语言逻辑PIII【Propositional logic
- 格式:ppt
- 大小:823.00 KB
- 文档页数:68
常用的五个命题联结词命题逻辑(propositional logic) 也被称为语句逻辑(sentential logic),是从连接词和复合语句的角度讨论逻辑蕴含,可演绎性和一致性。
这意味着我们会忽略语句中的其他的元素主语、谓词和量词等。
命题和语句是有区别的,但暂时不区分,命题、语句或句子都是指的同样的东西。
理论的前提和结论都是由陈述句构成的。
对于陈述句,我们给出一个简单的定义:对于任何一个语句ϕ \phi ϕ,如果我们问下列问题是有意义的,•ϕ \phi ϕ是真的吗?•ϕ \phi ϕ是假的吗?那么我们就称ϕ \phiϕ为陈述句。
对于书中的句子:•讨论的句子只限于陈述句•讨论的陈述句只限于非真即假的陈述句如果一个句子是真的,那么我们说该句子的真值是真;如果一个句子是假的,我们说该句子的真值是假。
真和假统称真值(true-value)。
用这个概念重复上两个预设,那么有联结词命题联结词(propositional connectives),也被称为语句联结词(sentenial connectives),又称命题算子或者语句算子(propositional/sentential operators)。
通常我们简称命题联结词为联结词。
直观来讲,他们是带空格的表达式,使得陈述句填入这些空格的结果总是陈述句。
例如:•----,并且----•(虽然)----,但是,----•(或者)----,或者----•并非----•因为----,所以----•可以想象----•张三相信----•李四认为----•政客们喜欢说----对于自然数 n > 0 n>0 n>0,如果一个联结词有 n 个空格,我们通常就说他是 n元联结词。
联结词实际上是陈述句集合上的某种函数(运算):对于每个这样的 n 元函数,一旦给定有序的 n 个陈述句作为其自变量的取值,该函数的值是一个唯一的陈述句,即由依次填入联结词的空格列所得到的句子。
经典命题逻辑和谓词逻辑的语义解释经典命题逻辑(Classical Propositional Logic,CPL)和谓词逻辑(Predicate Logic,PL)是常见的两种逻辑。
下面将分别对它们的语义解释进行简要说明。
一、经典命题逻辑的语义解释经典命题逻辑是一种用于判断正确性的逻辑,基于“命题(proposition)”的概念来描述逻辑结构。
命题是一个具有真假性的陈述,例如“太阳从东方升起”。
CPL可以用逻辑符号来表示命题,如“∧”表示逻辑与,“∨”表示逻辑或,“¬”表示逻辑非等。
下面是CPL语义解释的基本概念:• 模型(Model):对于一组命题,在逻辑上称为“命题系统”,如果存在一组真值赋值(True/False Assignment),使得对于系统中的所有命题,每个命题都能够被赋予相应的真假值,则称这个真值赋值是模型。
也就是说,模型是对命题系统的一种真值解释,通过模型可以判断命题系统的真伪性。
• 句子(Sentence):CPL中的句子由一个或多个命题构成,并由逻辑符号组合而成。
例如,P∧Q就是由P和Q组成的一个句子。
句子的真假性取决于其中每个命题的真伪性以及逻辑符号的作用。
如果一个句子是真的,那么我们就说它是“可满足的”。
• 命题公式(Propositional Formula):命题公式是指由命题和逻辑符号组成的复杂语句。
命题公式可以被看做是一种特殊的句子,句子是命题公式的实例。
例如,P∧(Q∨R)就是一个命题公式。
二、谓词逻辑的语义解释谓词逻辑是经典命题逻辑的扩展,用步骤更加精细的方式来描述命题的结构。
谓词逻辑是一种用于描述命题关系的逻辑。
它使用“命题变量(variable)”和“谓词(predicate)”这两个概念来构建命题。
命题变量代表某种对象,谓词则代表这些对象的性质或关系。
例如,如果我们有一个谓词“有色彩(colored)”,那么我们就可以将一个命题变量“x”替换为具体对象,如“苹果”,称得到的命题为“苹果有色彩”。
离散数学及其应用重要名词中英对应以及重要概念解释与举例1 The Foundations: Logic and Proofs(逻辑与证明)1.1 Propositional Logic(命题逻辑)Propositions(命题)——declarative sentence that is either true or false, but not both.判断性语句,正确性唯一。
Truth Table(真值表)Conjunction(合取,“与”,and),Disjunction(析取,or,“相容或”),Exclusive(异或),Negation(非,not),Biconditional(双条件,双向,if and only if)Translating English Sentences1.2 Propositional Equivalences(命题等价)Tautology(永真式、重言式),Contradiction(永假式、矛盾式),Contingency(偶然式)Logical Equivalences(逻辑等价)——Compound propositions that have the same truth values in all possible cases are called logical equivalent.(真值表相同的式子,p<->q是重言式)Logical Equivalences——Page24Disjunctive normal form(DNF,析取范式)Conjunctive normal form(CNF,合取范式) 见Page27~291.3 Predicates and Quantifiers(谓词和量词)Predicates——谓词,说明关系、特征的修饰词Quantifiers——量词Ø Universal Quantifier(全称量词) "全部满足Ø Existential Quantifier(存在量词) $至少有一个Binding Variables(变量绑定,量词作用域与重名的问题)Logical Equivalence Involving QuantifiersNegating Quantified Expressions(量词否定表达:否定全称=存在否定,否定存在=全程否定) Translating from English into Logical Expressions(自然语句转化为逻辑表达)Using Quantifiers in System SpecificationsExamples from Lewis Carrol——全称量词与条件式(p->q)搭配,存在量词与合取式搭配。
