苏科初中数学八年级上册《3.0第三章 勾股定理》教案 (8)
- 格式:docx
- 大小:212.67 KB
- 文档页数:6
勾股定理八年级数学(上)2.1 (苏科版)一、教学目标:1.知识目标:(1)经历探索发现并验证勾股定理的过程,进一步发展学生的推理能力;(2)理解并掌握勾股定理,会初步运用勾股定理解决一些简单的数学问题和实际问题.2.能力目标:(1)1.让学生经历“探索—发现—猜想—验证—应用”的学习过程,并体会“特殊—一般—特殊”的数学思想方法;(2)通过定理的证明过程体会数学的数形结合思想。
3.情感目标:(1)在探索勾股定理的过程中,让学生体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.通过获得成功的经验和克服困难的经历,增进数学学习的信心.(2)使学生在定理探索的过程中,感受数学之美,探究之趣.(3)通过了解我国古代辉煌的数学成就,体会勾股定理的文化价值,激发学生的爱国热情,激励学生发奋学习.二、教学重点、难点:经历探索和验证勾股定理的过程,会利用两边求三角形的另一边长;拼图法验证勾股定理三、教学方法与教学手段:以学生为主体的讨论探索法、多媒体辅助教学四、教学过程:(一)欣赏图片,激发兴趣师:(展示图片)2002年国际数学家大会在我国北京召开,它是世界上最高水平的数学科学学术会议。
(新图片)这就是本届大会的会徽。
它有什么特殊含义呢?此图被称为“赵爽弦图”,是我国汉代数学家赵爽在证明勾股定理时用到的,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。
本节课我们也来探索勾股定理(板书课题)首先,我们来了解什么叫勾、股、弦。
请大家阅读第二章引言的第一句话,然后说出此图中的勾、股、弦。
(黑板上的图)1.等腰直角三角形三边的关系许多伟大的科学成就都是在看似平淡无奇的现象中发现和研究出来的。
(展示图片)相传2500年前,毕达哥拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。
我们也来观察一下,你有什么发现?他发现了这样一个图形,并从这一图形发现了等腰直角三角形三边的关系。
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。
这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。
教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。
二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。
但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。
2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。
同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。
2.准备PPT,用于展示问题和引导学生思考。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。
例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。
3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。
教师巡回指导,解答学生的疑问。
探索勾股定理中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
第三章勾股定理教学目标:1.能进一步运用勾股定理及方程解决问题教学重点:勾股定理与数形结合思想的应用教学难点:能应用勾股定理,直角三角形的判定条件解决一些实际问题.教学流程:一、知识梳理:1.勾股定理:直角三角形两条直角边.2.勾股定理逆定理:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形.3.满足a2+b2=c2的三个数a、b、c,称为勾股数.4.三角形的三边长分别为a、b、c,且满足等式:(a+b)2-c2=2ab,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形5.若△ABC的边长分别为6、8、10,则它的最长边上的高为.6.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米7.如图所示,CE、CF分别是△ABC的内角∠ACB,外角∠ACD的平分线,若EF=10,则22CFCE =.二、典例研究:1.如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为()A. 4 B. 8 C. 10 D. 52.“中华人民某某国道路交通管理条理”规定:小汽车在城市街路上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米处,过了2秒后,测得“小汽车”与“车速检测仪”间的距离变为50 米,这辆“小汽车”超速了吗?三、课堂反馈:1.下列三角形中,是直角三角形的是()A.三角形的三边满足关系a+b=cB.三角形的三边长分别为32、42、52C.三角形的一边等于另一边的一半D.三角形的三边长为7、24、252.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或333.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D 点在距A点多远处时,水渠的造价最低?最低造价是多少?4.折叠长方形ABCD的一边AD,点D落在BC边的F处,已知AB=8cm,BC=10cm,求EC的长.四、拓展提高:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.五、课堂小结:本节课你回顾了哪些知识点?教学反思。
