +8上所有点的集合;B ={(x ,y )|x ≠2}∪{(x ,y )|y ≠6}是直角坐标平面内除去直线x =2上的所有点或除去直线y =6上的所有点的集合,即除点(2,6)的所有点的集合,知A B ,所以“x +y ≠8”是“x ≠2或y ≠6”的充分不必要条件.18.求关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件.[答案] a ≤1[解析] ①a =0时适合.②当a ≠0时,显然方程没有零根,若方程有两异号的实根,则a <0;若方程有两个负的实根,则必须满足⎩⎨⎧1a >0,-2a <0,Δ=4-4a ≥0.解得0<a ≤1. 综上可知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.。
人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。
高中数学第一章常用逻辑用语章末演练轻松闯关一含解析新人教A 版选修11[学生用书P91(单独成册)])[A 基础达标]1.命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( ) A .∀x ∈R ,1<f (x )≤2 B .∃x ∈R ,1<f (x )≤2 C .∃x ∈R ,f (x )≤1或f (x )>2 D .∀x ∈R ,f (x )≤1或f (x )>2解析:选D.根据特称命题的否定是全称命题可知原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”.故选D.2.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:选A.否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.3.设p :log 2x <0,q :⎝ ⎛⎭⎪⎫12x -1>1,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B.p :log 2x <0⇔0<x <1;q :⎝ ⎛⎭⎪⎫12x -1>1⇔x <1,所以p ⇒q 但q ⇒/p ,所以p 是q 的充分不必要条件,故选B.4.下列表述错误的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .命题“若a ∈M ,则b ∉M ”的等价命题是“若b ∈M ,则a ∉M ”C .“x >2”是“x 2>4”的充分不必要条件D .对任意的φ∈R ,函数y =sin(2x +φ)都不是偶函数解析:选D.当α=0,β=π3时,tan ⎝⎛⎭⎪⎫0+π3=tan 0+tan π3成立,故选项A 正确.对于选项B 、C ,显然正确.在D 中,存在φ=k π+π2(k ∈Z )时,函数y =sin(2x +φ)是偶函数,D 错误.5.已知命题p :∃x 0∈R ,x 0-2>lg x 0,命题q :∀x ∈R ,x 2>0,则( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(﹁q )是真命题 D .命题p ∨(﹁q )是假命题解析:选C.当x =10时,x -2=8,lg x =lg 10=1,故命题p 为真命题;令x =0,则x 2=0,故命题q 为假命题.依据复合命题真假性的判断法则,可知命题p ∨q 是真命题,命题p ∧q 是假命题,﹁q 是真命题,进而得到命题p ∧(﹁q )是真命题,命题p ∨(﹁q )是真命题.故选C.6.写出命题“若方程ax 2-bx +c =0的两根都大于0,则ac >0”的一个等价命题:________________.解析:一个命题与其逆否命题是等价命题.答案:若ac ≤0,则方程ax 2-bx +c =0的两根不都大于07.已知p :-3<x -a <3,q :(x -1)(2-x )>0.若﹁p 是﹁q 的充分条件,则实数a 的取值范围是________.解析:p :-3<x -a <3,即a -3<x <a +3;q :(x -1)(2-x )>0,即1<x <2,所以﹁p :x ≤a -3或x ≥a +3,﹁q :x ≤1或x ≥2;而﹁p 是﹁q 的充分条件,所以⎩⎪⎨⎪⎧a -3≤1,a +3≥2.解得-1≤a ≤4.答案:[-1,4]8.设命题p :c 2<c 和命题q :∀x ∈R ,x 2+4cx +1>0,且p ∨q 为真,p ∧q 为假,则实数c 的取值范围是________.解析:解不等式c 2<c ,得0<c <1,即命题p :0<c <1, 所以命题﹁p :c ≤0或c ≥1. 又由(4c )2-4<0,得-12<c <12,即命题q :-12<c <12,所以命题﹁q :c ≤-12或c ≥12,由题意知p 与q 中一个为真命题,一个为假命题.当p 真q 假时,实数c 的取值范围是12≤c <1.当p 假q 真时,实数c 的取值范围是-12<c ≤0.综上所述,实数c 的取值范围是-12<c ≤0或12≤c <1.答案:⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫12,19.指出下列命题中,p 是q 的什么条件: (1)p :{x |x >-2或x <3};q :{x |x 2-x -6<0}; (2)p :a 与b 都是奇数;q :a +b 是偶数;(3)p :0<m <13;q :方程mx 2-2x +3=0有两个同号且不相等的实根.解:(1)因为{x |x >-2或x <3}=R ,{x |x 2-x -6<0}={x |-2<x <3},所以{x |x >-2或x <3}⃘ {x |-2<x <3},而{x |-2<x <3}{x |x >-2或x <3}.所以p 是q 的必要不充分条件.(2)因为a ,b 都是奇数⇒a +b 为偶数,而a +b 为偶数⇒/ a ,b 都是奇数,所以p 是q 的充分不必要条件.(3)mx 2-2x +3=0有两个同号不等实根⇔⎩⎪⎨⎪⎧Δ>0,3m >0⇔⎩⎪⎨⎪⎧4-12m >0,m >0⇔⎩⎪⎨⎪⎧m <13,m >0⇔0<m <13. 所以p 是q 的充要条件.10.设函数y =lg(-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m )的值域为B . (1)当m =2时,求A ∩B ;(2)若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. 解:(1)由题意得-x 2+4x -3>0,解得1<x <3, 所以A =(1,3), 又函数y =2x +1在区间(0,m )上单调递减, 所以y ∈⎝⎛⎭⎪⎫2m +1,2,即B =⎝ ⎛⎭⎪⎫2m +1,2,当m =2时,B =⎝ ⎛⎭⎪⎫23,2,所以A ∩B =(1,2). (2)首先要求m >0,因为“x ∈A ”是“x ∈B ”的必要不充分条件, 所以B A ,即⎝⎛⎭⎪⎫2m +1,2(1,3),从而2m +1≥1,解得0<m ≤1. [B 能力提升]11.