多孔碳材料的研究进展 PPT
- 格式:ppt
- 大小:4.52 MB
- 文档页数:20
多孔碳材料最近研究进展多孔碳材料最近研究进展1、碳源/方法[1]Gao等人利用海苔为生物质原料,在500℃下碳化,之后利用铝酸钠作为活化剂,在500-900℃下反应,最后盐酸和水洗得到了孔径分布集中在1nm和2nm的微孔-介孔碳材料,该材料BET比表面积和孔体积分别为1374.3m2/g和1.150cm3/g。
以酸性大红作为吸附质,对合成介孔碳进行吸附研究,根据朗格缪尔模型,介孔碳对酸性大红的饱和吸附量达1000mg/g。
(Yuan Gao, et al. Chemical Engineering Journal,274(2015)76-83)[2] Akshay Jain等人以洋姜杆作为生物质原料,利用ZnCl2活化法,制备碳材料,在制备过程中加入H2O2,H2O的加入能够使得材料介孔性增强,并通过调节ZnCl2和H2O2的添加比例,得到了孔径集中在20-50nm 的双介孔活性炭,该碳材料对水中罗丹明B的饱和吸附量达714mg/g。
(Akshay Jain, et al. Chemical Engineering Journal,2015,273:622-629)[3]Yang等人利用柠檬酸钙在高温700-1000℃下,分解生成碳酸钙、氧化钙和具有介孔结构的碳材料。
把钙溶解在盐酸中形成可回收的氯化钙溶液,该溶液先与氢氧化钠反应,然后加入柠檬酸形成可回收的柠檬酸钙,从而实现钙模板的回收利用。
该方法在得到性能较好的介孔碳材料时,避免了二氧化硅等模板脱除造成的化学资源浪费和可能带来的严重环境问题,是一种合成介孔碳材料的绿色新方法。
(Yang J, et al. Microporous Mesoprous Mater.,2014,183(1):91-98)[4]Feng等人以壳聚糖溶液为原料、三嵌段两亲共聚物F127 为软模板,采用一步法合成多孔碳材料,考察了复配溶液pH 值及碳化温度等条件对材料孔结构、比表面积等的影响。
目前合成多孔炭材料的研究进展这篇文章对过去十年有关多孔炭的合成进展进行了总结。
采用不同路线,多孔炭可以具有不同的孔尺寸和孔结构。
通过活性过程已经合成了微孔活性炭。
有序微孔炭材料多孔炭主要用于气体分离、水纯化、催化剂载体、电化学双极板电容器电极材料、燃料电池。
多孔炭分为:<2nm微孔,2nm<介孔<50nm,宏孔>50nm。
传统制备多孔炭的方法有:1)化学活化、物理活化、化学物理活化;2)使用金属盐或有机金属化合物催化活化炭前驱体;含碳聚合物和可裂解聚合物的碳化;3)在超临界干燥条件下合成的聚合物气凝胶的碳化。
尽管采用上述方法合成了多种多孔炭,但多孔炭的均匀性还需要进一步改进。
过去十年,很多硬的、可设计的无机模板用来合成具有均匀孔尺寸的炭材料。
Knox和他的合作者首创了采用模板合成多孔炭的先河,从此以后,采用无机模板合成了具有微孔、介孔和宏孔的孔结构均匀的多孔炭。
模板合成多孔炭一般包括:1)制备炭前驱体/无机模板复合材料,2)碳化,3)移去无机模板。
目前已经不同无机材料作为模板材料,包括SiO2纳米颗粒,沸石类,多孔氧化铝膜,介孔二氧化硅。
大致的说,模板法一般分为两类。
首先,无机模板,如氧化硅纳米颗粒嵌入到炭前驱体内。
随后碳化,移去无机模板,产生独立的孔结构。
另一种是,炭先驱体引入模板孔内,碳化,移去模板,产生联通孔结构。
本文主要研究模板法合成多孔炭。
2.微孔炭2.1 无序微孔炭(分子筛炭)(MSCs)以煤或有机化合物为原料加工制成的孔径为分子级的多孔含碳物质。
分子筛炭是一类特殊的活性炭,其拥有几埃直径的均匀孔结构,已广泛用于分离气体分子,形状选择催化剂、电化学双极板电容器电极材料。
由于其疏水性和抗腐蚀性,MSCs可用于无机分子筛分。
MSCs最有代表性的制备方法是适当炭前驱体的裂解。
Miura et al.采用煤和有机添加剂裂解制备了MSCs。
添加有机添加剂可获得不同于只有煤存在的孔结构。
改变试验条件,可以改变孔尺寸。
