几何计算题选讲
- 格式:docx
- 大小:192.90 KB
- 文档页数:6
高二数学几何选讲试题答案及解析1.如图,在梯形中,,若,,,则梯形与梯形的面积比是()A.B.C.D.【答案】D【解析】延长,相交于,由相似三角形知识,则有,设,,(),则梯形的面积,梯形的面积,所以梯形与梯形的面积比是,故选择D.【考点】平面几何中的相似三角形.2.如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P.(1)求证:;(2)若⊙O的半径为,OA=OM,求MN的长.【答案】(1)证明见解析;(2)2.【解析】解题思路:(1)利用等腰三角形与切割线定理进行证明;(2)利用三角形的相似性进行求解. 规律总结:直线与圆的位置关系,是平面几何问题的常见题型,常考知识由:圆内接四边形、切割线定理、相似三角形、全等三角形等.试题解析:(1)连结ON,则ON⊥PN,且△OBN为等腰三角形,则∠OBN=∠ONB,∵∠PMN=∠OMB=900-∠OBN,∠PNM=900-∠ONB∴∠PMN=∠PNM, ∴PM=PN由条件,根据切割线定理,有所以(2)OM=2,在Rt△BOM中,延长BO交⊙O于点D,连接DN由条件易知△BOM∽△BND,于是即,得BN=6所以MN=BN-BM=6-4=2.【考点】1.切割线定理;2.相似三角形.3.如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.(1)求证:△ABE≌△ACD;(2)若AB=6 cm,BC=4 cm,求AE的长.【答案】(1)见解析;(2).【解析】(1)欲证三角形全等,需牢牢掌握这种证明方法和所需要的条件.本小题,(已知),下寻找另外的边和角,考虑到这里有圆,所以运用同弧所对应的圆周角相等可得(弧所对),接着证明(其他角和边不好证,同时这里有弦切角可以利用).(2)欲求,因,则可转化为求,考虑到,需将联系起来就得考虑三角形相似.注意到,.试题解析:(1)证明因为XY是⊙O的切线,所以.因为,所以,∴. 2分因为,所以. 4分因为,又因为,所以. 5分(2)解因为,,所以, 7分所以,即 8分因为,,所以.所以. 10分【考点】(1)三角形全等的证明;(2)三角形相似的证明与应用;(3)圆性质的应用.4.如图,是⊙的直径延长线上一点,与⊙相切于点,的角平分线交于点,则的大小为_________.【答案】【解析】如图所示,连接OC,则又因为∠APC的角平分线为PQ,,在中,又【考点】圆的切线的性质及判定定理5.如图所示,在△ABC中,AH⊥BC于H,E是AB的中点,EF⊥BC于F,若HC=BH,则FC∶BF等于A.B.C.D.【答案】D【解析】由AH⊥BC,EF⊥BC知EF∥AH,又∵AE=EB,∴BF=FH,∴HC=BH=BF,∴FC=BF.6.如图所示,⊙O的两条弦AD和CB相交于点E,AC和BD的延长线相交于点P,下面结论:①PA·PC=PD·PB;②PC·CA=PB·BD;③CE·CD=BE·BA;④PA·CD=PD·AB.其中正确的有A.1个 B.2个 C.3个 D.4个【答案】A【解析】根据割线定理知①式正确,②③④不正确.7.如图所示,PA切圆于A,PA=8,直线PCB交圆于C、B,连接AB、AC,且PC=4,AD⊥BC于D,∠ABC=α,∠ACB=β,则的值等于A. B. C.2 D.4【答案】B【解析】要求,注意到sin α=,sin β=,即=,又△PAC∽△PBA,得===.8.如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=30°,则圆O的面积是________.【答案】4π【解析】∵在⊙O中,∠ACD=∠ABC=30°,且在Rt△ACD中,AD=1,∴AC=2,AB=4,又∵AB是⊙O的直径,∴⊙O的半径为2,∴圆O的面积为4π.9.若三角形的三条边之比为3∶5∶7,与它相似的三角形的最长边为21 cm,则其余两边的长度之和为A.24 cm B.21 cm C.19 cm D.9 cm【答案】A【解析】设其余两边的长度分别为x cm,y cm,则==,解得x=15 cm,y=9 cm.故x+y=24 cm.10.如图所示,设l1∥l2∥l3,AB∶BC=3∶2,DF=20,则DE=________.【答案】8【解析】EF∶DE=AB∶BC=3∶2,∴=,又DF=20,∴DE=8.11.若两个相似三角形的对应高的比为2∶3,且周长的和为50 cm,则这两个相似三角形的周长分别为________.【答案】20 cm,30 cm【解析】设较大的三角形的周长为x cm,则较小的三角形的周长为(50-x)cm.由题意得=,解得x=30,50-x=50-30=20.12.如图所示,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长.【答案】9【解析】解∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA.∴==.∴AC=,AC=.∴=.设CD=x,则=,解得x=9.故DC=9.13.如图所示,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为A.1,2 B.2,2 C.2,6 D.1,6【答案】C【解析】∵PA、PB为⊙O切线,∴OA⊥AP,OB⊥PB,PA=PB,OP平分∠APB,∴OP⊥AB.∴直角三角形有6个,等腰三角形有2个.即直角三角形有:△OAP,△OBP,△OCA,△OCB,△ACP,△CBP;等腰三角形有:△OAB,△ABP.14.如图所示,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为________.【答案】3【解析】∵CE为⊙O切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,∴EB=4,又∵CB、CD均为⊙O切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理:EB2+BC2=EC2得42+x2=(x+2)2,得x=3,∴BC=3.15.如图,⊙O内切于△ABC,切点分别为D、E、F.已知∠B=50°,∠C=60°,连接OE、OF、DE、DF,那么∠EDF等于A.40° B.55°C.65° D.70°【答案】B【解析】∵∠B=50°,∠C=60°,∴∠A=70°,∴∠EOF=110°,∴∠EDF=55°.16.如图所示,AD切⊙O于点F,FB,FC为⊙O的两弦,请列出图中所有的弦切角________________________.【答案】∠AFB、∠AFC、∠DFC、∠DFB【解析】弦切角的三要素:(1)顶点在圆上,(2)一边与圆相交,(3)一边与圆相切.三要素缺一不可.17.如图所示,已知BC是⊙O的弦,P是BC延长线上一点,PA与⊙O相切于点A,∠ABC=25°,∠ACB=80°,求∠P的度数.【答案】55°【解析】解因为PA与⊙O相切于点A,所以∠PAC=∠ABP=25°.又因为∠ACB=80°,所以∠ACP=100°.又因为∠PAC+∠PCA+∠P=180°,所以∠P=180°-100°-25°=55°.18.如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于A.4π B.8πC.12π D.16π【答案】D【解析】连接OA、OB,∵∠ACB=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形,又AB=4,∴OA=OB=4,∴S=π·42=16π.⊙O19.如图所示,AB是⊙O的直径,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足为D,求AD、BD 和CD的长.【答案】cm cm cm【解析】解∴AB是⊙O的直径,∵AC⊥BC.∵CD⊥AB,∴AC2=AD·AB,BC2=BD·AB.∵AC=3 cm,BC=4 cm,∴AB=5 cm.∴AD=cm,BD=cm.∵CD2=AD·BD=×=cm2.∴CD==cm,AD=cm,BD=cm.20.如图所示,四边形ABCD是矩形,∠BEF=90°,①②③④这四个三角形能相似的是__________.【答案】①③【解析】因为四边形ABCD为矩形,所以∠A=∠D=90°.因为∠BEF=90°,所以∠1+∠2=90°.因为∠1+∠ABE=90°,所以∠ABE=∠2.又因为∠A=∠D=90°,所以△ABE∽△DEF.21.如图,已知Rt△ABC的周长为48 cm,一锐角平分线分对边为3∶5两部分.(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长.【答案】(1) 20 cm,12 cm,16 cm (2)cm, cm【解析】解(1)如图,设CD=3x,BD=5x,则BC=8x,过D作DE⊥AB,由Rt△ADC≌Rt△ADE可知,DE=3x,BE=4x,∴AE+AC+12x=48,又AE=AC,∴AC=24-6x,AB=24-2x,∴(24-6x)2+(8x)2=(24-2x)2,解得:x1=0(舍去),x2=2,∴AB=20,AC=12,BC=16,∴三边长分别为:20 cm,12 cm,16 cm.(2)作CF⊥AB于F点,∴AC2=AF·AB,∴AF=== (cm);同理:BF=== (cm).∴两直角边在斜边上的射影长分别为cm, cm.22.如图,设AA1与BB1相交于点O,AB∥A1B1且AB=A1B1.若△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为__________.【答案】2【解析】∵AB∥A1B1且AB=A1B1,∴△AOB∽△A1OB1,∴两三角形外接圆的直径之比等于相似比.∴△A1OB1的外接圆直径为2.23.如图所示,AD是△ABC的中线,E是CA边的三等分点,BE交AD于点F,则AF∶FD为A.2∶1B.3∶1C.4∶1D.5∶1【答案】C【解析】要求AF∶FD的比,需要添加平行线寻找与之相等的比.注意到D是BC的中点,可过D作DG∥AC交BE于G,则DG=EC,又AE=2EC,故AF∶FD=AE∶DG=2EC∶EC=4∶1.24.如图所示,在△ABC中,MN∥DE∥BC,若AE∶EC=7∶3,则DB∶AB的值为________.【答案】3∶10【解析】由AE∶EC=7∶3,有EC∶AC=3∶10.根据MN∥DE∥BC,可得DB∶AB=EC∶AC,即得DB∶AB=3∶10.25.如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+的值.【答案】【解析】解过点D作DG∥AB交EC于G,则===,而=,即=,所以AE=DG,从而有AF=DF,EF=FG=CG,故+=+=+1=.26.如图所示,已知a∥b∥c,直线m、n分别与a、b、c交于点A、B、C和A′、B′、C′,如果AB=BC=1,A′B′=,则B′C′=________.【答案】【解析】由平行线等分线段定理可直接得到B′C′=.27.已知梯形的中位线长10 cm,一条对角线将中位线分成的两部分之差是3 cm,则该梯形中的较大的底是________ cm.【答案】13【解析】设梯形较大,较小的底分别为a,b,则有可得:a=13.28.如图,在▱ABCD中,设E和F分别是边BC和AD的中点,BF和DE分别交AC于P、Q 两点.求证:AP=PQ=QC.【答案】见解析【解析】证明∵四边形ABCD是平行四边形,E、F分别是BC、AD边上的中点,∴DF綉BE,∴四边形BEDF是平行四边形.∵在△ADQ中,F是AD的中点,FP∥DQ.∴P是AQ的中点,∴AP=PQ.∵在△CPB中,E是BC的中点,EQ∥BP,∴Q是CP的中点,∴CQ=PQ,∴AP=PQ=QC.29.如图,直线交圆于两点,是直径,平分,交圆于点,过作丄于.(1)求证:是圆的切线;(2)若,求的面积【答案】(1)连结OD,则OA=OD,所以∠OAD=∠ODA.,然后利用∠EDA+∠ODA=90°,即DE⊥OD来得到证明。