1 图2 图3 图1 第三章 勾股定理小结与思考教学过程:一、自主学习1.如果一个直角三角形的两条直角边分别是a 、b ,斜边是c ,那么c b a ,,之间的关系可以表示成 或 或 的形式,因此直角三角形中已知任意两条边,都可以利用勾股定理求出第三边。
2.如果三角形的三边长c b a 、、(c 边最大)满足 ,那么这个三角形是直角三角形。
练习:1.在Rt △ABC 中,∠C =90°(1)若a =5,b=12,则c=________;(2)b=8,c =17,则S △ABC =________。
2.分别以下列四组数为一个三角形的边长:①6、8、10;②5、12、13;③ 8、5、17;④4、5、6.其中能构成直角三角形的有( )A.4组B. 3组C. 2组D.1组二、合作探究问题1.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:⑴在图1中,画一个直角三角形,使它的三边长都是有理数;⑵在图2、3中,各画一个直角三角形,使它们不全等且三边长都是无理数。
问题2. 如图,在△ABC 中,AB=26,BC=20,边BC 上的中线AD=24,求AC 。
点拨:1.由AB 2+BD 2=AB 2,得到∠ADB=900的理由是什么?2.由AD 垂直平分BC ,得到AC=AB 的理由是什么?问题3.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,求矩形ABCD 的边BC 长。
【课堂训练】拓展延伸1.有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s.⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要角形点会根据勾股定理求直角三角形的边长,会判断一个三角形是否是直角A C D B2 多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)三、当堂有效测试四、课后作业 教后记:。
勾股定理与平方根复习(2)教学重点与难点:运用本章知识解决问题
16、三角形三边满足,则这个三角形是( ) A 锐角三角形 B 钝角三角形 C 直角三角形
D 等腰三角形
17、的平方根是( ) A B 36 C ±6
D
18、下列命题正确的个数有:(3)无限小数都是无理数
(4)有限小数都是有理数(5)实数分为正实数和负实数两类( )
A 1个
B 2个
C 3个
D 4个
19、是的平方根,是64的立方根,则( ) A 3
B 7
C 3,7
D 1,7
20、直角三角形边长度为5,12,则斜边上的高( ) A 6
B 8
C
D
21、直角三角形边长为,斜边上高为,则下列各式总能成立的是( )
A
B C
D
22、如图一直角三角形纸片,两直角边
,现将直角边AC 沿
直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD
c b a ,,ab c b a 2)(2
2+=+2
)6(-6-6±
a a a a ==2
33
)2(,)1(x 2
)9(-y =
+y x 13
1813
60b a ,h 2
h ab =2
222h b a =+h
b a 111=+2
221
11h
b a =+cm BC cm AC 8,6==A
E
B
D
C
第22题图
等于( )
A B C D
三、计算题
23、求下列各式中的值
24、已知,求的平方根和算术平方根. 作图题
25、在数轴上画出的点。
26、下图的正方形网格,每个正方形顶点叫格点,请在图中画
一个面积为10的正方形. 五、解答题
27、如图:一块草坪的形状为四边形ABCD ,其中∠B=90°,AB=3m,BC=4m,CD=12m, 求这块草坪的面积.
28、如图所示,在边长为的正方形中,有四个斜边为,直角边为的全等
直角三角形,你能利用这个图说明勾股定理吗?写出理由.
29、如图所示,15只空油桶(每只油桶底面直径均为)堆在一起,要给它
盖一个遮雨棚,遮雨棚起码要多高?(结果保留一位小数)
cm 2cm 3cm 4cm 5x 04916)1(2=-x 25)1)(2(2=-x 27)3()4(3=--x 549)52(2-=-549-8-c c b a ,cm 60D
A
C
B -3 -2 -1 0 1 2 4
3 -
4 第25题图 第26题图
第28题图
第29题图
30、如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?
(先画出示意图,然后再求解).
31、如图,在RtΔ
ABC中,∠C=
90°,AC=2.1㎝,BC =2.8㎝,CD⊥AB于D,
求⑴△ABC的面积;⑵斜边AB的长;⑶高CD的长
32、先观察下列等式,再回答问题:
①
②
③
⑴根据上面三个等式提供的信息,请猜想的结果,并进行验证;
⑵请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证。
2
1
1
1
1
1
1
1
1
2
1
1
1
1
2
2
=
+
-
+
=
+
+
6
1
1
1
2
1
2
1
1
3
1
2
1
1
2
2
=
+
-
+
=
+
+
12
1
1
1
3
1
3
1
1
4
1
3
1
1
2
2
=
+
-
+
=
+
+
2
25
1
4
1
1+
+
第31题
图
C
A
D
B。