多孔碳材料的研究进展课件(一)多孔碳材料是一种新型的碳材料,拥有开发多个孔隙的特殊结构,使其具有很强的吸附能力、催化活性和导电性,因此在环境治理、化学催化、能源存储等方面具有广阔的应用前景。
本课件将对多孔碳材料的研究进展进行详细介绍。
一、多孔碳材料的分类根据孔径大小和形态分布,多孔碳材料可以分为以下几类:1. 微孔碳材料:亚纳米尺寸级别的孔隙大小只有2~3nm,内部结构紧密,表面积相对较小,通常用于气体分离和储存。
2. 中孔碳材料:孔隙大小在10~100nm范围内,内部结构相对疏散,表面积比微孔碳高,通常用于固体催化反应、吸附和分离。
3. 大孔碳材料:孔隙大小超过100nm,内部结构疏松,表面积相对较小,通常用于电池电解介质或者储存电能。
二、多孔碳材料的制备方法制备多孔碳材料的方法多种多样,常见的包括物理法、化学法、物理化学法及其衍生方法等。
常见的方法有:1. 碳化法:根据原料不同制备出不同的多孔碳材料,常用的原料包括聚苯乙烯、酚醛树脂等。
2. 模板法:通过选择合适的模板材料和模板剂,制备出拥有多种孔径、孔隙结构或者表面形貌的多孔碳材料。
3. 化学法:通过选择合适的前驱体,利用典型的化学反应制备出多孔碳材料,如硫酸葡萄糖法,等离子体刻蚀法等。
三、多孔碳材料的应用1. 环境治理:多孔碳材料可以通过吸附和分解有机物等方式,起到净化环境的作用。
2. 化学催化:多孔碳材料的催化效果具有很大优势,可用于催化剂的制备、有机合成、电化学催化等方面。
3. 能源存储:多孔碳材料作为电容器或储能材料可以用于电源和超级电容器等方面。
四、结语多孔碳材料的研究进展一直是碳材料研究的热点和重点。
我们相信,在未来的科技研究中,多孔碳材料将会继续得到广泛关注和应用。
04098功滋讨科2021年第4期(52)卷文章编号:1001-9731(2021)04-04098-07磁性多孔碳材料的研究进展”颛孙梦林1,何伟1,(1.沈阳化工大学材料科学与工程学院,沈阳110142; 2.辽宁隆镁科技有限公司,辽宁鞍山114207)摘要:磁性多孔碳材料同时具有磁性和多孔性质,其拥有丰富的孔道结构、高的比表面积、高孔容、良好的活性位点和磁性可分离等优异的性能,可以很好的解决多孔碳材料在应用过程中难分离回收等问题,因此,磁性多孔碳材料已经在吸附领域得到广泛的应用。
按照孔径大小、磁性强弱以及组合方式的不同将磁性多孔碳材料进行了分类,并综述了近年来磁性多孔碳材料的制备方法以及吸附应用,最后,对磁性多孔碳材料的应用前景进行了展望。
关键词:多孔碳材料;磁性;制备方法;吸附中图分类号:TB34文献标识码:A DOI:10.3969/.issn.1001-9731.2021.04.0140引言多孔碳材料[]具有高度发达的孔隙结构、高比表面积、良好的电导率、有序的多孔结构、大孔隙体积、强耐腐蚀性、热稳定性和良好的活性位点等优异的物理化学性能,因此,广泛应用在超级电容器电极23]、催化与储能[]、电池负极材料[]、重金属离子吸附[]、气体吸附⑺和微波吸收]8]等诸多领域。
目前,工业废水的大量排放,其中的许多染料对环境和人类身体健康具有一定的危害性,因此,从工业废水中去除有机染料就显得十分重要。
多孔碳材料凭借自身特性可应用于有机染料吸附,然而,常规的多孔碳材料在实际应用中难以分离和回收,且可能会造成二次污染。
随着人们对多孔碳材料的深入研究,开发具有优异性能的磁性多孔碳材料成为研究热点。
科研工作者们通过对多孔碳材料进行磁性复合来制备磁性多孔碳材料,如在多孔碳材料中增加磁性纳米粒子,可以轻而易举地将被污染的多孔材料分离出来,达到分离净化、重复利用的目的。
磁性多孔碳材料[]具有高比表面积、高孔容、吸附能力强、磁性可分离等特点,拥有磁性性质和多孔性质,可以很好的解决多孔碳材料的缺陷,在诸多领域有着巨大的应用潜力,如作为宽带电磁波的吸收剂[0]、用于药物输送[1]、屏蔽电磁干扰[2]等,磁性多孔碳材料所具备的优异特性有助于其作为吸附剂发挥出色的性能。