图31、如图,M 是平行四边形ABCD 的边AB 的 中点,直线l 过点M 分别交,AD AC 于点,E F . 若3AD AE =,则:AF FC = .2、如图3,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥BC ,垂足为F ,若AB=6,CF ·CB=5,则AE= 。
3、如右图所示,⊙O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则⊙O 的半径等于4、如图,PA 切⊙O 于点A ,割线PBC 经过圆心O ,1OB PB ==,OA 绕点O 逆时针旋转60 到OD ,则PD 的长为 .5、如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P .若1,3PB PD ==,则BCAD的值为 .6、如图4,已知圆O 的半径为2,从圆O 外一点A 引切线AB 和割线AD ,C 为AD 与圆O 的交点,圆心O 到AD 的距离AB =AC 的长为__ __.7、如图3,△ABC 的外角平分线AD 交外接圆于D,4BD =,则CD = .8、如图3,已知AB 是⊙O 的一条弦,点P 为AB 上一点,PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是第1题图FABCDEMlP图3DA9、如图3,圆O 的割线PAB 交圆O 于A 、B 两点,割线PCD 经过圆心。
已知6=PA ,317=AB ,12=PO 。
则圆O 的半径____=R .10、如图,圆O 内的两条弦AB 、CD 相交于P ,4==PB PA ,PC PD 4=.若O 到AB 的距离为4,则O到CD 的距离为 .11、如图,⊙O 的直径6AB cm =,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC ,若30CPA ∠= ,PC =_____________12、如右图,O 是半圆的圆心,直径AB =PB 是圆的 一条切线,割线PA 与半圆交于点C ,AC=4,则PB=____.13、如图,正ABC ∆的边长为2,点,M N 分别是边,AB AC 的中点,直线MN 与ABC ∆的外接圆的交点为P 、Q ,则线段PM = .14、如图3,AB 的延长线上任取一点C ,过C 作圆的切线CD ,切点为D ,ACD ∠的平分线交AD 于E ,则CED ∠= .15、如图PM 为圆O 的切线,T 为切点, 3ATM π∠=,圆O 的面积为2π,则PA =.第13题图APMNBC。
数学高考综合能力题选讲14立体几何中的有关计算100080 北京中国人民大学附中 梁丽平题型预测立体几何中的计算主要是求角和距离.其中二面角的平面角和点到平面的距离(体积)常常作为考查的重点.范例选讲例1 长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 中点.(1)求直线1AA 与平面E D A 11所成角的大小;(2)求二面角B AC E --1的大小; (3)求三棱锥E D C A 11-的体积.讲解:(1)要求线面所成角,首先需要找到这个角,为此,我们应该先作出面E D A 11的一条垂线.不难发现,AE 正为所求.由长方体1111D C B A ABCD -知:1111A ABB A D 面⊥,又11A A B B AE 面⊂,所以,AE A D ⊥11.在矩形11A ABB 中,E 为1BB 中点且21=AA ,1=AB ,所以,21==E A AE ,所以,AE A 1∆为等腰直角三角形,AE EA ⊥1.所以,⊥AE 面E D A 11.所以,AE A 1∠就是直线1AA 与平面E D A 11所成的角,为︒45.(2)要作出二面角的平面角,一般的思路是最好能找到其中一个面的一条垂线,则可利用三垂线定理(或逆定理)将其作出.CA C 1注意到11B C CB AB 面⊥,所以,面⊥1A B C 11B C C B 面,所以,只需在11BCC B 面内过点E 作1BC EF ⊥于F ,则⊥EF 面1ABC .过F 作1AC FG ⊥于G ,连EG ,则EGF ∠就是二面角B AC E --1的平面角.在1EBC ∆中,55211111=⋅==∆BC B C EB BC S EF EBC ,所以,5532211=-=EF E C F C .在1ABC ∆中,1030sin 1111=⋅=∠⋅=AC AB F C G FC F C FG . 在EFG Rt ∆中,36tan ==∠FG EF EGF . 所以,二面角B AC E --1的平面角的大小为36arctan.(3)要求三棱锥E D C A 11-的体积,注意到(2)中已经求出了点E 到平面11D AC 的距离EF .所以,61613111111111=⋅⋅=⋅==∆--EF CD AD EF S V V D AC D AC E E D C A .另一方面,也可以利用等积转化.因为11//C D AB ,所以,//AB E D C 11面.所以,点A 到平E D C 11面的距离就等于点B 到平E D C 11面的距离.所以,6161311111111111111=⋅⋅=⋅===∆---C D B C EB C D S V V V EBC EBC D E D C B E D C A .点评:求角的一般方法是:先作出所求角,然后再解三角形.利用三垂线定理作出二面角的平面角是很常用的方法.AC A C 1例2 如图:三棱台111C B A ABC -中,侧棱1CC ⊥底面ABC ,︒=∠120ACB ,a BC a AC 2,==,a C B =11,直线1AB 与1CC 所成的角等于60°.(1)求二面角B AC B --1的大小; (2)求点B 到平面AC B 1的距离.讲解 无论从已知(直线1AB 与1CC 所成的角等于60°)的角度还是从所求(二面角B AC B --1)的角度,过1B 作1CC 的平行线都是当然之举.在平面CB C B 11中,过1B 作C C D B 11//交CB 于点D ,连接AD ,则1ADB ∠就是直线1AB 与1CC 所成的角.所以,︒=∠601ADB .又因为1CC ⊥底面ABC ,所以,D B 1⊥底面ABC .在平面ABC 内过点D 作AC DE ⊥于E ,连E B 1,则AC E B ⊥1,所以,ED B 1∠就是二面角B AC B --1的平面角. 在ACD ∆中,a CD AC CD AC AD 3120cos 222=︒⋅-+=.在Rt D AB 1∆中,a AD D B =︒⋅=60cot 1.在Rt CED ∆中,a CE DE 2360sin =︒⋅=.在Rt D EB 1∆中,33223tan 1==∠a a ED B . AC ABC所以,二面角B AC B --1的平面角的大小为:332arctan.(2)由D 为BC 中点,故点B 到平面AC B 1的距离等于点D 到平面AC B 1的距离的2倍,作E B DH 1⊥于H .由(1)知ED B AC 1面⊥,所以,DH AC ⊥,所以,AC B DH 1面⊥,所以,DH 就是点D 到平面AC B 1的距离.在Rt D EB 1∆中,a DB DE DB DE EB DB DE DH 721212111=+⋅=⋅=.所以,点B 到平面AC B 1的距离等于a 7212. 另外,我们也可以用体积法求出这个距离.设点B 到平面AC B 1的距离为h .则由=-ACB B V 11ACB B V -及31163sin 2131311a D B ACB BC AC D B S V ABC ACB B =⋅⎪⎭⎫⎝⎛∠⋅⋅⋅=⋅=∆-, 221214721211a D B ED AC E B AC S ACB =+⋅=⋅=∆可得: =⋅==∆-4763332311a a S V h ACB ACB B a 7212.所以,点B 到平面AC B 1的距离等于a 7212.点评 等积变形是求体积和求距离时常用的方法.高考真题1.(1998年全国高考)已知斜三棱柱ABC -A'B'C'的侧面A'ACC'与底面ABC 垂直,∠ABC =︒90,BC =2,AC =32且AA'⊥A'C,AA'=A'C.①求侧棱AA'与底面ABC 所成角的大小;②求侧面A'ABB'与底面ABC 所成二面角的大AB小;③求顶点C 到侧面A'ABB'的距离. 2.(1999年全国高考)如图,已知四棱柱ABCD -A'B'C'D',点E 在棱D'D 上,截面EAC ∥D'B,且面EAC 与底面ABCD 所成的角为45°,AB =a(1)求截面EAC 的面积;(2)求异面直线A'B'与AC 之间的距离; (3)求三棱锥B'-EAC 的体积.3.(2001年全国高考)如图:在底面是直角梯形的四棱锥S-ABCD 中,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=21.(1) 求四棱锥S-ABCD 的体积; (2) 求面SCD 与面SBA 所成的二面角的平面角的正切值.[答案与提示:1.︒45;︒60;3. 2.222a ;a 2;342a . 3.2241;. ] SB C A DAC。