形式逻辑辩证逻辑三大逻辑形式逻辑是一种逻辑学上的理论,它研究命题之间的关系。
Formal logic is a theoretical study in logic, which investigates the relationships between propositions.形式逻辑主要涉及到命题的真假和关系,以及逻辑推理的规则。
Formal logic mainly involves the truth and relations of propositions, as well as the rules of logical inference.形式逻辑通过符号和公式来描述命题之间的关系和推理规则。
Formal logic describes the relationships between propositions and the rules of inference through symbols and formulas.形式逻辑可以分为命题逻辑和谓词逻辑两种类型。
Formal logic can be divided into two types: propositional logic and predicate logic.命题逻辑主要研究命题之间的联结方式和推理规则。
Propositional logic mainly studies the ways of connecting propositions and the rules of inference.命题逻辑使用符号表示命题的真假和联结关系。
Propositional logic uses symbols to represent the truth and relations of propositions.命题逻辑关注的是命题之间的逻辑关系,而不涉及命题中的主语和谓语。
Propositional logic focuses on the logical relationships between propositions, without involving the subjects and predicates in the propositions.谓词逻辑引入了量词和谓词符号,可以描述更复杂的命题关系。
离散数学及其应用重要名词中英对应以及重要概念解释与举例1 The Foundations: Logic and Proofs(逻辑与证明)1.1 Propositional Logic(命题逻辑)Propositions(命题)——declarative sentence that is either true or false, but not both.判断性语句,正确性唯一。
Truth Table(真值表)Conjunction(合取,“与”,and),Disjunction(析取,or,“相容或”),Exclusive(异或),Negation(非,not),Biconditional(双条件,双向,if and only if)Translating English Sentences1.2 Propositional Equivalences(命题等价)Tautology(永真式、重言式),Contradiction(永假式、矛盾式),Contingency(偶然式)Logical Equivalences(逻辑等价)——Compound propositions that have the same truth values in all possible cases are called logical equivalent.(真值表相同的式子,p<->q是重言式)Logical Equivalences——Page24Disjunctive normal form(DNF,析取范式)Conjunctive normal form(CNF,合取范式) 见Page27~291.3 Predicates and Quantifiers(谓词和量词)Predicates——谓词,说明关系、特征的修饰词Quantifiers——量词Ø Universal Quantifier(全称量词) "全部满足Ø Existential Quantifier(存在量词) $至少有一个Binding Variables(变量绑定,量词作用域与重名的问题)Logical Equivalence Involving QuantifiersNegating Quantified Expressions(量词否定表达:否定全称=存在否定,否定存在=全程否定) Translating from English into Logical Expressions(自然语句转化为逻辑表达)Using Quantifiers in System SpecificationsExamples from Lewis Carrol——全称量词与条件式(p->q)搭配,存在量词与合取式搭配。
几个逻辑相关的英语单词逻辑 logic数理逻辑 mathematical logic模型论 model theory集合论 set theory递归论 recursion theory证明论 proof theory非标准分析 nonstandard analysis反推数学 reverse mathematics元数学 metamathematics二阶算术的子系统 subsystems of the second-order arithmetic 直觉主义 intuitionism构造性数学 constructive mathematics语言 language元语言 metalanguage元定理 metatheorem公理 axiom定理 theorem命题 proposition命题演算 propositional calculus 谓词演算 predicate calculus合取 conjunction析取 disjunction非,否定 negation量词 quantifier全称量词 universal quantifier 存在量词 