一般来说,制备多孔炭的材料可分为有机高分子聚合物、各种煤及衍生物和天然高分子化合物等。
高分子基多孔炭材料由于其来源丰富,结构易控制而备受关注。
目前广泛使用的多孔炭材料中有相当一部分是通过高分子作为炭源制备得到的。
沈阳材料科学国家(联合)实验室先进炭材料研究部成会明研究员、李峰副研究员等与澳大利亚昆士兰大学逯高清教授合作,设计并制备出一种局域石墨化三维层次多孔结构的新型多孔炭材料(HPGC)。
该材料在高倍率条件下同时具有很高的能量密度和功率密度,可用作超级电容器的电极材料。
该研究组发现多孔电极的电荷存储能力由多孔结构的离子传输性能(受孔的尺寸、形状及取向等因素影响)、多孔炭的电子导电性以及电解液性质和电解液与炭材料之间的物理化学相互作用等因素所决定。
据此他们提出将不同尺度孔(大孔-中孔-微孔)以三维网络形式组装,同时尽可能获得局域石墨片层结构的电极材料设计思想。
HPGC结构的诸多特点使其制备十分困难。
为此科研人员提出了采用液相无机模板方法,制备出具有上述三维层次孔结构和局域石墨片层结构的HPGC材料。
实验结果证明,HPGC材料比活性炭和有序介孔炭材料具有更加优异的高倍率电化学能量存储与转换能力。
优异的高倍率储能性能在水系和有机系电解液中均能实现,该性能超过美国提出的PNGV功率指标。
酚醛树脂是酚类化合物(苯酚、二甲酚等)和醛类化合物(甲醛和糠醛)的缩聚产物。
它作为制备多孔炭材料的前驱体具有价格低廉、成炭率高等特点。
Zhou 等将磺酸基团引入酚醛树脂基体中制备得到多孔炭材料。
由于磺酸基团在炭化过程中生成二氧化硫气体而产生孔洞。
此外,他们利用磺化酚醛树脂作基体制备得到能够用于气体分离的多孔炭薄膜[1]。
考察了反应条件和热解温度对多孔炭薄膜的影响,制备得到的薄膜在35℃时O2/N2的分离系数可达12。
魏微等[2]合成了球形热固性酚醛树脂微粒,并制备得到了微滤炭膜。
考察了原料粒度的影响,结果表明,在原料粒度较小的情况下,炭膜孔径分布较窄,平均孔径和气体透量较小。
多孔碳材料多孔碳材料是一种具有特殊孔隙结构的碳材料,具有较高的比表面积和丰富的表面活性位点,被广泛应用于能源存储、环境净化、催化剂载体等领域。
多孔碳材料的制备方法多样,可以通过物理法、化学法和生物自组装法等不同途径制备得到。
多孔碳材料的主要特点之一是其较大的比表面积。
多孔结构使得碳材料的比表面积大幅增加,从而增强了材料的吸附能力和表面反应活性。
比表面积的增加可以增大材料表面与待吸附物质或反应物质的接触面积,从而提高反应速率和增强吸附效果。
例如,在能源存储领域,利用多孔碳材料的大表面积可以提高电极的电化学性能,增大电容量和提高电子传导速率。
此外,多孔碳材料还具有良好的化学稳定性和高温稳定性。
由于碳材料的化学稳定性较高,它可以在不同环境下长时间稳定地应用。
这使得多孔碳材料成为一种理想的催化剂载体或支撑材料,可以用于各种催化反应。
多孔碳材料的孔隙结构也对其性能有重要影响。
适当的孔隙大小和分布可以提供合适的传质通道,有利于物质的扩散和运移。
孔隙结构还可以调控材料的表面性质,如亲水性、疏水性等,从而影响材料的吸附效率和选择性。
因此,在制备多孔碳材料时,常常需要控制孔隙大小和分布,以获得优良的性能。
在能源存储方面,多孔碳材料被广泛应用于电池和超级电容器等能源储存设备。
多孔碳材料作为电极材料,可以提供更多的电荷传输路径和更大的电荷存储容量,从而提高储能效率和功率密度。
此外,多孔碳材料还具有良好的电子导电性和机械强度,使其成为适合用作电极材料的理想候选。
在环境净化领域,多孔碳材料可以作为吸附剂用于废水和废气处理。
多孔碳材料的大比表面积和丰富的孔隙结构可以提供更多的吸附位点,有效吸附和去除废水中的有害物质和废气中的污染物。
此外,多孔碳材料还可以通过控制孔隙大小和表面性质,选择性地吸附不同分子大小和极性的物质,提高处理效果。
综上所述,多孔碳材料具有较大的比表面积、良好的化学稳定性和高温稳定性,在能源存储和环境净化领域具有重要应用价值。