几何证明选讲专题1.如图所示,在四边形ABCD 中,//,//EF BC FG AD ,则EF FGBC AD+=1 由平行线分线段成比例可知,EF AF FG FC BC AC AD AC ==,所以1EF FG AF FCBC AD AC++==2.在平行四边形ABCD 中,点E 在边AB 上,且:1:2,AE EB DE =与AC 交于点F ,若AEF ∆的面积为6cm 2,则ABC ∆的面积为 cm 272 不妨设,AEF ABC ∆∆,AE AB 边上的高分别为12,h h ,因为四边形ABCD 为平行四边 形,:1:2,AE EB =,所以12:1:3,:1:3,:1:4AE AB EF FD h h ===,所以:1:12AEF ABC S S ∆∆=,从而ABC ∆的面积为72 cm 23.如图,圆O 上一点C 在直径AB 上的射影为D ,4,8CD BD ==,则圆O 的半径等于5 由直角三角形射影定理2CD BD DA =⋅可知2DA =,10AB =,即半径为5 4.如图,从圆O 外一点P 作圆O 的割线,,PAB PCD AB 是圆O 的直径,若4,5,3PA PC CD ===,则CBD ∠=30 由割线定理知PA PB PC PD ⋅=⋅,即4(4)5(53)AB ⨯+=⨯+,得6AB =即圆O 的半径为3,因为弦3CD =,所以60COD ∠=,从而1302CBD COD ∠=∠= 5.已知PA 是圆O 的切线,切点为A ,2,PA AC =是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R =由切割线定理知2PA PB PC =⋅,即221PC =⨯,4PC =,所以AC =6.如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于E ,4,8PC PB ==,则CD =245由切割线定理知2PC PA PB =⋅得2,826PA AB ==-=,圆O 半径为3,连接CO ,则在直角三角形PCO 中,有3512,235CO CP OP CE CE ⨯⋅=⋅==+,从而245CD = 7.如图,,AB CD 是圆O 的两条弦,交点为E 且AB 是线段CD 的中垂线,已知6,AB CD ==AD 的长度为由条件可知AB 为圆O 的直径,所以3r =,连接OD ,则2OE ==,所以5,AE AD ===8.如图,在梯形ABCD 中,////AD BC EF ,E 是AB 的中点,EF 交BD 于G ,交AC 于H ,若5,7AD BC ==,则GH =1 由条件可知EF 为梯形ABCD 的中线,且1(57)62EF =+=;由相似三角形的相似比可知,57EG BG GF DG BD BD ==,从而6157EG EG -+=,解得52EG =,同理可解得52HF =,所以1GH =9.如图,圆的内接ABC ∆的C ∠的平分线CD 延长后交圆于点E ,连接BE ,已知3BD =,7,5CE BC ==,则线段BE =215因为CD 为C ∠的平分线,所以BCE ECA ∠=∠,又圆周角EBA ECA ∠=∠,所以BCE EBA ∠=∠,又E E ∠=∠,所以EBC EBD ∆∆ ,从而BE BD EC BC =,即375BE =,所以215BE =10.如图,四边形ABCD 内接于圆O ,BC 是直径,MN 切圆O 于A ,25MAB ∠=, 则D ∠=115 连接AC ,由条件可知25C MAB ∠=∠= ,又BC 为直径,所以90BAC ∠= ,、从而180902565B ∠=--= ,又180B D ∠+∠= ,所以115D ∠=11.如图,在ABC ∆中,D 是AC 的中点,E 是BD 的中点,AE 交BC 于F ,则BFBC=12过E 作//EG DC 交BC 于G ,因为E 是BD 的中点,D 是AC 的中点,所以1124EG DC AC ==,BG GC =,又1143FG FC GC ==,所以2132BF BG FG GC FC =-==12.如图,圆'O 和圆O 相交于A 和B ,PQ 切圆O 于P ,交圆'O 于,Q M ,交AB 的延长线于N ,3,15,MN NQ ==则PN =由割线定理、切割线定理,有2NM NQ NB NA NP ⋅=⋅=,所以2315PN =⨯,即PN =13.如图,,EB EC 是圆O 的两条切线,,B C 是切点,,A D 是圆上两点,如果46E ∠=32DCF ∠= ,则A ∠的度数是因为,EB EC 是圆O 的两条切线,所以EB EC =,又46E ∠=,所以1(18046)672EBC ECB ∠=∠=-= ,又32DCF ∠= ,所以180673281BCD ∠=--= ,从而1808199A ∠=-=14.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为3AB =,则切线AD 的长为依题意,2BC ==,所以5AC =,由215AD AB AC =⋅=,得AD =15.如图,已知P 是O 外一点,PD 为O 的切线,D 为切点,割线PEF 经过圆心O ,若12,PF PD ==则EFD ∠的度数为30由切割线定理得2PD PE PF =⋅2163412PD PE PF ⨯⇒===8EF ⇒=,4OD =, ∵OD PD ⊥,12OD PO =∴30P ∠= ,60,30POD PDE EFD ∠=∠=∠=。
几何证明选讲练习 姓名_______________1.如图,在中,,,过作的外接圆的切线,,与外接圆交于点,则的长为__________.【答案】2.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为______.【答案】833.如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.【答案】4.如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____.【答案】.6 ABC 090C ∠=060,20A AB ∠==C ABC CD BD CD ⊥BD EDE5.A ED CB O 第15题图5.如图2,O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为____________.【答案】23 6.如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为___________.【答案】8 7.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于D .若PA=3,916PD DB =::,则PD=_________;AB=___________.【答案】95;4 解三角形练习1.如图,△ABC 中,AB=AC=2,BC=点D在BC 边上,∠ADC=45°,则AD 的长度等于______.【命题意图】本题考查运用正余弦定理解三角形,是中档题.【解析】(法1)过A 作AE ⊥BC,垂足为E ,∵AB=AC=2,BC=∴E 是BC 的中点,且EC=O D EBACRt AEC ∆中,AE=又∵∠ADE=45°,∴DE=1,∴AD=(法2) ∵AB=AC=2,BC=由余弦定理知,cos C =2222AC BC AB AC BC +-⨯∴C=30°, 在△ADC 中,∠ADE=45°,由正弦定理得,sin sin AD AC C ADC=∠, ∴AD=sin sin AD C ADC ∠=12⨯2.如图,在△ABC 中,D 是边AC 上的点,且AB AD =,2AB =,2BC BD =,则sin C 的值为( )A.3 B.6 C3 D6【答案】D【解析】设BD a =,则由题意可得:2,BC a =2AB AD a ==,在ABD ∆中,由余弦定理得: 222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-=13,所以sin A=,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD . 3.,EF 是等腰直角ABC ∆斜边AB 上的三等分点,则tan ECF ∠=( )A .1627B .23 CD .34【答案】D4.在△ABC 中, 4ABC π∠=,AB 3BC =,则sin BAC ∠ =( ) (A )(B )(C )(D )【答案】C5.ABC ∆中,90C ∠=,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.【答案】36.在△ABC 中,已知AB=4,AC=7,BC 边的中线27=AD ,求边BC 的长.7.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC=60°,AC=7,AD=6,S △ADC =2315,求AB 的长.排列组合练习题1.有6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为( ) 或 或 或 或【解析】选①设仅有甲与乙,丙没交换纪念品,则收到份纪念品的同学人数为人②设仅有甲与乙,丙与丁没交换纪念品,则收到份纪念品的同学人数为人.2.将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有A .12种B .18种C .24种D .36种答案A【命题意图】本试题考查了排列组合的用用.4()A 13()B 14()C 23()D 24D 261315132C -=-=4244,,,,,a a b b c c【解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有.3.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A )232 (B)252 (C)472 (D)484解析:,答案应选C . 另解:. 4. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A .10种B .15种C .20种D .30种【解析】甲赢和乙赢的可能情况是一样的,所以假设甲赢的情况如下:若两人进行3场比赛,则情况只有是甲全赢1种情况;若两人进行4场比赛,第4场比赛必为甲赢前3场任选一场乙赢为种情况;若两人进行5场比赛,第5场比赛必为甲赢前4场任选一场乙赢为种情况;综上,甲赢有10种情况,同理,乙赢有10种情况,则所有可能出现的情况共20种,故选C .5.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:种; 4个都是奇数:种.∴不同的取法共有66种.【答案】D6.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).【解析】概率为 语文、数学、英语三门文化课间隔一节艺术课,排列有种排法,语文、数学、英语三门文化课相邻有种排法,语文、数学、英语三门文化课两门相邻有种排法. 32212⨯⨯=472885607216614151641122434316=-=--⨯⨯=--C C C C 472122642202111241261011123212143431204=-+=⨯⨯+-⨯⨯=+-C C C C C 313=C 624=C 225460C C =455C =3____53344A A 3312122223A C C A C3故所有的排法种数有在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为5。