已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,那么,下列命题为真命题的是( )A .p ∧qB .(﹁p )∧qC .p ∧(﹁q )D .(﹁p )∧(﹁q )解析:选B.因为3x>0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0,所以命题q 为真命题,逐项检验可知,只有(﹁p )∧q 为真命题,故选B.12.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),若∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是__________.解析:当∀x 1∈[-1,2]时,由f (x )=x 2-2x 得,对称轴是直线x =1,f (1)=-1是最小值,f (-1)=3是最大值,所以f (x 1)∈[-1,3].又因为∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),所以当x 2∈[-1,2]时,[-1,3]⊆g (x 2).因为a >0,所以g (x )=ax +2是增函数,所以⎩⎪⎨⎪⎧-a +2≤-1,2a +2≥3,解得a ≥3,综上所述,实数a 的取值范围是[3,+∞).答案:[3,+∞)13.设有两个命题:p :关于x 的不等式sin x cos x >m 2+m2-1的解集是R ;q :幂函数f (x )=x7-3m在(0,+∞)上是减函数.若“p 且q ”是假命题,“p 或q ”是真命题,求m 的取值范围.解:因为“p 且q ”是假命题,所以p ,q 中至少有一个是假命题. 因为“p 或q ”是真命题,所以p ,q 中至少有一个是真命题. 故p 和q 两个命题一真一假.若p 真,则2m 2+m -2<-1,即2m 2+m -1<0,所以-1<m <12.若q 真,则7-3m <0,所以m >73.p 真q 假时,-1<m <12;p 假q 真时,m >73.所以m 的取值范围是⎝ ⎛⎭⎪⎫-1,12∪⎝ ⎛⎭⎪⎫73,+∞. 14.(选做题)已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1.给定p :x <π4或x >π2,x ∈R .q :-2<f (x )-m <2.若﹁p 是q 的充分条件,求实数m 的取值范围.解:由q 可得⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2.因为﹁p 是q 的充分条件,所以在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2恒成立.又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1 =4sin ⎝ ⎛⎭⎪⎫2x -π3+1, 由π4≤x ≤π2,知π6≤2x -π3≤2π3, 所以当x =5π12时,f (x )max =5,当x =π4时,f (x )min =3.所以⎩⎪⎨⎪⎧m >5-2m <3+2,即3<m <5.所以m 的取值范围是(3,5).。
第一章章末总结知识点一四种命题间的关系命题是能够判断真假、用文字或符号表述的语句.一个命题与它的逆命题、否命题之间的关系是不确定的,与它的逆否命题的真假性相同,两个命题是等价的;原命题的逆命题和否命题也是互为逆否命题.例1判断下列命题的真假.(1)若x∈A∪B,则x∈B的逆命题与逆否命题;(2)若0<x<5,则|x-2|<3的否命题与逆否命题;(3)设a、b为非零向量,如果a⊥b,则a·b=0的逆命题和否命题.知识点二充要条件及其应用充分条件和必要条件的判定是高中数学的重点内容,综合考察数学各部分知识,是高考的热点,判断方法有以下几种:(1)定义法(2)传递法:对于较复杂的关系,常用推出符号进行传递,根据这些符号所组成的图示就可以得出结论.互为逆否的两个命题具有等价性,运用这一原理,可将不易直接判断的命题化为其逆否命题加以判断.(3)等价命题法:对于含有逻辑联结词“非”的充分条件、必要条件的判断,往往利用原命题与其逆否命题是等价命题的结论进行转化.(4)集合法:与逻辑有关的许多数学问题可以用范围解两个命题之间的关系,这时如果能运用数形结合的思想(如数轴或Venn图等)就能更加直观、形象地判断出它们之间的关系.例2若p:-2<a<0,0<b<1;q:关于x的方程x2+ax+b=0有两个小于1的正根,则p是q的什么条件?例3设p:实数x满足x2-4ax+3a2<0,a<0.q:实数x满足x2-x-6≤0或x2+2x-8>0.且綈p是綈q的必要不充分条件,求实数a的取值范围.知识点三逻辑联结词的应用对于含逻辑联结词的命题,根据逻辑联结词的含义,利用真值表判定真假.利用含逻辑联结词命题的真假,判定字母的取值范围是各类考试的热点之一.例4 判断下列命题的真假.(1)对于任意x ,若x -3=0,则x -3≤0;(2)若x =3或x =5,则(x -3)(x -6)=0.例5 设命题p :函数f (x )=lg ⎝⎛⎭⎫ax 2-x +116a 的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数均成立.如果命题p 或q 为真命题,命题p 且q 为假命题,求实数a 的取值范围.知识点四 全称命题与特称命题全称命题与特称命题的判断以及含一个量词的命题的否定是高考的一个重点,多以客观题出现.全称命题要对一个范围内的所有对象成立,要否定一个全称命题,只要找到一个反例就行.特称命题只要在给定范围内找到一个满足条件的对象即可.全称命题的否定是特称命题,应含存在量词.特称命题的否定是全称命题,应含全称量词.例6 写出下列命题的否定,并判断其真假.(1)3=2;(2)5>4;(3)对任意实数x ,x >0;(4)有些质数是奇数.例7 已知函数f (x )=x 2-2x +5.(1)是否存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,并说明理由.(2)若存在一个实数x 0,使不等式m -f (x 0)>0成立,求实数m 的取值范围.章末总结重点解读例1 解 (1)若x ∈A ∪B ,则x ∈B 是假命题,故其逆否命题为假,逆命题为若x ∈B ,则x ∈A ∪B ,为真命题.(2)∵0<x <5,∴-2<x -2<3,∴0≤|x -2|<3.原命题为真,故其逆否命题为真.否命题:若x ≤0或x ≥5,则|x -2|≥3.例如当x =-12,⎪⎪⎪⎪-12-2=52<3. 故否命题为假.(3)原命题:a ,b 为非零向量,a ⊥b ⇒a·b =0为真命题.逆命题:若a ,b 为非零向量,a·b =0⇒a ⊥b 为真命题.