用牛顿运动定律解决问题(二)(精选练习)(解析版)
- 格式:pdf
- 大小:77.36 KB
- 文档页数:3
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1;(2)物体运动到B 处的速度大小v B ;(3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s【解析】【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间.【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=① 物体沿斜面向上运动的时间:22B v t a = ② 物体沿斜面向上运动的最大位移为:222212s a t = ③ 因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能.(2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+ 由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+ 之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律,对长木板: 2231321-()m m g m g m a μμ+-=对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++=对物块C :1334-m g m a μ=这一过程的相对位移为2222243()()1223a t a tx ma a∆=-=--整个过程物块与木板的相对位移为1282.673x x x m m∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量M=2kg足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg的小滑块,以6m/s的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g取l0m/s2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止.(3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)20 3.6m2vxa==(2)t=1s(3)121x x m+=【解析】【分析】【详解】试题分析:(1)225m/sa gμ==20 3.6m2vxa==(2)对m:2125/a g m sμ==,对M:221()Ma mg m M gμμ=-+,221m/sa=012v a t a t-=t=1s(3)木板共速前先做匀加速运动2110.52x at m==速度121m/sv a t==以后木板与物块共同加速度a3匀减速运动231/a g m sμ==,22310.52x vt a t m=+=X=121x x m+=考点:牛顿定律的综合应用4.传送带以恒定速率v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=1 kg的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=10 N拉小物块,经过一段时间物块被拉到离地高为H=1.8m的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?【答案】(1)1s(2)【解析】【详解】(1)物体在达到与传送带速度v=4 m/s相等前,做匀加速直线运动,有:F+μmgcos37°-mgsin37°=ma1解得a1=8 m/s2由v=a1t1得t1=0.5s位移x1=a1t12=1m物体与传送带达到共同速度后,因F-mgsinθ=4 N=μmgcos37°故物体在静摩擦力作用下随传送带一起匀速上升.位移x2=-x1=2mt2==0.5s总时间为t=t1+t2=1s(2)在物体与传送带达到同速瞬间撤去恒力F,因为μ<tan37°,故有:mgsin37°-μmgcos37°=ma2解得:a2=2m/s2假设物体能向上匀减速运动到速度为零,则通过的位移为x==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x 2=vt 3-a 2t 32解得t 3=(2-)s 或t 3=(2+)s (舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.5.如图所示,光滑水平面上放有光滑直角斜面体,倾角θ=30°,质量M =2.5kg .平行于斜面的轻质弹簧上端固定,下端与质量m =1.5kg 的铁球相连,静止时弹簧的伸长量Δl 0=2cm.重力加速度g 取10m/s 2.现用向左的水平力F 拉着斜面体向左运动,铁球与斜面体保持相对静止,当铁球对斜面体的压力为0时,求:(1)水平力F 的大小;(2)弹簧的伸长量Δl .【答案】(1)403N (2)8cm【解析】【分析】斜面M 、物体m 在水平推力作用下一起加速,由牛顿第二定律可求出它们的加速度,然后结合质量可算出物体m 的合力,最后利用物体的重力与合力可求出F 和弹簧的弹力.【详解】(1)当铁球与斜面体一起向左加速运动,对斜面体压力为0时,弹簧拉力为T ,铁球受力如图:由平衡条件、牛顿第二定律得:sin T mg θ=cos T ma θ=对铁球与斜面体整体,由牛顿第二定律得:F M m a =+()联立以上两式并代入数据得:403F N =(2)铁球静止时,弹簧拉力为T 0,铁球受力如图:由平衡条件得: 0sin T mg θ=由胡克定律得:00T k l =∆T k l =∆联立以上两式并代入数据得:8?cm l ∆=【点睛】从整体与隔离两角度对研究对象进行受力分析,同时掌握运用牛顿第二定律解题方法.6.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8)【答案】(1)0.5(2)1s【解析】【分析】【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2 运动时间为22 3.7517.5s t s s a ⨯===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.7.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