第12讲立体几何问题选讲【赛点突破】常用思想:转化与化归新的工具:空间向量【范例解密】例1一个平面与正方体相交所得的截面可能是正五边形吗?解:不能为正五边形,因为截面必然和正方体的五个面相交,必有两个面是相对的平行面,故截得的五边形必有两条边互相平行,而正五边形中没有两条边平行,故结论成立。
注:本答案是刘未末同学首创。
例2与三条异面直线,,a b c都相交的直线有多少条?解:有无数条。
在直线a上选一点A,在直线b上选一点B,当B在直线b上运动时,所有的直线轨迹是过点A和直线b的平面,如果这个平面和直线c有交点C,则过A,B,C的直线和三条异面直线都相交。
如果变换A的位置,将有无数个过直线b的平面,而这些平面中至多只有一个平面和直线c平行(否则直线c和直线b平行),故满足条件的直线有无数条。
注:本题运用了动态变化的观点。
例3如果一个四面体的三组对棱分别相等,则称这个四面体为等腰四面体。
若一个等腰四面体的三组对棱长分别为,,a b c。
(1)证明四面体的每个面都是锐角三角形;(2)求四面体的体积。
分析与解:(1)如图,取BD的中点E,则AE CE==AE CE AC+>,故c>,即222a b c+>,同理222b c a+>,222a c b+>,故每个面都是锐角三角形;(2)如图,将四面体放入长方体内,即可求得体积。
注:第一问比较难于说明,第二问得构造值得学习。
例4用平面截一个四棱锥,使平面与棱锥的四条侧棱分别相交,则一定能使截面为平行四边形吗?分析与解:如图,设两组相对侧面的两条交线分别为,l m,直线,l m确定的平面为α,则平行于α的平面与四棱锥截得的四边形为平行四边形。
注:本题的交线比较隐蔽,需注意。
例5如图,四面体PABC 中,,PA BC PB AC ⊥⊥,证明:PC AB ⊥。
证明:作PH ⊥面ABC 于H 。
由于PA BC ⊥,由三垂线定理逆定理知AH BC ⊥,同理 BH AC ⊥,故H 为ABC ∆垂心,CH AB ⊥,由三垂线定理得PC AB ⊥。
高二数学几何选讲试题答案及解析于点,过点作两1.如图,已知⊙与⊙相交于、两点,过点A作⊙的切线交⊙O2圆的割线,分别交⊙、⊙于点、,与相交于点.(1)求证:;(2)若是⊙的切线,且,,求的长.【答案】(1)证明见解析;(2)【解析】(1)圆的切线的性质定理圆的切线垂直于过切点的半径,推论1经过圆心且垂直于切线的直线必过切点,推论2经过切点且垂直于切线的直线必过圆心;(2)圆的切线的性质定理经过半径的外端并且垂直于这条半径的直径是圆的切线;若已知条件中直线与圆的公共点不明确,则应过圆心作直线的垂线,得到垂线段,设法证明这条垂线段的长等于圆的半径;(3)掌握与圆有关的比例线段,如相交弦定理,割线定理,切割线定理,切线长定理.试题解析:解:(I)∵AC是⊙O的切线,∴∠BAC=∠D,1又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC. 5分(II)设BP=x,PE=y,∵PA=6,PC=2,∴=12 ①∵AD∥EC,∴,∴②由①、②解得(∵x>0,y>0)∴DE=9+x+y=16,∵AD是⊙O的切线,∴AD2=DB·DE=9×16,∴AD=12. 11分2【考点】(1)证明直线与直线平行;(2)求切线长.2.如图,在△ABC中,AB=8,AC=7,BC=6,D是AB的中点,∠ADE=∠ACB,则DE=_________.【答案】.【解析】首先由知,∽,所以.然后因为AB=8,D是AB的中点,所以.又AC=7,BC=6,所以,即.【考点】相似三角形的性质.3.如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=,OM=1,则MN=_________.【答案】1.【解析】因为AC为⊙O的直径,OB⊥AC,且OC=,OM=1,所以,. 设,由相交弦定理知,即,所以,即.【考点】与圆有关的比例线段.4.如图,四边形是圆的内接四边形,延长和相交于点,若,,则的值为()A.B.C.D.【答案】B【解析】四边形是圆的内接四边形,它的两对对角互补,进而得到∽,因而有,故选择B.【考点】平面几何中的圆与四边形.5.如图在△中,∥,,交于点,则图中相似三角形的对数为( ).A.1B.2C.3D.4【答案】B【解析】,;又,,故选B.【考点】相似三角形.6.如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.(1)求证:△ABE≌△ACD;(2)若AB=6 cm,BC=4 cm,求AE的长.【答案】(1)见解析;(2).【解析】(1)欲证三角形全等,需牢牢掌握这种证明方法和所需要的条件.本小题,(已知),下寻找另外的边和角,考虑到这里有圆,所以运用同弧所对应的圆周角相等可得(弧所对),接着证明(其他角和边不好证,同时这里有弦切角可以利用).(2)欲求,因,则可转化为求,考虑到,需将联系起来就得考虑三角形相似.注意到,.试题解析:(1)证明因为XY是⊙O的切线,所以.因为,所以,∴. 2分因为,所以. 4分因为,又因为,所以. 5分(2)解因为,,所以, 7分所以,即 8分因为,,所以.所以AE. 10分【考点】(1)三角形全等的证明;(2)三角形相似的证明与应用;(3)圆性质的应用.7.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE与圆相切,求线段CE的长.【答案】【解析】利用相交弦定理可得到的等量关系,并结合已知条件可计算出,利用切割线定理可得到的等量关系,并结合前面所得可得结果.试题解析:由相交弦定理得,由于,可解得,所以.由切割线定理得,即.【考点】相交弦定理,切割线定理.8.若一个直角三角形的一条直角边为3 cm,斜边上的高为2.4 cm,则这个直角三角形的面积为A.7.2 cm2B.6 cm2C.12 cm2D.24 cm2【答案】B【解析】长为3 cm的直角边在斜边上的射影为=1.8 (cm),故由射影定理知斜边长为=5 (cm),∴三角形的面积为×5×2.4=6 (cm2).9.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,AD的中点,则EF=________.【答案】【解析】连接BD、DE,由题意可知DE⊥AB,DE=a,即BC=DE=a,∴BD==a,∴EF=BD=.10.如图所示,圆内的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=PD.求CD 的长.【答案】10【解析】解设CD=x,则PD=x,PC=x.由相交弦定理,得PA·PB=PC·PD,∴4×4=x·x,x=10.∴CD=10.11.如图所示,PA是⊙O的切线,切点为A,PA=2.AC是⊙O的直径,PC与⊙O交于点B,PB=1,则⊙O的半径r=________.【答案】【解析】依题意,△PBA∽△ABC,所以=,即r===.12.如图所示,P、Q分别在BC和AC上,BP∶CP=2∶5,CQ∶QA=3∶4,则等于A.3∶14B.14∶3C.17∶3D.17∶14【答案】B【解析】过Q点作QM∥AP交BC于M,则==,又∵=,∴=.又==,==,∴=,∴=.13.如图所示,点D、E分别在AB、AC上,下列条件能判定△ADE与△ACB相似的有①∠AED=∠B②=③=④DE∥BCA.1个 B.2个 C.3个 D.4个【答案】C【解析】由判定定理1知①正确,由判定定理2知②正确,由预备定理1知④正确,③不符合相似三角形的判定定理,故不正确,从而选C.14.如图所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.设边AB上的一点P,使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,那么这样的点P有A.1个 B.2个C.3个 D.4个【答案】C【解析】设AP=x,则PB=7-x.(1)若△PAD∽△PBC,则=,即=,得x=<7,符合条件.(2)若△PAD∽△CBP,即=,x2-7x+6=0,解得x1=1,x2=6也符合条件,故满足条件的点P 有3个.15. 在四边形ABCD 中,∠A =135°,∠B =∠D =90°,BC =2,AD =2,则四边形ABCD 的面积是______. 【答案】4【解析】因∠B =∠D =90°,于是设想构造直角三角形,延长BA 与CD 的延长线交于E ,则得到Rt △BCE 和Rt △ADE ,由题目条件知,△ADE 为等腰直角三角形,所以DE =AD =2,所以S △ADE =×2×2=2. 又可证Rt △EBC ∽Rt △EDA , 所以=2=2=3.∴S △EBC =3S △EDA ,∴S 四边形ABCD =S △EBC -S △ADE =4.16. 如图所示,D 为△ABC 中BC 边上的一点,∠CAD =∠B ,若AD =6,AB =8,BD =7,求DC 的长.【答案】9【解析】解 ∵∠CAD =∠B ,∠C =∠C , ∴△CAD ∽△CBA.∴==.∴AC =,AC =.∴=.设CD =x , 则=,解得x =9.故DC =9.17. 如图所示,已知⊙O 的两条弦AB 、CD 相交于AB 的中点E ,且AB =4,DE =CE +3,则CD 的长为________.【答案】5【解析】由相交弦定理知 EA·EB =EC·ED. (*)又∵E 为AB 中点,AB =4,DE =CE +3, ∴(*)式可化为22=EC(CE +3)=CE 2+3CE , ∴CE =-4(舍去)或CE =1.∴CD =DE +CE =2CE +3=2+3=5.18. 如图所示,已知BC 是⊙O 的弦,P 是BC 延长线上一点,PA 与⊙O 相切于点A ,∠ABC =25°,∠ACB=80°,求∠P的度数.【答案】55°【解析】解因为PA与⊙O相切于点A,所以∠PAC=∠ABP=25°.又因为∠ACB=80°,所以∠ACP=100°.又因为∠PAC+∠PCA+∠P=180°,所以∠P=180°-100°-25°=55°.19.(拓展深化)如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.(1)求证:△ABE≌△ACD;(2)若AB=6 cm,BC=4 cm,求AE的长.【答案】(1)见解析 (2)cm【解析】(1)证明因为XY是⊙O的切线,所以∠1=∠2.因为BD∥XY,所以∠1=∠3,∴∠2=∠3.因为∠3=∠4,所以∠2=∠4.因为∠ABD=∠ACD,又因为AB=AC,所以△ABE≌△ACD.(2)解因为∠3=∠2,∠ABC=∠ACB,所以△BCE∽△ACB,=,AC·CE=BC2.因为AB=AC=6 cm,BC=4 cm,所以6·(6-AE)=16.所以AE=cm.20.如图所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一点O为圆心作⊙O与AB相切于E,与AC相切于C,又⊙O与BC的另一个交点为D,则线段BD的长为A.1B.C.D.【答案】C【解析】⊙O与AC相切于C,则∠ACB=90°,又AC=4,BC=3,∴AB=5,连接OE,且设⊙O的半径为R,则由△OEB∽△ACB,∴OB==R,∴BC=OC+OB=R+R=R=3,∴R=,∴BD=BC-2R=3-=.21.