否命题:设a ,b 为非零向量,a 不垂直b ⇒a·b ≠0也为真.例2 解 若a =-1,b =12,则Δ=a 2-4b <0,关于x 的方程x 2+ax +b =0无实根,故p ⇒q .若关于x 的方程x 2+ax +b =0有两个小于1的正根,不妨设这两个根为x 1、x 2,且0<x 1≤x 2<1,则x 1+x 2=-a ,x 1x 2=b .于是0<-a <2,0<b <1,即-2<a <0,0<b <1,故q ⇒p .所以,p 是q 的必要不充分条件.例3 解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0}. B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件.∴AB ,∴⎩⎨⎧ a ≤-4a <0或⎩⎨⎧ 3a ≥-2a <0, 解得-23≤a <0或a ≤-4. 故实数a 的取值范围为(-∞,-4]∪⎣⎡⎭⎫-23,0. 例4 解 (1)∵x -3=0,有x -3≤0,∴命题为真;(2)∵当x =5时,(x -3)(x -6)≠0,∴命题为假.例5 解 p :由ax 2-x +116a >0恒成立得 ⎩⎪⎨⎪⎧a >0Δ=1-4×a ×a 16<0,∴a >2.q :由2x +1<1+ax 对一切正实数均成立, 令t =2x +1>1,则x =t 2-12, ∴t <1+a ·t 2-12, ∴2(t -1)<a (t 2-1)对一切t >1均成立.∴2<a (t +1),∴a >2t +1,∴a ≥1. ∵p 或q 为真,p 且q 为假,∴p 与q 一真一假.若p 真q 假,a >2且a <1不存在.若p 假q 真,则a ≤2且a ≥1,∴1≤a ≤2.故a 的取值范围为1≤a ≤2.例6 解 (1)3≠2,真命题;(2)5≤4,假命题;(3)存在一个实数x ,x ≤0,真命题;(4)所有质数都不是奇数,假命题.例7 解 (1)不等式m +f (x )>0可化为m >-f (x ),即m >-x 2+2x -5=-(x -1)2-4.要使m >-(x -1)2-4对于任意x ∈R 恒成立,只需m >-4即可.故存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,此时,只需m >-4.(2)不等式m -f (x 0)>0可化为m >f (x 0),若存在一个实数x 0,使不等式m >f (x 0)成立, 只需m >f (x )min .又f (x )=(x -1)2+4,∴f (x )min =4,∴m >4.所以,所求实数m 的取值范围是(4,+∞).。
高中数学第一章常用逻辑用语测评(含解析)新人教A版选修11测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列语句是真命题的是()A.这是一棵大树B.x+y+z=3C.函数f(x)=x2是单调增函数D.素数不一定是奇数解析:选项A和B不是命题,选项C是假命题,2是素数,但不是奇数,故选项D正确.答案:D2.(2016辽宁沈阳高二检测)命题“若x<0,则ln(x+1)<0”的否命题是()A.若x≥0,则ln(x+1)<0B.若x<0,则ln(x+1)≥0C.若x≥0,则ln(x+1)≥0D.若ln(x+1)≥0,则x≥0解析:由原命题与其逆否命题之间的关系可知,原命题的逆否命题为“若x≥0,则ln(x+1)≥0”.答案:C3.(2016四川成都高二月考)已知命题p:若(a-b)3b2>0,则a>b,则在命题p的逆命题、否命题和逆否命题中,错误命题的个数为()A.0B.1C.2D.3解析:原命题p为真,故其逆否命题为真;p的逆命题为假,故其否命题也为假,因此错误命题个数为2.答案:C4.(原创题)命题“∀x>0,>0”的否定是()A.∃x<0,≤0B.∃x>0,0<x≤1C.∀x>0,≤0D.∀x<0,0<x≤1答案:B5.(2016河北石家庄月考)已知直线l的倾斜角为α,斜率为k,那么“α>”是“k>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件解析:当<α<π时,k<0,当k>时,<α<,所以“α>”是“k>”的必要而不充分条件,故答案:B6.(原创题)设命题p:函数y=在定义域上是增函数;命题q:∃a,b∈(0,+∞),当a+b=1时,=3,以下说法正确的是()A.p∨q为真B.p∧q为真C. p为假D.p∨q为假解析:显然命题p为假命题,又当a,b>0,a+b=1时,=(a+b)=2+≥4,故不存在a,b∈(0,+∞),使得=3,即命题q也为假命题.因此p∨q为假,故选D.答案:D7.(2016吉林高二检测)下列命题的否定为假命题的是()A.∃x∈R,x2+2x+2≤0B.∀x∈R,lg x<1C.所有能被3整除的整数都是奇数D.∀x∈R,sin2x+cos2x=1解析:选项A中,因为x2+2x+2=(x+1)2+1>0,所以∃x∈R,x2+2x+2≤0是假命题,其否定为真命题.选项B中,当x>10时,lg x>1,所以∀x∈R,lg x<1是假命题,其否定为真命题.选项C中,6能被3整除,但6是偶数,所以这是假命题,其否定为真命题.选项D中的命题显然成立,所以其否定是假命题,故选D.答案:D8.(2016吉林高二检测)已知命题 p:存在x∈(1,2)使得e x-a>0,若p是真命题,则实数a的取值范围为()A.(-∞,e)B.(-∞,e]C.(e2,+∞)D.[e2,+∞)解析:因为p是真命题,所以 p为假命题,所以∀x∈(1,2),有e x-a≤0,即a≥e x,又y=e x在(1,2)上的最大值为e2,所以a≥e2.答案:D9.(2016河南新乡模拟)已知p:∃x∈R,mx2+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围为()A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2解析:由p:∃x∈R,mx2+1≤0,可得m<0,由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2,因为p ∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,故符合条件的实数m的取值范围为m≥2.答案:A10.已知p:函数f(x)=(x-a)2在(-∞,1)上是减函数,q:∀x>0,a≤恒成立,则 p是q的()A.充分不必要条件B.必要不充分条件C.充要条件解析:由p:函数f(x)=(x-a)2在(-∞,1)上是减函数,得a≥1.所以 p:a<1;由q:∀x>0,a≤恒a≤2,所以 p是q的充分不必要条件.答案:A11.导学号59254013(原创题)已知函数f(x)=,设命题p:∀a∈R,函数f(x)的值域不可能是(0,+∞);命题q:∃a∈R,使函数f(x)的单调递增区间是(-∞,-2].那么下列命题为真命题的是()A.p∧qB.p∨(q)C.