井身结构设计
- 格式:docx
- 大小:48.57 KB
- 文档页数:5
井身结构设计的内容
《井身结构设计的内容》
嘿,咱今天来聊聊井身结构设计。
你知道吗,井身结构设计就像是给一口井打造一个完美的“家”。
这可不是一件简单的事儿呢!就拿我之前看到过的一口井来说吧。
那是在一个大工地里,我好奇地凑过去看他们在干嘛。
原来他们正在设计那口井的结构。
他们先得考虑井的深度啊,这可不能随便乱来。
得根据实际需求,要够深才能达到想要的资源,但又不能太深了,不然成本太高啦,这中间的分寸得把握好。
就好像你做饭放盐一样,少了没味道,多了咸得慌。
然后呢,还要设计井筒的直径,这也有讲究的呀。
得让井里面能有足够的空间来运作,但又不能太大了,不然多浪费材料和成本呀。
我看着他们在那仔细地测量、计算,就像在给井量身定制一套衣服一样,要合适,要舒服。
还有啊,井壁的强度也很重要呢。
要是不结实,那可不行,说不定哪天就塌了。
那可就像盖房子,墙要是不牢固,那可危险啦。
他们得选用合适的材料,让井壁坚固无比,能够承受各种压力和考验。
最后还有一些细节呢,比如井口的设计,要方便使用,还要保证安全。
就像我们家里的门一样,得开关方便,还不能有隐患。
总之,井身结构设计这事儿真不简单,每一个环节都得精心考虑,从深度到直径,从强度到细节。
只有这样,才能打造出一口完美的井,让它好好地为我们服务。
我看着那口正在设计中的井,仿佛看到了它未来发挥大作用的样子,真的很神奇啊!这就是井身结构设计的内容,看似普通却蕴含着大大的智慧呢!。
第二章 井身结构设计井身结构设计就是钻井工程得基础设计。
它得主要任务就是确定套管得下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。
基础设计得质量就是关系到油气井能否安全、优质、高速与经济钻达目得层及保护储层防止损害得重要措施。
由于地区及钻探目得层得不同,钻井工艺技术水平得高低,国内外各油田井身结构设计变化较大。
选择井身结构得客观依据就是地层岩性特征、地层压力、地层破裂压力。
主观条件就是钻头、钻井工艺技术水平等。
井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况与事故。
为安全、优质、高速与经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流得能力。
本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。
第一节 地层压力理论及预测方法地层压力理论与评价技术对天然气及石油勘探开发有着重要意义。
钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力就是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制得基础。
一、几个基本概念1.静液柱压力静液柱压力就是由液柱自身重量产生得压力,其大小等于液体得密度乘以重力加速度与液柱垂直深度得乘积,即0.00981hP H (2-1)式中:P h ——静液柱压力,MPa;r ——液柱密度,g/cm 3; H ——液柱垂直高度,m 。
静液柱压力得大小取决于液柱垂直高度H 与液体密度r ,钻井工程中,井愈深,静液柱压力越大。
2.压力梯度指用单位高度(或深度)得液柱压力来表示液柱压力随高度(或深度)得变化。
ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m; P h ——液柱压力,MPa; H ——液柱垂直高度,m 。
石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:r ——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内得总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
syt5431-2008井身结构设计方法概述说明1. 引言1.1 概述本文将对sy55431-2008井身结构设计方法进行详细介绍和说明。
井身结构设计是石油钻探工程中非常重要的一环,它直接关系到钻探工作的安全性、效率和可靠性。
因此,研究和应用高效可靠的井身结构设计方法对于提高钻井技术水平具有重要意义。