若两条直线(a+2)x+(1-a)y-3=0,(a-1)x+(2a+3)y+2=0与两坐标轴围成的四边形有一个外接圆,则实数a=________.【答案】1或-1【解析】由圆内接四边形的性质,知(a+2)(a-1)+(1-a)·(2a+3)=0,整理得a2=1,∴a=±1. 22.(拓展深化)如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:B、D、H、E四点共圆;(2)证明:CE平分∠DEF.【答案】见解析【解析】证明(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°.于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B、D、H、E四点共圆.(2)连接BH,则BH为∠ABC的平分线,得∠HBD=30°.由(1)知B、D、H、E四点共圆.所以∠CED=∠HBD=30°.又∵∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°,所以CE平分∠DEF.23.如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于A.4π B.8πC.12π D.16π【答案】D【解析】连接OA、OB,∵∠ACB=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形,又AB=4,∴OA=OB=4,∴S=π·42=16π.⊙O24.在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D.若BC=m,∠B=α,则AD的长为A.m sin2α B.m cos2αC.m sin αcos α D.m sin αtan α【答案】C【解析】由射影定理,得AB2=BD·BC,AC2=CD·BC,即m2cos2α=BD·m,m2sin2α=CD·m,即BD=mcos2α,CD=msin2α.又∵AD2=BD·DC=m2cos2αsin2α,∴AD=mcos αsin α.故选C.25.如图,在正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于________.【答案】【解析】在Rt△DAO及Rt△DEA中,∠ADO为公共角,∴Rt△DAO∽Rt△DEA,∴=,即=.∵E为AB的中点,∴==,∴=.26. (拓展深化)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G,(1)写出图中三对相似三角形,并证明其中的一对;(2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.【答案】(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽EAM,证明见解析 (2)【解析】解(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽EAM.以下证明:△AMF∽△BGM.∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF∽△BGM.(2)当α=45°时,可得AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=2.又∵△AMF∽△BGM,∴=∴BG===.又AC=BC=4×sin 45°=4,∴CG=4-=.∵CF=4-3=1,∴FG===.27.如图所示,已知DE∥BC,BF∶EF=3∶2,则AC∶AE=________,AD∶DB=________.【答案】3∶22∶1【解析】∵DE∥BC,∴==.∵BF∶EF=3∶2,∴==.∴AC∶AE=3∶2.又DE∥BC,得AB∶AD=3∶2,即=.∴=.即==2,即=2.∴AD∶BD=2∶1.28.如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.【答案】见解析【解析】证明如图所示,连接AE交DC于O.∵四边形ACED是平行四边形.∴O是AE的中点.∵在梯形ABCD中,DC∥AB,在△EAB中,OF∥AB,又∵O是AE的中点,∴F是EB的中点,∴EF=BF.29.如图甲,四边形是等腰梯形,.由4个这样的等腰梯形可以拼出图乙所示的平行四边形,则四边形中度数为 ( )A.B.C.D.【答案】C【解析】由于上底和两腰长已知,故要求梯形面积,关键是要找出底边上和高,由于图形中无法再分析出边与边的关系,所以我们可以从角的方向入手,求梯形的内角。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点52 几何证明选讲一、填空题1.(2013·天津高考理科·T13)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E,AD 与BC 交于点F.若AB=AC,AE=6,BD=5,则线段CF 的长为 .【解题指南】利用圆以及平行线的性质计算.【解析】因为AE 与圆相切于点A,所以AE 2=EB ·(EB+BD),即62=EB ·(EB+5),所以BE=4,根据切线的性质有∠BAE=∠ACB,又因为AB=AC,所以∠ABC=∠ACB,所以∠ABC=∠BAE,所以AE ∥BC,因为BD ∥AC,所以四边形ACBE 为平行四边形,所以AC=BE=4,BC=AE=6.设CF=x,由BD ∥AC 得=AC CF BDBF,即456=-xx,解得x=83,即CF=83. 【答案】83.2. (2013·湖南高考理科·T11)0中,弦,,2,AB CD P PA PB ==相交于点1PD O =,则圆心到弦CD 的距离为 .【解题指南】本题要利用相交弦定理:PA ·PB=PD ·PC 和解弦心三角形22)21(CD r d -=【解析】由相交弦定理PC PD PB PA ∙=∙得4=PC ,所以弦长5=CD ,故圆心O 到弦CD 的距离为234257)21(22=-=-CD OC .【答案】23. 3. (2013·陕西高考文科·T15)如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = .【解题指南】先通过A C ∠=∠及线线平行同位角相等,找出三角形相似,再由比例线段求得答案.【解析】..//BAD PED C A PED BCD PE BC ∠=∠⇒∠=∠∠=∠且所以因为.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPD PA PE APE EPD 所以4. (2013·北京高考理科·T11)如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D.若PA=3,PD ∶DB=9∶16,则PD= ,AB= .【解题指南】利用切割线定理求出PD,再在Rt △PBA 中利用勾股定理求出AB. 【解析】由于PD ∶DB=9∶16,设PD=9a,DB=16a,根据切割线定理有PA 2=PD ·PB,有a=15,所以PD=95,在Rt △PBA 中,有AB=4. 【答案】95 4. 5. (2013·湖北高考理科·T15)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E ,若AB=3AD,则EOCE的值为【解题指南】先用半径表示,再求比值. 【解析】设半径为R ,AB=3AD=2R. AD=23R ,OD=13R,3R =3cos ,3RC R ==228cos ,339CE CD C R R === 所以EO=R ―CE ―R ―81,99R R =898.19RCE EO R== 【答案】8.6. (2013·陕西高考理科·T15)如图, 弦AB 与CD 相交于圆O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .【解题指南】先通过圆周角相等及线段平行同位角相等得出,∽APE EPD ∆∆再由比例线段求得答案.【解析】..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠且在圆中所以因为.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以 【答案】.67.(2013·广东高考理科·T15)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD ,过C 作圆O 的切线交AD 于E.若AB=6,ED=2,则BC=______.【解题指南】本题考查几何证明选讲,可先作ABD ∆的中位线OC 再计算. 【解析】设BC x =,连接OC ,因为,BC CD AC BD =⊥,ABD ∆是等腰三角形,,6,2,4BC CD x AB AD ED AE ======,在ACD ∆中,CE AD ⊥,则22222CE AC AE AD DE =-=-,即2236164x x --=-,解得x =【答案】8.(2013·广东高考文科·T15)如图,在矩形ABCD 中,AB 3BC =,BE AC ⊥,垂足为E ,则ED = .【解题指南】本题考查几何证明选讲,可先利用射影定理再结合余弦定理计算. 【解析】3,30,AB BC AC ACB AC BE ==∠=⊥,BEC ∆是直角三角形,由射影定理2,BC AC EC EC =⋅=ECD ∆中,由余弦定理可得222212cos 604ED EC CD EC CD =+-⋅=,即ED =. 9. (2013·天津高考文科·T13)如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .【解题指南】 首先利用圆的性质,得出角的关系,再分别在△ABE 与△ABD 中利用正弦定理求解.【解析】设∠=BAE α,因为AE 与圆相切于点A ,所以,∠=∠BAE ADB 又因为AB = AD ,所以∠=∠=ABD ADB α,因为AB //DC ,所以∠=∠=ABD CDB α,所以2∠=∠=ABE ADC α.在△ABE 中,由正弦定理得sin sin =∠BE ABBAE E ,即45sin sin(3)=-απα,解得3cos .4=α在△ABD中,由正弦定理得sin sin =∠∠BD AB BAD ADB ,即5sin(2)sin =-BD παα,解得15.2=BD【答案】152. 10. (2013·重庆高考理科·T14)如图,在△ABC 中,090C ∠=,060A ∠=,20AB =,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为【解题指南】 直接根据圆的切线及直角三角形的相关性质进行求解【解析】由题意知AB 是圆的直径,设圆心为O ,连接OC ,因为CD 是圆的切线,则CDOC ⊥又因为BD ⊥CD ,所以BD OC //.