(p)∧qD.(p)∧(q)解析:当a=0时,f(x)=的值域为(0,+∞),故命题p为假命题;要使函数f(x)的单调递增区间是(-∞,-2],只需y=ax2+2x-1的单调递减区间是(-∞,-2],这时只要满足解得a=,因此命题q为真命题,故(p)∧q为真.答案:C12.(改编题)若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值范围是()A.a>3B.a<3C.a>4D.a<4解析:若2x>a-x,则2x+x>a,设f(x)=2x+x,该函数为增函数.由题知2x+x>a成立,即f(x)>a成立能得到x>1,并且反之不成立.因为x>1时,f(x)>3,所以a>3.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2016山西大同高二检测)命题“∃x0∈R,sin x0+2>cos x0”的否定为.解析:因为∃x0∈R,sin x0+2>cos x0,所以其否定为∀x∈R,sin x+2x2≤cos x.答案:∀x∈R,sin x+2x2≤cos x14.(2016山东济南高二检测)已知命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=的定义域是[3,+∞),则“p∨q”“p∧q”“ p”中是真命题的为.解析:依题意知p假,q真,所以“p∨q”,“ p”是真命题.答案:p∨q, p15.(原创题)函数f(x)=有且只有一个零点的充分必要条件是.解析:当x>0时,x=1是函数的一个零点,要使函数有且只有一个零点,应使函数f(x)在(-∞,0]上没有零点,即-2x+a=0无解,而当x≤0时,0<2x≤1,所以实数a应满足a≤0或a>1.答案:a≤0或a>116.给出如下四个命题:①若“p∧q”为假命题,则p,q均为假命题;②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2α≤2b-1”;③“∀x∈R,x2+1≥0”的否定是“∃x∈R,x2+1<0”;④在△ABC中,“A>B”是“sin A>sin B”的充要条件.其中假命题的个数是.解析:若“p∧q”为假命题,则p,q至少有一个为假命题,故①是假命题;②是真命题;“∀x∈R,x2+1≥0”的否定是“∃x∈R,x2+1<0”,故③是假命题;在△ABC中,若A>B,则a>b,根据正弦定理可得sin A>sin B;逆向推理同样成立,故④是真命题.故假命题有2个.答案:2三、解答题(本大题共6小题,共70分)17.(本小题满分10分)写出下列命题的逆命题、否命题以及逆否命题:(1)若α-β=,则sin α=cos β;a,b,c,d为实数,若a≠b,c≠d,则a+c≠b+d.解:(1)逆命题:若sinα=cosβ,则α-β=;否命题:若α-β≠,则sinα≠cosβ;逆否命题:若sinα≠cosβ,则α-β≠.(2)逆命题:已知a,b,c,d为实数,若a+c≠b+d,则a≠b,c≠d;否命题:已知a,b,c,d为实数,若a=b或c=d,则a+c=b+d;逆否命题:已知a,b,c,d为实数,若a+c=b+d,则a=b或c=d.18.(本小题满分12分)判断下列命题是全称命题还是特称命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)∀x∈(0,+∞),x+≥2;(4)∃x0∈Z,log2x0>2.解:(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.19.(本小题满分12分)已知命题:“∃x∈(-1,1),使等式x2-x-m=0成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值范围.解:(1)由题意知,方程x2-x-m=0在(-1,1)上有解,即m的取值范围为函数y=x2-x在(-1,1)上的值域,易得M=.(2)因为x∈N是x∈M的必要条件,所以M⊆N.当a=1时,解集N为空集,不满足题意;当a>1时,a>2-a,此时集合N={x|2-a<x<a},则解得a>;当a<1时,a<2-a,此时集合N={x|a<x<2-a},则解得a<-.综上,a>或a<-.20.(本小题满分12分)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x轴上所截线段长度为1的充要条件,并证明.解:所求的充要条件是G2-4F=1.(1)必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.(2)充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.21.(本小题满分12分)已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],设命题p:“f(x)的定义域为R”;命题q:“f(x)的值域为R”.(1)分别求命题p,q为真时实数a的取值范围;p是q的什么条件?请说明理由.解:(1)命题p为真,即f(x)的定义域是R,等价于(a2-1)x2+(a+1)x+1>0恒成立,等价于a=-1或解得a≤-1或a>.故实数a的取值范围为(-∞,-1]∪;命题q为真,即f(x)的值域是R,等价于u=(a2-1)x2+(a+1)x+1的值域范围大于(0,+∞),等价于a=1或解得1≤a≤,故实数a的取值范围为.(2)由(1)知, p:a∈;q:a∈.而,故 p是q的必要不充分条件.22.导学号59254014(本小题满分12分)已知命题p:函数f(x)=|2x+3c|在[-1,+∞)上单调递增;命题q:函数g(x)=+2有零点.(1)若命题p和q均为真命题,求实数c的取值范围;c,使得p∧( q)是真命题?若存在,求出c的取值范围;若不存在,说明理由.解:由于f(x)=|2x+3c|=所以f(x)的单调递增区间是,又因为f(x)在[-1,+∞)上单调递增,所以-≤-1,解得c≥;由于函数g(x)=+2有零点,所以方程+2=0有实数根,即2x2+cx+2=0有实数根,因此c2-16≥0,解得c≥4或c≤-4.(1)当命题p和q均为真命题时,应有因此c≥4.(2)要使p∧(q)是真命题,应使p真q假,因此有≤c<4,故存在实数c,使得p∧( q)是真命题,其取值范围是.。