1.2 文章结构本文分为三个主要部分:引言,正文和结论。
引言部分将首先介绍本文的背景和目的,并概述文章的整体结构。
正文部分将详细介绍sy55431-2008井身结构设计方法的研究背景、方法介绍和实验设计。
最后,结论部分将总结文章的要点,并对未来研究方向进行展望。
1.3 目的本文旨在系统地介绍sy55431-2008井身结构设计方法,包括其背景、原理和应用。
通过深入了解这一方法,读者将能够更好地理解井身结构设计领域的相关知识,并为实际工程提供参考依据。
此外,本文也旨在激发更多的研究兴趣,推动井身结构设计方法的持续改进和发展。
通过本文的阅读,读者将能够全面了解sy55431-2008井身结构设计方法及其在钻探工程中的应用前景。
2. 正文:2.1 研究背景:在井身结构设计领域,Syt5431-2008是一种广泛使用的方法。
它通过对井身结构特性进行研究和深入分析,为工程师们提供了一种可靠的设计指南。
该方法具有较高的实用性和科学性,并在不同类型的井身结构项目中得到了有效应用。
过去几十年来,随着石油勘探和开采技术的不断发展,井身结构设计变得越来越重要。
井身结构在保证钻探安全和顺利进行的同时,还需要满足各种工程要求和环境条件。
因此,为了提高钻探效率、减少钻探事故风险以及降低项目成本,精确而可靠地设计井身结构尤为关键。
2.2 方法介绍:Syt5431-2008作为一种有效的井身结构设计方法,系统地介绍了井身材料、几何形状、荷载特性等方面的基本原理与规定。
该方法主要包括以下几个步骤:- 识别和分析工程需求:根据具体工程项目的要求和特殊要求,确定井身结构设计的目标和限制条件。
井身结构设计
摘要:井深结构设计是钻井工程的基础设计。
它的主要任务是确定导管的下入层次,下入深度,水泥浆返深,水泥环厚度及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻井目的层的不同,钻井工艺技术水平的高低,不同地区井身结构设计变化较大。
选择井身结构的客观依据是底层岩性特征、底层压力、地层破裂压力。
正确的井身结构设计决定整个油田的开采。
本文基于课本所学的基本内容,对井身结构做一个大致的程序设计。
井身结构设计的内容:
1、确定套管的下入层次
2、下入深度
3、水泥浆返深
4、水泥环厚度
5、钻头尺寸
井身结构设计的基础参数包括地质方面的数据和工程等数据
1.地质方面数据
(1)岩性剖面及故障提示;
(2)地层压力梯度剖面;
(3)地层破裂压力梯度剖面。
2.工程数据
,以当量钻井液密度表示;单位g/cm3:如美国墨西(1)抽汲压力系数S
w
=0.06。
我国中原油田Sw=0.015~0.049。
湾地区采用S
w
,以当量钻井液密度表示,单位g/cm3。
(2)激动压力系数S
g
由计算的激动压力用(2-58)进行计算,美国墨西湾地区取Sg=0.06, S
g
我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值S
,以当量钻井液密度表示,单位g/cm3。
f
S
f
是考虑地层破裂压力检测误差而附加的,此值与地层破裂压力检测精度
有关,可由地区统计资料确定。
美国油田S
f
取值0.024,我国中原油田取值为0.02~0.03。
4)溢流条件S
k
以当量钻井液密度表示,单位g/cm3。
由于地层压力检测误差,溢流压井时,限定地层压力增加值S
k。
此值由地
区压力检测精度和统计数据确定。
美国油田一般取S
k
=0.06。
我国中原油田取值为0.05~0.10。
(5)压差允值P
N (P
a
)
裸眼中,钻井液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差卡钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行固井和完井工作。
压差允值和工艺技术有很大关系。
压差允值的确定,各油田可以从卡钻资料中(卡点深度,当时钻井液密度、卡点地层孔隙压力等)反算出当时的压差值。
再由大量的压差值进行统计分析得出该地区适合的压差允值。
井身结构设计的方法及步骤
1.套管层次和套管柱类型
国内油田套管下入层次为:导管,表层套管,中间套管(或技术套管),油层套管。