因为 60,=∠=A OC OA ,所以30,60=∠=∠OCB ACO ,因为20=AB ,所以310=BC ,因为BD OC //,所以30=∠CBD 所以15=BD ,又因为AB 是圆的直径, 点E 在圆上, 20=AB 且 60=∠ABD ,所以10=BE ,故51015=-=-=BE BD DE【答案】5. 二、解答题11. (2013·辽宁高考文科·T22)与(2013·辽宁高考理科·T22)相同 如图,AB 为O 的直径,直线CD 与O 相切于E , AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F,连接,AE BE .证明: ()I FEB CEB ∠=∠;()II 2.EF AD BC =⋅【解题指南】 借助等量代换,证明相等关系;利用全等三角形的对应边,角相等.【证明】()I 由直线CD 与O 相切于E ,得EAB CEB ∠=∠ 由AB 为O 的直径,得AE EB ⊥,从而2EAB EBF π∠+∠=又EF 垂直AB 于F ,得2FEB EBF π∠+∠=,从而FEB CEB ∠=∠()II 由BC 垂直CD 于C ,得BC CE ⊥又EF 垂直AB 于F EF AB ⇒⊥,FEB CEB ∠=∠,BE 为公共边, 所以Rt BCE ∆≌Rt BFE ∆,所以BC BF = 同理可证,Rt ADE ∆≌Rt AFE ∆,所以AD AF = 又在Rt AEB △中, EF AB ⊥,所以2.EF AF BF =⋅ 综上,2.EF AD BC =⋅12. (2013·新课标Ⅰ高考文科·T22)与(2013·新课标Ⅰ高考理科·T22)相同如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。
⼏何证明选讲知识点汇总与练习(内含答案)《⼏何证明选讲》知识点归纳与练习(含答案)⼀、相似三⾓形的判定及有关性质平⾏线等分线段定理平⾏线等分线段定理:如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推理1:经过三⾓形⼀边的中点与另⼀边平⾏的直线必平分第三边。
推理2:经过梯形⼀腰的中点,且与底边平⾏的直线平分另⼀腰。
平分线分线段成⽐例定理平分线分线段成⽐例定理:三条平⾏线截两条直线,所得的对应线段成⽐例。
推论:平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线)所得的对应线段成⽐例。
相似三⾓形的判定及性质相似三⾓形的判定:定义:对应⾓相等,对应边成⽐例的两个三⾓形叫做相似三⾓形。
相似三⾓形对应边的⽐值叫做相似⽐(或相似系数)。
由于从定义出发判断两个三⾓形是否相似,需考虑6个元素,即三组对应⾓是否分别相等,三组对应边是否分别成⽐例,显然⽐较⿇烦。
所以我们曾经给出过如下⼏个判定两个三⾓形相似的简单⽅法:(1)两⾓对应相等,两三⾓形相似;(2)两边对应成⽐例且夹⾓相等,两三⾓形相似;(3)三边对应成⽐例,两三⾓形相似。
预备定理:平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与三⾓形相似。
判定定理1:对于任意两个三⾓形,如果⼀个三⾓形的两个⾓与另⼀个三⾓形的两个⾓对应相等,那么这两个三⾓形相似。
简述为:两⾓对应相等,两三⾓形相似。
判定定理2:对于任意两个三⾓形,如果⼀个三⾓形的两边和另⼀个三⾓形的两边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似。
简述为:两边对应成⽐例且夹⾓相等,两三⾓形相似。
判定定理3:对于任意两个三⾓形,如果⼀个三⾓形的三条边和另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似。
简述为:三边对应成⽐例,两三⾓形相似。
引理:如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边。
定理:(1)如果两个直⾓三⾓形有⼀个锐⾓对应相等,那么它们相似;(2)如果两个直⾓三⾓形的两条直⾓边对应成⽐例,那么它们相似。
高中数学竞赛专题讲座之四:解析几何一、选择题部分1.(集训试题)过椭圆C :12322=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足),延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。
当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为 ( )A .]33,0( B .]23,33(C .)1,33[D .)1,23(解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。
又∵HQ=λPH ,所以λ+-=11PQ HP ,所以由定比分点公式,可得:⎪⎩⎪⎨⎧=-+=yy x x 11)1(3λλ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33[321322322∈-=-λλλ. 故选C.2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D)A .212y x =-B .212y x =C .216y x =-D .216y x =3.(2006年江苏)已知抛物线22y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B )A .0个B .2个C .4个D .6个4.(200 6天津)已知一条直线l 与双曲线12222=-by a x (0>>a b )的两支分别相交于P 、Q 两点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于(A ) A .22ab ab- B .22a b ab- C .aba b 22- D .ab a b 22-5.(2005全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 解:),23cos()22cos(,223220,32ππππππ->-∴<-<-<∴>+ 即 .3sin 2sin >又,03cos 2cos ,03cos ,02cos ,32,220>-∴<>∴<<<<πππ方程表示的曲线是椭圆.)()4232sin(232sin22)3cos 2(cos )3sin 2(sin *++-=--- π,0)4232sin(.423243,432322,0232sin ,02322>++∴<++<∴<+<<-∴<-<-πππππππ.0)(<*∴式即∴-<-.3cos 2cos 3sin 2sin 曲线表示焦点在y 轴上的椭圆,选C 。
数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:22r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.ROEDC APr例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 . 分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,AF=EF=BD=3EB=DF=2,所以: A E 2=AB 2-EB 2=8-4=4三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰∆AEF 中点A 到边EF 的距离.根据面积相等FF M ME E D D BB C C A A可求得:h ==∴11132V =⋅⋅=例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式111PQ PR PS++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等; (D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;OSRQCBAP(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意 两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面.GFMED 'DCBA SH A 1DCBA D 1C 1B 1F E OM D CBAPHG作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BCPD PG GDGD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b 2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3. 分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a aa b b -=⋅--即:2223b a b =-化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.2ababbGEFBCDAACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘CDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。
4A /5 PE 二一^=X5=4.说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要注意图形中的 隐含条件. 解法二:(代数法)PF AF•.•PE〃BC, ...——=——CB ABAP=10C0Sa , PE=APsina , .\PE=10sin a COS a .在RtAABC 中, 八.几何计算题选讲儿何计算题历年来是中考的热点问题。
儿何计算是以推理为基础的儿何量的计算,主要 有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及而 积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。
解几何计 算题的常用方法有:儿何法、代数法、三角法等。