一、选择题1.命题x R ∀∈,1x e x ≥+的否定是( )A .x R ∀∈,1x e x <+B .x R ∃∈,1x e x <+C .x R ∃∉,1x e x <+D .x R ∀∉,1x e x <+2.已知命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是( )A .2,20x x x ∀∉-+>RB .2000,20x x x ∃∈-+≤RC .2000,20x x x ∃∈-+<RD .2000,20x x x ∃∉-+≤R3.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 4.“∀x ∈R ,e x -x +1≥0”的否定是( )A .∀x ∈R ,e x -x +1<0B .∃x ∈R ,e x -x +1<0C .∀x ∈R ,e x -x +1≤0D .∃x ∈R ,e x -x +1≤0 5.设x 、y R ∈,则“0x >,0y >”是“0xy >”的( ) A .充分不必要条件B .必要不充分分条件C .充要条件D .既不充分也不必要条件6.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞< 7.下列结论错误的是( )A .若“p 且q ”与“p ⌝或q ”均为假命题,则p 真q 假.B .命题“存在R x ∈,20x x ->”的否定是“对任意的R x ∈,20x x -≤”.C .“若22am bm <,则a b <”的逆命题为真.D .“1x =”是“2320x x -+=”的充分不必要条件.8.命题“,40x x ∀∈>R ”的否定是( )A .,40x x ∀∉<RB .,40x x ∀∈≤RC .00,40x x ∃∉<RD .00,40x x ∃∈≤R 9.语句“若a b >,则a c b c +>+”是( )A .不是陈述句B .真命题C .假命题D .不能判断真假 10.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.设非空集合,M N 满足MN N =,则( ) A .0,x N ∃∈ 有x M ∉ B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈ 12.清远市是广东省地级市,据此可知“学生甲在广东省”是“学生甲在清远市”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 二、填空题13.已知集合{}260A x x x =+-≤,{}35B x m x m =-≤≤+,若“x A ∈”是“x B ∈”的充分不必要条件,求m 的范围为__________.14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________.15.命题“如果22x a b <+,那么2x ab <”,请写出它的逆否命题____________. 16.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.17.1x ∀>,2210x x -+>的否定是___________.18.命题p :已知0a >,且满足对任意正实数x ,总有1a x x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a 的取值范围为_________;19.已知a ∈R ,命题“存在x ∈R ,使20x ax a -+≤”为假命题,则a 的取值范围为__. 20.对于函数①()2f x x =+;②2()(2)f x x =-;③()cos(2)f x x =-.现有命题:(2)p f x +是偶函数;命题:()q f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数.则能使p q ∧为真命题的所有函数的序号是___________.三、解答题21.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围. 22.已知命题:p 当1,22x ⎡∈⎤⎢⎥⎣⎦时,1a x x ≤+恒成立;命题:q 对任意的x ∈R ,不等式20x ax a -+>恒成立,若命题p q ∧是真命题,求实数a 的取值范围.23.已知集合{}3A x x a =<+,501x B xx ⎧⎫-=>⎨⎬+⎩⎭. (1)若2a =-,求()R A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.24.已知a>0,设命题p:函数y=a x在R 上单调递减,q:函数y=2-2(2),2(2)x a x a a x a ≥⎧⎨<⎩且y>1恒成立,若p ∧q 为假,p ∨q 为真,求a 的取值范围.25.已知命题:p x R ∀∈,210ax ax ++>;:q x R ∃∈,20x x a -+=.若“p q ∨”与“q ⌝”均为真命题,求实数a 的取值范围.26.已知集合A 是函数()2lg 208y x x =--的定义域,集合B 是不等式22210x x a -+-≥(0a >)的解集,p :x A ∈,q :x B ∈.(1)若A B =∅,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据命题的否定的定义判断.【详解】命题x R ∀∈,1x e x ≥+的否定是x R ∃∈,1x e x <+.故选:B .2.C解析:C【分析】根据全称命题的否定是特称命题,即可求出.【详解】因为全称命题的否定是特称命题,所以命题:p “2,20x x x ∀∈-+≥R ”,则p ⌝是2000,20x x x ∃∈-+<R .故选:C . 3.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B4.B解析:B【分析】由全称命题的否定即可得解.【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题,所以该命题的否定为:∃x ∈R ,e x -x +1<0.故选:B.5.A解析:A【分析】利用充分条件、必要条件的定义判断可得出结论.【详解】充分性:若0x >且0y >,则0xy >,充分性成立;必要性:若0xy >,则00x y >⎧⎨>⎩或00x y <⎧⎨<⎩,必要性不成立. 因此,“0x >,0y >”是“0xy >”的充分不必要条件.故选:A.6.A解析:A【分析】直接根据全称命题的否定写出结论.【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.7.C解析:C【分析】对于A ,由或命题为假可得p ⌝和q 均为假命题,从而可判断,对于B ,根据特称命题的否定为全称命题可得解;对于C ,利用特值判断即可;对于D 直接根据条件和结论的关系判断即可.【详解】对于A ,若“p 且q ”与“p ⌝或q ”均为假命题,则p ⌝和q 均为假命题,所以p 真q 假,A 正确;对于B ,命题“R x ∈存在20x x ->”的否定是“对任意的R x ∈,20x x -≤”.B 正确; 对于C ,“若22am bm <,则a b <”的逆命题为:“若a b <,则22am bm <”,当0m =时不成立,C 不正确;对于D ,“1x =”时,“2320x x -+=”成立,充分性成立,“2320x x -+=”成立时,“1x =或2x =”,必要性不成立,所以“1x =”是“2320x x -+=”的充分不必要条件,D 正确.