existential quantifier 关系 relation函数 function常量 constant变元,变量 variable项 term公式 formula原子公式 atomic formula句子,命题 sentence永真命题 tautology前束标准型 prenex normal form 理论 theory可满足的 satisfiable和谐性,相容性 consistency句法 syntax语义 semantics可靠性定理 soundness theorem完备性定理 completeness theorem 紧致性定理 compactness theorem可公理化 axiomatizable有限可公理化 finitely axiomatizable 同构 isomorphism同态 homomorphism初等等价 elementary equivalent 初等嵌入 elementary embedding 初等子模型 elementary submodel 初等扩张 elementary extension图象 diagram正图象 positive diagram初等图象 elementary diagram模型 model可数模型 countable model不可数模型 uncountable model原子模型 atomic model素模型 prime model齐性模型 homogeneous model万有模型 universal model饱和模型 saturated model特殊模型 special model递归饱和模型 recursively saturated model 布尔值模型 boolean-valued model格值模型 lattice-valued model超滤 ultrafilter超积 ultraproduct超幂 ultrapower模型完备 model complete子模型完备 submodel complete量词消去 quantifier elimination稳定性理论 stable theory集,集合 set子集 subset幂集 power set空集 empty set有限集 finite set无限集 infinite set可数集 countable set不可数集 uncountable set 有限集 finite set无限集 infinite set序数 ordinal极限序数 limit ordinal后继序数 successor ordinal 基数 cardinal大基数 large cardinal可测基数 measurable cardinal正则基数 regular cardinal奇异基数 singular cardinal不可达基数 inaccessible力迫法 forcing连续统假设 Continuum Hypothesis 选择公理 Axiom of Choice决定性公理 Axiom of Determinacy 归纳法 induction超限归纳法 transfinite induction 超限递归 transfinite recursion递归 recursion原始递归 primitive recursive递归函数 recursive function递归可枚举 recursively enumerable递归可判定 recursively decidable 递归不可分 recursively inseparable 递归集 recursive set算术集 arithmetical set解析集 analytic set单纯集 simple set创造集 creative set多一归约 many-one reducible一一归约 one-one reducible图灵归约 Turing reducible不可解度 degree of unsolvability 图灵度 Turing degree一阶逻辑 first-order logic二阶逻辑 second-order logic高阶逻辑 higher-order logic非古典逻辑 non-classical logic 无穷逻辑 infinitary logic古典逻辑 classical logic直觉主义逻辑 intuitionistic logic 模态逻辑 modal logic多值逻辑 many-valued logic。
命题逻辑的语义与语义表达命题逻辑(propositional logic)是数理逻辑的基础,它研究的是命题的形式逻辑。
在命题逻辑中,命题(proposition)被定义为可以判断真假的陈述句,并且只有两个可能的取值:真(T)和假(F)。
命题逻辑的语义(semantics)是研究命题与其真值之间的关系,即命题的意义以及其在不同情况下的真假取值。
在命题逻辑中,我们可以使用真值赋值表(truth table)来确定命题的真值。
真值赋值表列出了所有可能的情况,以及每个命题对应的真值。
对于命题逻辑的语义表达(semantic expression),我们可以使用多种形式来描述命题的意义。
以下是一些常见的语义表达方式:1. 真值赋值表(Truth table):真值赋值表是一种常用的语义表达方式,它将每个命题的真值列出来,使读者可以清楚地了解每种情况下命题的真假取值。
2. 真值公式(Truth function):真值公式是一种表示命题逻辑中的逻辑运算的方式。
例如,命题逻辑中的与(and)、或(or)和非(not)等逻辑运算可以通过真值公式进行描述。
3. 命题逻辑公式(Propositional logic formula):命题逻辑公式是描述命题逻辑中命题与逻辑运算之间关系的符号串。
它由命题符号、逻辑运算符号以及括号组成。
命题逻辑公式可以使用逻辑公式的推导规则进行推导,以验证其逻辑的正确性。
4. 自然语言表达(Natural language expression):除了利用符号和公式来描述命题逻辑的语义外,我们还可以使用自然语言来表达命题的意义。
自然语言是人类日常进行交流的常用语言,使用自然语言可以更加贴近人们的表达方式,使得命题逻辑的语义更易理解。
命题逻辑的语义与语义表达是命题逻辑研究的重要内容。
通过对命题逻辑的语义的研究,我们可以更好地理解命题的真值以及命题之间的逻辑关系,进而应用于其他相关领域,如人工智能、自然语言处理等。