一、三种常用解题方法举例例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆0恰与对边CD 相切于T,与对角线AC交于P, PE±AB 于E, AB=10,求PE 的长. 解法一:(几何法)连结0T, 则OT_LCD,且0T=-AB=52BC=0T=5 ,AC=7100 +25=5^5 VBC 是<30 切线,ABC 2=CP - CA. ・.・ PO V5 ,..・AP=CA-CP= 4-75 .VPE/7BCPE _CBAE ~ - 2,设:PE 二才,则 AE=2 才,EB=10-2 x.连结PB.・.・AB 是直径,A ZAPB=90°. 在 Rt^APB 中,PE1AB,「•△PBE S /XA PE .EB PE 1A —=— = — ...・EP=2EB,即 x2 (10-2x ).EP AE 2解得 所4...・PE=4.说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似 三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以 及其他的相等关系. 解法三:(三角法)连结 PB,则 BP_LAC.设ZPAB= a 在 RtAAPB 中, 在 RtAAPE 中,BC=5, AC — 5*^5 .「・ sin a =——= ,5际 510 2 际V5 2V5 COS a = —- = -^―. .-.PE=10X—x —=4.5抵5 5 5说明:在儿何计算中,必须注意以卜儿点:(1)注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数星关系和相等关系.(2)注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化. (3)注意几何法、代数法、三角法的灵活运用利综合运用.二.其他题型举例例2.如图,ABCD是边长为2a的正方形,AB为半圆0的直径,CE切。
1.如图1,321////l l l ,AM=3,BM=5,CM=4.5,EF=16,则DM= ,EK= ,FK= . 2.如图2,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm,梯上点D 距墙70cm ,BD 长55cm ,则梯子的长为 cm .3.如图3,ΔABC 中,∠1=∠B,则Δ ∽Δ .此时若AD=3,BD=2,则AC= . 4.如图4,CD 是Rt ΔABC 的斜边上的高. (1)若AD=9,CD=6,则BD= ; (2)若AB=25,BC=15,则BD= .例1 如图5,等边△DEF 内接于△ABC ,且DE //BC ,已知BC AH ⊥于点H ,BC =4,AH =3,求△DEF 的边长.图5 例2如图6,在ΔABC 中,作直线DN 平行于中线AM ,设这条直线交边AB 与点D ,交边CA 的延长线于点E ,交边BC 于点N . 求证:AD ∶AB=AE ∶AC .例3 如图7,E ,F 分别是正方形ABCD 的边AB 和AD 上的点,且31AD AF AB EB ==. 求证:∠AEF=∠FBD .1.如图8,ΔABC 中,点D 为BC 中点,点E 在CA 上,且CE=21EA ,AD ,BE 交于点F ,则AF:FD= .2.一个等腰梯形的周长是80cm ,如果它的中位线长与腰长相等,它的高是12cm ,则这个梯形的面积为 cm 2.3.两个三角形相似,它们的周长分别是12和18,周长较小的三角形的最短边长为3,则另一个三角形的最短边长为 .4.如图9,已知∠1=∠2,请补充条件: (写一个即可),使得ΔABC ∽ΔADE . A MCE K FBD l 1 l 2 l 3图1 AD B┐ ┐ 图2A BC DME图6N ACBD╭1 图3┐ABCD图4A FE D C E ╮ 1 A BCDMFE 图7F H1、如图10,点P 是⊙O 的直径BA 延长线上一点,PC 与⊙O 相切于点C ,CD ⊥AB ,垂足为D ,连结AC 、BC 、OC ,那么下列结论中正确结论的个数有个①PC2=P A·PB;②PC·OC=OP·CD;③OA 2=OD·OP;④OA(CP -CD)=AP·CD.2、AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若AP ∶PB =1∶4,CD =8,则直径AB 的长是3、如图11,AB 是⊙O 的直径,P 是AB 延长线上一点,PC 切⊙O 于点C ,PC=3,PB=1,则⊙O 的半径为 .4、如图12,圆O 上的一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的直径为 . 例1如图13,AB 是⊙O 的直径,C 是⊙O 外一点,且AC =AB ,BC 交⊙O 于点D .已知BC =4,AD =6,AC 交⊙O 于点E ,求四边形ABDE 的周长.例2 如图14,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC . (1)求证:FB =FC ;(2)若AB 是△ABC 的外接圆的直径, ∠EAC =120°,BC =6,求AD 的长.例3如图15,⊙1和⊙O 2都经过A 、B 两点,经过点A 的直线CD 与⊙O 1交于点C , 与⊙O 2交于点D .经过点B 的直线EF 与⊙O 1交于点E ,与⊙O 2交于点F .求证:CE ∥DF .1、下列命题中错误的是(1)过一个圆的直径两端点的两条切线互相平行(2)直线AB 与⊙O 相切于点A ,过O 作AB 的垂线,垂足必是A(3)若同一个圆的两条切线互相平行,则连结切点所得的线段是该圆的直径 (4)圆的切线垂直于半径2、如图17,已知AB 是⊙O 的弦,AC 切⊙O 于点A ,∠BAC=60°,则∠ADB 的度数为3、如图18,PA 与圆切于点A ,割线PBC 交圆于点B 、C ,若PA=6,PB=4,AB 的度数为60︒,则BC= ,∠PCA= ,∠PAB= . A O D P C B ┐ 图10 A B P C · 图11 O O 2 · · O 1 F E D C B A图15· BO A A PB4、如图19,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D ,若PE =PA ,︒=∠60ABC ,PD =1,BD =8,则线段BC = .1. 如图1,已知:AC ⊥AB ,BD ⊥AB ,AO=78cm ,BO=42cm ,CD=159cm ,则CO= cm ,DO= cm . 2.已知,如图2,AA ′∥EE ′,AB=BC=CD=DE ,A′B′=B′C′=C′D′=D′E′,若AA′=28mm ,EE ′=36mm ,则BB ′= ,CC ′= ,DD ′= .3.如图3,EF ∥BC,FD∥AB,AE=1.8cm,BE=1.2cm,CD=1.4cm .则BD= .4.已知,如图4,在平行四边形ABCD 中,DB 是对角线,E 是AB 上一点,连结CE 且延长和DA 的延长线交于F ,则图中相似三角形 的对数是 .5.如图5,在ABC ∆中,AD 是角BAC 的平分线,AB =5cm,AC =4cm,BC =7cm,则BD = cm .6.如图6,ED ∥FG ∥BC ,且DE ,FG 把ΔABC 的面积分为相等的三部分,若BC=15,则FG 的长为 . 7.如图7,已知矩形ABCD 中,∠AEF=90°,则下列结论一定正确的是 . (1)ΔABF ∽ΔAEF (2)ΔABF ∽ΔCEF (3)ΔCEF ∽ΔDAE (4)ΔADE ∽ΔAEF8.如图8,在Rt ΔABC 中,∠C=90°,D 是BC 中点,DE ⊥AB ,垂足为E ,∠B=30,AE=7.则DE 的长为 . 9.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是3:2,则梯形的上、下底长分别是__________.10.如图9,BD 、CE 是ABC V 的中线,P 、Q 分别是BD 、CE 的中点,则:PQ BC =11.如图10,在ABC ∆中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AC AF AB AE ⋅=⋅.A B C D EE ′D ′C ′B ′A ′图2ABCDF E图3AF E BCGD图4AD EB F G图6 ABCDEF图7A┐ CBE图8A O CB D┐ └ 图112.如图11,在梯形ABCD 中,AD ∥BC ,E ,F 分别是AB ,CD 的中点. 求证:GH=21(BC -AD ). 13.已知:如图12,ABC ∆中,AB AC =,90BAC ∠=,D 、E 、F 分别在AB 、AC 、BC 上,AC AE 31=,13BD AB =,且13CF BC =.求证:(1)EF BC ⊥;(2)ADE EBC ∠=∠.1,∠E=40°,则∠ACD= .2.如图2,已知⊙O 的切线PC 与直径BA 的延长线相交于点P ,C 是切点,过A 的切线交PC 于D ,如果CD ∶PD=1∶2,DA=2,那么⊙O 的半径OC= .3.如图3,ΔABC 内接于⊙O ,AD 切⊙O 于A ,∠BAD=60°,则∠ACB= .4.如图4,已知AD=AB ,∠ADB=350,则∠BOC 等于图11BCDA EFG HO · ABC DF图5ABPO图6A BCD E图1图2D 图35.如图5,ABCD 是⊙O 的内接四边形,AC 平分∠BAD 并与BD 交于E 点,CF 切⊙O 于C 交AD 延长线于F ,图中四个三角形:①ΔACF ;②ΔABC ;③ΔABD ;④ΔBEC ,其中与ΔC DF 一定相似的是 . 6.⊙O 中,弦AB 平分弦CD 于点E ,若CD=16,AE ∶BE=3∶1,则AB= .7.AB 是⊙O 的直径,OA=2.5,C 是圆上一点,CD ⊥AB ,垂足为D ,且CD=2,则AC= . 8.如图6,PAB 是⊙O 的割线,AB=4,AP=5,⊙O 的半径为6,则PO= . 9.半径为5的⊙O 内有一点A ,OA=2,过点A 的弦CD 被A 分成两部分,则AC·CD= . 10.如图7,已知⊙O 的半径OB =5cm ,弦AB =6cm ,D 是的中点,则弦BD 的长度是11.设圆1O 与圆2O 的半径分别为3和2,124O O =,,A B 为两圆的交点,试求两圆的公共弦AB 的长度. 12.如图8,已知AP 是⊙O 的切线,P 为切点,AC 是 ⊙O 的割线,与⊙O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(1)证明AP O M ,,,四点共圆; (2)求OAM APM ∠+∠的大小.13.如图9,已知:C 是以AB 为直径的半圆O 上一点, CH⊥AB 于点H ,直线AC 与过B 点的切线相交于点 D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直 线CF 交直线AB(1)求证:点F (2)求证:CG(3)若FB=FE=2,求⊙O 的半径.。
几何计算题选讲 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8江苏地区中考数学复习几何计算题选讲几何计算题历年来是中考的热点问题。