故选:C.8.D解析:D【分析】利用全称命题的否定可得出结论.【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D. 9.B解析:B【分析】利用不等式的性质以及命题与真命题的定义求解即可.【详解】因为可以判断真假的语句叫命题,判断为真的语句叫做真命题,而当a b >时,a c b c +>+一定 成立.所以语句“若a b >,则a c b c +>+”是真命题故选:B .10.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.11.D解析:D【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案.【详解】因为M N N =,所以N M ⊆,所以,x N ∀∈有x M ∈.故选:D12.C解析:C【分析】利用充分性必要性的定义,先考虑充分性,再考虑必要性.【详解】先考虑充分性:学生甲在广东省,则学生甲不一定在清远市,所以“学生甲在广东省”是“学生甲在清远市”的非充分条件;再考虑必要性:学生甲在清远市,则学生甲一定在广东省,所以“学生甲在广东省”是“学生甲在清远市”的必要条件.所以“学生甲在广东省”是“学生甲在清远市”的必要非充分条件.故选:C【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件灵活选择方法判断.二、填空题13.【分析】首先根据题意得到从而得到再解不等式组即可【详解】因为是的充分不必要条件所以即所以的范围为故答案为:解析:[)6,+∞【分析】首先根据题意得到A B ⊆,从而得到5233m m +≥⎧⎨-≤-⎩,再解不等式组即可. 【详解】 {}{}26032A x x x x x =+-≤=-≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊆,即52633m m m +≥⎧⇒≥⎨-≤-⎩. 所以m 的范围为[)6,+∞.故答案为:[)6,+∞14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案.【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤. 故答案为:()21,,4x x ∀∈+∞≤ 15.如果那么【分析】根据逆否命题的概念即可写出它的逆否命题【详解】原命题的逆否命题为:如果那么解析:如果2x ab ≥,那么22x a b ≥+.【分析】根据逆否命题的概念,即可写出它的逆否命题【详解】原命题的逆否命题为:如果2x ab ≥,那么22x a b ≥+.16.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可.【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时,由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+,所以有22021m m m --+>⇒-<<,即(2,1)∈-m ,当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+因为p 是q 的充分不必要条件, 所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩, 因此实数a 的取值范围是[3,2]--.故答案为:[3,2]--17.【分析】根据全称命题的否定为特称命题即可得结果【详解】因为全称命题的否定是特称命题否定全称命题时一是要将全称量词改写为存在量词二是否定结论所以的否定是故答案为:解析:01x ∃>,200210x x -+≤【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果.因为全称命题的否定是特称命题,否定全称命题时,一是要将全称量词改写为存在量词,二是否定结论,所以1x ∀>,2210x x -+>的否定是01x ∃>,200210x x -+≤, 故答案为:01x ∃>,200210x x -+≤.18.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二 解析:1143a ≤≤或23a ≥ 【分析】 依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果.【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1a x x +≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性,由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥. 故答案为:1143a ≤≤或23a ≥. 19.【分析】由题意可知命题对使恒成立为真命题可得出进而可解得实数的取值范围【详解】命题存在使为假命题命题对使恒成立为真命题所以故所以的取值范围为故答案为:解析:()0,4【分析】由题意可知,命题“对x ∀∈R ,使20x ax a -+>恒成立”为真命题,可得出∆<0,进而可解得实数a 的取值范围.命题“存在x ∈R ,使20x ax a -+≤”为假命题,命题“对x ∀∈R ,使20x ax a -+>恒成立”为真命题,所以240a a ∆=-<,故04a <<,所以a 的取值范围为()0,4.故答案为:()0,4.20.②【分析】为真命题则pq 均为真命题对所给函数逐个判断即可得出结论【详解】对于①不是偶函数故p 为假命题故为假命题;对于②是偶函数则p 为真命题;在上是减函数在上是增函数则q 为真命题故为真命题;对于③显然 解析:②【分析】p q ∧为真命题,则p 、q 均为真命题,对所给函数逐个判断,即可得出结论.【详解】对于①,(2)|4|f x x +=+不是偶函数,故p 为假命题,故p q ∧为假命题;对于②,2(2)f x x +=是偶函数,则p 为真命题;2()(2)f x x =-在(,2)-∞上是减函数,在(2,)+∞上是增函数,则q 为真命题,故p q ∧为真命题;对于③,()cos(2)f x x =-显然不是(2,)+∞上的增函数,故q 为假命题,故p q ∧为假命题.故答案为:②【点睛】本题考查复合命题真假的判断,考查学生分析解决问题的能力,确定p q ∧为真命题,则p 、q 均为真命题是关键,属于中档题.三、解答题21.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤< 当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤-综上所述,实数m 的取值范围是(,1][4,5)-∞-.22.