收稿:1995年4月多孔炭材料的研究进展及前景郑经堂 张引枝 王茂章(中国科学院山西煤炭化学研究所 太原030001)摘 要 近年来多孔炭材料在国内外的研究和开发应用都十分活跃。
本文从制备原料的扩展,形态特征的增多,纳米空间的控制,功能特性的改进,微细组织的察,应用途径的开拓等不同方面综述了多孔炭材料的研究和应用开发的新进展。
关键词 吸附剂 活性炭 活性炭纤维 活性炭膜 分子筛碳The Study Progress and Prospect of Porous Carbon MaterialsZheng J ingtang Zhang Yinz hi W ang M aoz hang(Institute of Coal Chemistry ,Chinese Academy of Sciences,T aiy uan 030001)Abstract This paper sy stematically summ ar izes new developments of study and uses abo ut poro us carbon m aterials from various aspects ,such as ex pansions o f productio n ma-terials,increases of shape features,co ntrol o f nanom eter distance,improv em ents of function character,test o f fine structures and exploitatio n of new use channels.Key words adsorbents ;activated carbon ;activ ated carbon fiber ;activated carbon film ;m olecular siev e carbon所谓多孔炭材料是指具有不同孔结构的碳素材料,其孔大小从具有相当于分子大小的纳米级超细微孔直到适于微生物增殖及活动的微米级细孔。
碳基化合物的多孔材料研究及应用展望1. 引言碳基化合物是一类由碳元素构成的化合物,具有多种形态和结构。
近年来,研究人员发现碳基化合物中的多孔材料具有广泛的应用潜力。
本文将探讨碳基化合物多孔材料的研究进展以及未来的应用展望。
2. 碳基化合物多孔材料的制备方法目前,制备碳基化合物多孔材料的方法主要包括模板法、溶胶-凝胶法和直接碳化法等。
其中,模板法是一种常用的方法,通过选择合适的模板材料,如硅胶、氧化铝等,使其与碳源发生反应,然后去除模板材料,最终得到多孔材料。
溶胶-凝胶法则是通过溶胶和凝胶的形成过程来制备多孔材料。
直接碳化法则是将碳源与金属催化剂一起热处理,使其发生碳化反应,形成多孔结构。
3. 碳基化合物多孔材料的结构特点碳基化合物多孔材料的结构特点主要包括孔径大小、孔隙度和表面积等。
由于碳基化合物的特殊结构,多孔材料具有高度的孔隙度和表面积,使其具有良好的吸附性能和催化活性。
此外,碳基化合物多孔材料的孔径大小可以通过调控制备条件进行调节,从而实现对不同分子的选择性吸附。
4. 碳基化合物多孔材料在环境领域的应用展望碳基化合物多孔材料在环境领域有着广泛的应用前景。
首先,多孔材料可以作为吸附剂用于废水处理和空气净化。
其高度的孔隙度和表面积使其能够高效地吸附有害物质,如重金属离子和有机污染物。
其次,多孔材料还可以作为催化剂用于催化反应,如有机废气的催化氧化和有机合成反应等。
此外,碳基化合物多孔材料还可以用于储能领域,如超级电容器和锂离子电池等。
5. 碳基化合物多孔材料在生物医学领域的应用展望碳基化合物多孔材料在生物医学领域也有着广泛的应用潜力。
多孔材料可以用于药物传递系统,通过控制孔径大小和表面性质,实现对药物的控制释放。
此外,多孔材料还可以用于组织工程和生物传感器等方面。
通过将多孔材料与细胞或生物分子相结合,可以实现对组织修复和疾病诊断的改进。
6. 碳基化合物多孔材料的挑战与展望尽管碳基化合物多孔材料在各个领域都有着广泛的应用前景,但仍存在一些挑战。