几何计算是以推理为基础的几何量的计算,主要有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。
解几何计算题的常用方法有:几何法、代数法、三角法等。
一、三种常用解题方法举例例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P ,PE ⊥AB 于E ,AB=10,求PE 的长.解法一:(几何法)连结OT ,则OT ⊥CD ,且OT=21AB =5BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA. ∴PC=5,∴AP=CA-CP=54. ∵PE ∥BC ∴AC AP BC PE =,PE=5554×5=4. 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要注意图形中的隐含条件. 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE =. ∴21==AB CB AE PE .设:PE=x ,则AE=2 x ,EB=10–2 x . 连结PB. ∵AB 是直径,∴∠APB=900.在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE . ∴21==AE PE EP EB .∴EP=2EB ,即x=2(10–2x ). 解得x =4. ∴PE=4.说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系. 解法三:(三角法)连结PB ,则BP ⊥AC.设∠PAB=α 在Rt △APB 中,AP=10COS α,在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α. 在Rt △ABC 中, BC=5,AC=55.∴sin α=55555=, COS α=5525510=.∴PE=10×55255⨯=4.说明:在几何计算中,必须注意以下几点:(1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2) 注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化.(3) 注意几何法、代数法、三角法的灵活运用和综合运用. 二.其他题型举例例2.如图,ABCD 是边长为2 a 的正方形,AB 为半圆O 的直径,CE 切⊙O 于E ,与BA 的延长线交于F ,求EF 的长.分析:本题考察切线的性质、切割线定理、相似三角形性质、以及正方形有关性质.本题可用代数法求解. 解:连结OE ,∵CE 切⊙O 于E , ∴OE ⊥CF ∴△EFO ∽△BFC ,∴FB FE BC OE,又∵OE=21AB=21BC ,∴EF=21FB设EF=x ,则FB=2x ,FA=2x –2a∵FE 切⊙O 于E ∴FE 2=FA ·FB ,∴x 2=(2x –2a )·2x解得x =34a , ∴EF=34a.例3.已知:如图,⊙O 1 与⊙O 2相交于点A 、B ,且点O 1在⊙O 2上,连心线O 1O 2交⊙O 1于点C 、D ,交⊙O 2于点E ,过点C 作CF ⊥CE ,交EA 的延长线于点F ,若DE=2,AE=52(1) 求证:EF 是⊙O 1的切线; (2) 求线段CF 的长; (3) 求tan ∠DAE 的值.分析:(1)连结O 1A ,O 1E 是⊙O 2的直径,O 1A ⊥EF ,从而知EF 是⊙O 1的切线.(2)由已知条件DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线,运用切割线定理EA 2=ED ·EC ,可求得EC=10.由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)要求tan ∠DAE 的值,通常有两种方法:①构造含∠DAE 的直角三角形;②把求tan ∠DAE 的值转化为求某一直角三角形一锐角的正切(等角转化).在求正切值时,又有两种方法可供选择:①分别求出两线段(对边和邻边)的值;②整体求出两线段(对边和邻边)的比值. 解:(1)连结O 1A ,∵O 1E 是⊙O 2的直径,∴O 1A ⊥EF∴EF 是⊙O 1的切线..(2)∵DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线∴EA 2=ED ·EC ,∴EC=10由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)解法一:(构造含∠DAE 的直角三角形)作DG ⊥AE 于G ,求AG 和DG 的值.分析已知条件,在Rt △A O 1E 中,三边长都已知或可求(O 1A=4,O 1E=6),又DE=2,且DG ∥A O 1(因为DG ⊥AE ),运用平行分线段成比例可求得DG=,354,34=AG 从而tan ∠DAE=55. 解法二:(等角转化)连结AC ,由EA 是⊙O 1的切线知∠DAE=∠ACD.只需求tan ∠ACD.易得∠CAD=900,所以只需求ACAD的值即可.观察和分析图形,可得△ADE ∽△CAE ,551052===CE AE AC AD .从而tan ∠ACD=55=AC AD ,即tan ∠DAE=55. 说明:(1)从已知条件出发快速地找到基本图形,得到基本结论,在解综合题时更显出它的基础性和重要性.如本题(2)求CF 的长时,要能很快地运用切割线定理,先求出CE 的长.(2)方程思想是几何计算中一种常用的、重要的方法,要熟练地掌握.例4.如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE 的延长线交⊙A 于F ,CM=2,AB=4.(1) 求⊙A 的半径;(2) 求CF 的长和△AFC 的面积. 解:(1)∵四边形ABCD 是矩形,∴CD=AB=4,在Rt △ACD 中,AC 2=CD 2+AD 2,∴(2+AD )2=42+AD 2,解得AD=3.(2) A 作AG ⊥EF 于G.∵BG=3,BE=AB ―AE=1,∴CE=10132222=+=+BE BC由CE ·CF=CD 2,得CF=105810422==CE CD .又∵∠B=∠AGE=900,∠BEC=∠GEA ,∴△BCE ∽△GAE.∴AE CE AG BC =,即,3103=AG S △AFC =21CF ·AG=536. 例5.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程x 2–4xcosB+1=0有两个相等的实数根.D 是劣弧AC 上的任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F. (1) 求∠B 的度数;(2) 求CE 的长.分析:本题是一道综合了代数知识的几何计算题,考察了圆的有关性质,解题时应注意线段的转化.解:(1)∵关于x 的方程x 2–4xcosB+1=0有两个相等的实数根,∴Δ=(-4cosB )2-4=0.∴cosB=21,或cosB=-21(舍去).又∵∠B 为锐角,∴∠B=600.(2) 点A 作AH ⊥BC ,垂足为H. S △ABC =21BC ·AH=21BC ·AB ·sin600=36,解得AB=6 在Rt △ABH 中,BH=AB ·cos600=6×21=3,AH=AB ·sin600=6×3323=,∴CH=BC-BH=4-3=1. 在Rt △ACH 中,AC 2+CH 2=27+1=28.∴AC=72±(负值舍去).∴AC=72.连结AE ,在圆内接四边形ABCD 中,∠B+∠ADC=1800,∴∠ADC=1200.又∵DE 平分∠ADC ,∴∠EDC=600=∠EAC. 又∵∠AEC=∠B=600,∴∠AEC=∠EAC ,∴CE=AC=72.例6. 已知:如图,⊙O 的半径为r ,CE 切⊙O 于点C ,且与弦AB 的延长线交于点E ,CD ⊥AB 于D.如果CE=2BE ,且AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根.求(1)AC 、BC 的长;(2)CD 的长.分析:(1)图中显然存在切割线定理的基本图形,从而可得△ECB ∽△EAC ,AC=2BC.又∵AC 、BC 是方程的两根,由根与系数关系可列出关于AC 、BC 的方程组求解.(2)∵CD 是Rt △CDB 的一边,所以考虑构造直角三角形与之对应.若过C 作直径CF ,连结AF ,则Rt △CDB ∽Rt △CAF ,据此可列式计算.解:(1)∵CE 切⊙O 于C ,∴∠ECB=∠A.又∵∠E 是公共角,∴△ECB ∽△EAC ,21==CE BE AC BC ,∴AC=2BC.由AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根,∴AC+BC=3(r-2);AC ·BC=r 2-4,解得r=6,∴BC=4,AC=8.(2) CO 并延长交⊙O 于F ,连结AF ,则∠CAF=900,∠CFA=∠CBD. ∵∠CDB=900=∠CAF ,∴△CAF ∽△CDB ,BCCFCD AC =.∴CD=381248=⨯=⋅CF BC AC . 说明:(1)这是一道代数、几何的综合题,关键是寻找相似三角形,建立线段之间的比例关系,再根据根与系数关系列等式计算;(2)构造与相似的直角三角形的方法有许多种,同学们不妨试一试.例7.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,PA 是过A 点的直线,∠PAC=∠B.(1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=CE ∶EB=6∶5,AE ∶EB=2∶3,求AB 的长和∠FCB 的正切值. 解:(1)∵AB 是⊙O 的直径,∴∠ACB=900. ∴∠CAB+∠B=900,又∠PAC=∠B ,∴∠CAB+∠PAC=900.即PA ⊥AB ,∴PA 是⊙O 的切线.(2) 设CE=6a ,AE=2x,则ED=5a ,EB=3 x.由相交弦定理,得2x ·3x=5a ·6a ∴x=5a. 连结AD.由△BCE ∽△DAE ,得553==ED EB AD BC .连结BD.由△BED ∽△CEA ,得25==AE BE AC BD . ∴BD=54.由勾股定理得BC=228-AB ,AD=2)54(-AB . ∴553)54(82222=--AB AB .两边平方,整理得1002=AB ,∴10=AB (负值舍去).∴AD=52.∵∠FCB=∠BAD ,∴tan ∠FCB= tan ∠BAD=25254==AD BD . 解几何计算题要求我们必须掌握扎实的几何基础知识,较强的逻辑推理能力,分析问题时应注意分析法与综合法的同时运用,还特别要注意图形中的隐含条件,在平时的学习中要善于总结归纳,只有这样才能掌握好几何计算题的解法.。