(]0,2【分析】利用基本不等式可求得当命题p 为真命题时,实数a 的取值范围,利用∆<0可求得当命题q 为真命题时实数a 的取值范围,由题意可知,命题p 、q 均为真命题,由此可求得实数a 的取值范围.【详解】若p 真,则min1a x x ⎛⎫≤+ ⎪⎝⎭, 1,22x ⎡⎤∈⎢⎥⎣⎦,12x x ∴+≥=,当且仅当1x x =,即1x =时等号成立,2a ∴≤. 若q 真,则240a a ∆=-<,04a ∴<<.因为p q ∧是真命题,所以p 、q 均为真命题,204a a ≤⎧∴⎨<<⎩,02a ∴<≤. 因此,实数a 的取值范围是(]0,2.23.(1){}11x x -<≤;(2)(],4-∞-. 【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤,当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.a|0<a≤12或a≥1}. 【解析】试题分析:化简命题p 可得01a <<,化简命题q 可得12a >,由p q ∨为真命题,p q ∧为假命题,可得,p q 一真一假,分两种情况讨论,对于p 真q 假以及p 假q 真分别列不等式组,分别解不等式组,然后求并集即可求得实数m 的取值范围.试题若p 是真命题,则0<a<1,若q 是真命题,则y>1恒成立, 即y 的最小值大于1,而y 的最小值为2a,只需2a>1,所以a>12, 所以q 为真命题时,a>12. 又因为p ∨q 为真,p ∧q 为假,所以p 与q 一真一假,若p 真q 假, 则0<a≤12; 若p 假q 真, 则a≥1,故a 的取值范围为a|0<a≤12或a≥1}. 25.1,44⎛⎫ ⎪⎝⎭【分析】求出当命题p 为真命题时实数a 的取值范围,以及命题q 为真命题时实数a 的取值范围,由题意可知,命题p 为真命题,命题q 为假命题,由此可求得实数a 的取值范围.【详解】若命题p 为真命题,则x R ∀∈,210ax ax ++>.若0a =,则有10>恒成立,合乎题意;若0a ≠,则21040a a a >⎧⎨∆=-<⎩,解得04a <<. 所以,当命题p 为真命题时,04a ≤<.若命题q 为真命题,则x R ∃∈,20x x a -+=,则2140a ∆=-≥,解得14a ≤. 由于“p q ∨”与“q ⌝”均为真命题,则p 真q 假,所以0414a a ≤<⎧⎪⎨>⎪⎩,即144a <<. 综上所述,实数a 的取值范围是1,44⎛⎫⎪⎝⎭. 【点睛】本题考查利用复合命题的真假求参数,考查了利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题.26.(1) 11a ≥;(2) 01a <≤.【分析】(1)分别求函数()2lg 208y x x=--的定义域和不等式22210(0)x x a a -+->的解集化简集合A B ,,由AB =∅得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a 的范围.【详解】(1)由条件得: {|102}A x x =-<<, {|1B x x a =+或1}x a -若A B =Φ,则必须满足121100a a a +≥⎧⎪-≤-⎨⎪>⎩所以,a 的取值范围为: 11a ≥(2)易得: p ⌝: 2x ≥或10x ≤-,∵p ⌝是q 的充分不必要条件,{|2x x ∴或10}x -是{|1B x x a =+或1}x a -的真子集,则121100a a a +≤⎧⎪-≥-⎨⎪>⎩,解得:01a <≤∴a 的取值范围为: 01a <≤【点睛】本题考查的知识点是充要条件的定义,考查了对数函数的定义域以及一元二次不等式的解法,正确理解充要条件的定义,是解答的关键.。
高中数学第一章常用逻辑用语章末综合检测一含解析新人教A 版选修11章末综合检测(一)[学生用书P93(单独成册)] (时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B.根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D.“-1<x <1”的否定是“x ≥1或x ≤-1”;“x 2<1”的否定是“x 2≥1”,故选D.3.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析:选C.由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.4.已知命题①若a >b ,则1a <1b;②若-2≤x ≤0,则(x +2)(x -3)≤0.则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D.①的逆命题为“若1a <1b,则a >b ”,若a =-2,b =3,则不成立.故A 错;②的逆命题为“若(x +2)(x -3)≤0,则-2≤x ≤0”是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.5.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(﹁p )∨qB .p ∧qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )解析:选D.易得命题p 为真命题,命题q 为假命题,结合各选项知只有(﹁p )∨(﹁q )为真命题.6.已知命题p :a 2+b 2<0(a ,b ∈R );命题q :a 2+b 2≥0(a ,b ∈R ),下列结论正确的是( ) A .“p ∨q ”为真 B .“p ∧q ”为真 C .“﹁p ”为假D .“﹁q ”为真解析:选A.p 为假,q 为真,故选A.7.已知命题p :在△ABC 中,若A >B ,则cos A >cos B ,则下列命题为真命题的是( ) A .p 的逆命题 B .p 的否命题 C .p 的逆否命题D .p 的否定 解析:选D.命题p 的否命题是“在△ABC 中,若A ≤B ,则cos A ≤cos B ”,是假命题,所以它的逆命题也是假命题,故A ,B 错误.命题p 是假命题,所以p 的逆否命题是假命题,p 的否定是真命题,故C 错误,D 正确.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D .方程f (x )=g (x )在(0,+∞)内有且只有一个实数解解析:选A.在同一坐标系内作出两函数的大致图象,在(0,+∞)上两交点为(2,4),(4,16).当x >4时,由图象知f (x )<g (x ),其余三命题均错误.9.下列判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈N *,x 3>x 2”的否定是“∃x 0∈N *,x 30<x 20”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期是π”的必要不充分条件 D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件解析:选D.