表层套管,中间套管,油层套管,一般按(339.7244.5177.8139.7mm(13 3/8 9 5/8 7 5 ½ in)系列进行设计。
(1)根据区域地质情况,确定按正常作业工况或溢流工况选择
(2)利用压力剖面图中最大地层压力梯度求中间套管下入深度假定点。
自横坐标上找到设计的地层破裂压力梯度
fD
,向下引垂直线与地层破裂压
力梯度线相交,交点即为中间套管下入深度假定点,记点H
3。
(3)验证中间套管下入深度H3是否有卡套管危险。
采用 P m-P Pmin P N
式中
m ——钻井深度H
3
时采用的钻井液密度,g/cm3;
P ——H
3
以下裸眼井段最小或正常地层压力梯度当量密度,g/cm3;
H
N
——最深正常地层压力或最小地层压力深度,m。
若P P
N (或P
a
),则假定深度H
3
为中间套管下入深度。
若P>P
N (或P
a
),则中间套管下至H
3
过程中有被卡危险。
在这种情况
下可采取以下方法解决:
a.应用以下公式重新计算中间套管下入深度
(或Pa)
m 是在深度H
N
,允许压差值P
N
(或P
a
)时采用的钻井液密度。
(
m
-S
w
)
=最大允许地层压力。
在压力剖面图上找到(
m -S
w
)值,引垂线与地层压力梯度
线相交,交点即为新计算的中间套管下入深度,记为H
2。
b.应用方法a,往往需多下一层套管或尾管,为了避免这种情况,钻井工程师可根据所在区域钻井工艺技术水平,钻井液体系和性能,从工艺、防卡液上解决中间套管下入到H3的卡钻危险。
(4)计算钻井(或中间)尾管的最大下入深度
在上步中,若按方法a解决压差卡钻危险,则还需下一段中间尾管以
满足采用(
Pmax +S
w
)钻井液密度钻井时,H
3
与H
2
的安全钻井问题。
一般情况下,
中间尾管下至H
3即可。
当然也可根据中间套管鞋处(H
2
)的地层破裂压力梯度,
下推尾管的最大可下深度:
N
N
P
m
P
H∆
=
-)
(
00981
.
0ρ
ρ
P
f
g
W
fH
S
S
Sρ
ρ=
+
+
-)
(
2
fH2
—中间套管鞋处的地层破裂压力梯度,g/cm 3;
P
—中间尾管最大可下深度处地层压力梯,g/cm 3。
在压力梯度剖面图横坐标上找到P
,从
P
引垂线与地层压力梯度线
相交,交点即为中间尾管的最大下入深度H 3。
(5)计算表层套管下入深度H1 根据中间套管鞋处地层压力梯度PH2
,在给事实上S k 的溢流条件,用试算法
计算表层套管的下入深度。
即
式中
fD
——设计地层破裂压力梯度,其工程意义为溢流压井时,表层套管
鞋处承受的有效液柱压力梯度的当量密度。
试算中,当
fH1
-
fD
(0~0.024),即符合设计要求。
(6)进一步校核中间尾管
a.校核中间尾管下入最大深度时,是否有卡套管危险。
校核方法与步骤3相同。
b.校核在给定S k 溢流条件下压井时,中间套管鞋处是否有被压裂的危险。
校核方法同步骤5。
(7)油层套管下入目的层中,应进行压差卡钻和溢流条件校核。
套管尺寸与井眼尺寸选择及配合
1.设计中考虑的因素
(1)生产套管尺寸应满足采油方面要求。
根据生产层的产能、油管大小、增产措施及井下作业等要求来确定。
(2)对于探井,要考虑原设计井深是否要加深,地质上的变化会使原来的预告难于准确,是否要求井眼尺寸上留有余量以便增下中间套管,以及对岩心尺寸要求等。
(3)要考虑到工艺水平,如井眼情况、曲率大小、井斜角以及地质复杂情况带来的问题。
并应考虑管材、钻头等库存规格的限制。
2.套管和井眼尺寸的选择和确定方法
k
f w PH fD S H H
S S 122+++=ρρ
(1)确定井身结构尺寸一般由内向外依次进行,首先确定生产套管尺寸,再确定下入生产套管的井眼尺寸,然后确定中间套管尺寸等,依此类推,直到表层套管的井眼尺寸,最后确定导管尺寸。
(2)生产套管根据采油方面要求来定。
勘探井则按照勘探方面要求来定。
(3)套管与井眼之间有一定间隙,间隙过大则不经济,过小会导致下套管困难及注水泥后水泥过早脱水形成水泥桥。
间隙值一般最小在9.5~12.7mm(3/8~1/2in)范围,最好为19mm(3/4in)。
3.套管及井眼尺寸标准组合
目前国内外所生产的套管尺寸及钻头及尺寸已标准系列化。
套管与其相应井眼的尺寸配合基本确定或在较小范围内变化。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。