选项A 的命题是全称命题,不正确,选项B 应该是∃x 0∈N *,x 30≤x 20,不正确;对于选项C ,f (x )=cos 2ax -sin 2ax =cos 2ax ,周期T =2π2a =πa ,当a =1时,周期是π,当周期是π时,a =±1,所以“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期是π”的充分不必要条件;选项D 正确,故选D.10.给定下列命题:①“x ∈N ”是“x ∈N *”的充分不必要条件; ②“若sin α≠12,则α≠π6”;③“若xy =0,则x =0且y =0”的逆否命题; ④命题“∃x 0∈R ,使x 20-x 0+1≤0”的否定. 其中是真命题的是( ) A .①②③ B .②④ C .③④D .②③④解析:选B.“x ∈N ”是“x ∈N *”的必要不充分条件,①错误;②的逆否命题为:若α=π6,则sin α=12正确,故②正确;若xy =0,则x =0或y =0,所以③中原命题错误,其逆否命题也错误,故③错误;④正确.11.已知命题p :“∀x ∈R ,∃m ∈R ,使4x+2xm +1=0”.若命题﹁p 是假命题,则实数m 的取值范围是( )A .[-2,2]B .[2,+∞)C .(-∞,-2]D .(-∞,-2)∪[2,+∞)解析:选C.由题意可知命题p 为真,即方程4x+2xm +1=0有解,所以m =-4x+12x =-⎝ ⎛⎭⎪⎫2x +12x ≤-2. 12.设f (x )=x 2-4x (x ∈R ),则f (x )>0的一个必要不充分条件是( ) A .x <0 B .x <0或x >4 C .|x -1|>1D .|x -2|>3解析:选C.由f (x )=x 2-4x >0,得x <0或x >4.由|x -1|>1,得x <0或x >2.由|x -2|>3,得x <-1或x >5,所以只有C 是f (x )>0的必要不充分条件.故选C.二、填空题:本题共4小题,每小题5分.13.命题“∃x 0∈{x |x 是正实数},使x 0<x 0”的否定为________命题.(填“真”或“假”)解析:原命题的否定为“∀x ∈{x |x 是正实数},都有x ≥x ”,是假命题. 答案:假14.给出下列说法:①若“p 且q ”为假,则p ,q 中至少有一个是假命题; ②当α<0时,幂函数y =x α在(0,+∞)上单调递增. 其中说法错误的是________(填序号).解析:若“p 且q ”为假,则p ,q 中至少有一个是假命题,故①说法正确;当α<0时,幂函数y =x α在(0,+∞)上单调递减,故②说法错误.答案:②15.设p :x >2或x <23;q :x >2或x <-1,则﹁p 是﹁q 的________条件.解析:﹁p :23≤x ≤2.﹁q :-1≤x ≤2.﹁p ⇒﹁q ,且﹁q ⇒/ ﹁p . 所以﹁p 是﹁q 的充分不必要条件. 答案:充分不必要16.命题“∀x ∈R ,ax 2-2ax +3>0”是假命题,则实数a 的取值范围是________________. 解析:当a =0时,3>0恒成立,当a ≠0时,由⎩⎪⎨⎪⎧a >0,4a 2-12a <0,得0<a <3,综上可得,0≤a <3. 因为命题“∀x ∈R ,ax 2-2ax +3>0”是假命题, 所以a 的取值范围是(-∞,0)∪[3,+∞). 答案:(-∞,0)∪[3,+∞)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)写出下列命题的否定形式,并判断真假: (1)q :存在一个实数x 0,使得x 20+x 0+3≤0; (2)r :等圆的面积相等,周长也相等.解:(1)﹁q :∀x ∈R ,x 2+x +3>0.真命题.因为x 2+x +3=⎝ ⎛⎭⎪⎫x +122+114>0恒成立.(2)﹁r :存在两个等圆,其面积不相等或者周长不相等.假命题.等圆的面积和周长都相等.18.(本小题满分12分)写出命题“若x 2+7x -8=0,则x =-8或x =1”的逆命题、否命题、逆否命题,并分别判断它们的真假.解:逆命题:若x =-8或x =1,则x 2+7x -8=0. 逆命题为真.否命题:若x 2+7x -8≠0,则x ≠-8且x ≠1. 否命题为真.逆否命题:若x ≠-8且x ≠1,则x 2+7x -8≠0. 逆否命题为真.19.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.20.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知,f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c 的取值范围为⎝ ⎛⎦⎥⎤0,12∪[1,+∞).21.(本小题满分12分)已知p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0.若﹁p 是﹁q 的必要条件,求实数a 的取值范围.解:由x 2-4ax +3a 2<0且a <0得3a <x <a , 所以p :3a <x <a ,即集合A ={x |3a <x <a }. 由x 2-x -6≤0得-2≤x ≤3,所以q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为﹁q ⇒﹁p ,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0⇒-23≤a <0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫-23,0.22.(本小题满分12分)给出两个命题:命题甲:关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅, 命题乙:函数y =(2a 2-a )x为增函数. 分别求出符合下列条件的实数a 的取值范围: (1)甲、乙至少有一个是真命题; (2)甲、乙中有且只有一个是真命题.解:命题甲为真命题时,Δ=(a -1)2-4a 2<0,即a >13或a <-1.命题乙为真命题时,2a 2-a >1,即a >1或a <-12.(1)甲、乙两个命题中至少有一个是真命题时,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-12或a >13.(2)甲、乙两个命题中有且只有一个是真命题,有两种情况: 甲真乙假时,13<a ≤1;甲假乙真时,-1≤a <-12,所以甲、乙两个命题中有且只有一个是真命题时,a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪13<a ≤1或-1≤a <-12.。