(二)“牛顿第二定律”难题--压轴题参考答案与试题解析9.(2011•历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为()A.s inαB.c osαC.!tanαD.c otα考点:牛顿第二定律;力的合成与分解的运用;向心力.专题:压轴题;牛顿第二定律在圆周运动中的应用.分析:物体缓慢转动,近似平衡,受力分析后,根据平衡条件列式求解.~解答:解:物体在斜面上缓慢运动时,受到4个力:重力G,绳子的拉力F1,斜面的支持力F2,物体在运动时受到的摩擦力F3,这四个力的合力近似为零;其中F1和F3同斜面平行,F2同斜面垂直,G同斜面成(90°﹣α).根据各力之间的平衡的原则,可列出以下公式:在垂直斜面方向,有:F2=G•cos α因此有摩擦力F3=μ F2=μGcosα接下来考虑平行于斜面的力,为了简化问题状态,可以直接以A点处的系统状态来进行分析,此时时摩擦力和重力在斜面平行方向上的力是反向、等大的,即应该是近似平衡的,有μGcosα=Gsinα因此μ=tan α故选C.》点评:这个解法最有技巧的部分就是选取了A点处受力分析,根据平衡条件得到重力的下滑分量等于摩擦力,然后列式求解;当然,也可以对其它点处,运用平衡条件列式.11.(2007•徐州模拟)压敏电阻的阻值随所受压力的增大而减小,有位同学利用压电陶瓷设计了判断小车运动状态的装置,其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是()A.从t1到t2时间内,小车做变加速直线运动B.从t1到t2时间内,小车做匀加速直线运动,C.从t2到t3时间内,小车做匀加速直线运动D.从t2到t3时间内,小车做匀速直线运动考点:牛顿第二定律;闭合电路的欧姆定律.专题::压轴题;恒定电流专题.分析:根据图象,结合题意,得到压力的变化规律,再根据牛顿第二定律判断出加速度的变化规律,从而得到小车的运动故小球的加速度不断变大,水平向右,由于速度向右,故小球向右做加速度不断变大的加速运动,故A正确,B错误;C、D、从t2到t3时间内,电陶瓷两端电压不变,故受到的压力恒定,故其对小球有向右且恒定大的压力,故小球的加速度恒定,水平向右,由于速度向右,故小球向右做匀加速直线运动,故C正确,D错误;故选AC.点评:本题关键是对小球受力分析,根据图象得到压力的变化规律,然后根据牛顿第二定律判断出加速度的情况,最后得到小车的运动情况.16.(2010•越秀区三模)如图所示装置中,光滑的定滑轮固定在高处,用细线跨过该滑轮,细线两端各拴一个质量相等的砝码m1和m2.在铁架上A处固定环状支架z,它的孔只能让m1通过.在m1上加一个槽码m,m1和m从O点由静止释放向下做匀加速直线运动.当它们到达A时槽码m被支架z托住,m1继续下降.在下图中能正确表示m1运动速度v与时间t和位移x与时间t关系图象的是()。
牛顿第二定律 练习与解析1.一辆质量为10kg 的小车,受到20N 的拉力作用,求这辆小车在拉力作用下的加速度是多大?答案:2m/s 2解:由牛顿第二定律,F =maa =F /m =20/10m/s 2=2m/s 2.2.一个物体的质量为50kg ,在100N 的水平拉力的作用下,以1.5m/s 2的加速度加速运动,求物体受到的摩擦力的大小.答案:25N解:由牛顿第二定律可知物体受到的合外力的大小:F =ma =50×1.5N =75N物体受力如图所示:F =F 1-ff =f 1-F =(100-75)N =25N .3.要使重5N 的物体在竖直方向上做匀速直线运动,应对物体施加的拉力是_____N ,此力的方向为_____.答案:5 竖直向上解:物体做匀速直线运动,加速度a =0,由牛顿第二定律:F =ma =0;即物体受到的合外力为零.所以,物体受到的力和物体的重力大小相等,方向相反,所以应对物体施加5N 的力,方向竖直向上.4.一个5N 的力作用在一个物体上,使物体得到的加速度是8m/s 2,作用在另一个物体上所得到的加速度为24m/s 2.如果将两个物体拴在一起,仍用5N 的力作用,求物体得到的加速度是多大?答案:6m/s 2解:设第一个物体的质量为m 1,第二个物体的质量为m 2,第一个物体的加速度为a 1,第二个物体的加速度为a 2,它们共同的加速度为a .由牛顿第二定律得:F =m 1a 1F =m 2a 2 F =(m 1+m 2)a解得a =6m/s 2.5.地面上放一木箱,质量为40kg ,用100N 的力与水平成 37角推木箱,如图4-5所示,恰好使木箱匀速前进.若用此力与水平成 37角向斜上方拉木箱,木箱的加速度多大?(取g =10m/s 2,sin 37=0.6,cos37=0.8) 答案:0.56m/s 2解:当用力推木箱时,物体的受力如图(1)F cos 37-f =0f =μN =μ(mg +F sin 37)得μ=0.17当用力拉木箱时,物体的受力如图(2)合F =F cos 37-f 1=ma f 1=μN 1=μ(mg -F sin37)解得a=0.56m/s2.。
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
1、质量m=4kg的物块,在一个平行于斜面向上的拉力F=40N作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数μ=0.2,力F作用了5s,求物块在5s内的位移及它在5s末的速度。
(g=10m/s2,sin37°=0.6,cos37°=0.8)2、如图所示,质量为0.5kg的物体在与水平面成300角的拉力F作用下,沿水平桌面向右做直线运动,经过0.5m的距离速度由0.6m/s变为0.4m/s,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F的大小。
(g=10m/s2)3、为了安全,在公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速v=120km/h。
假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s。
刹车时汽车受到的阻力大小f为汽车重力的0.40倍。
该高速公路上汽车间的距离s至少应为多少?取重力加速度g=10 m/s2。
4、如下图所示,一个人用与水平方向成θ=37°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.5(g=10m/s2)。
(1)求推力F的大小(sin370=0.6 cos370=0.8)。
(2)若此人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3s后撤去,求箱子滑行的总位移为多大?5、滑雪是一个常见的体育运动项目,某一山坡滑道可看成倾角θ=30°的斜面,一名滑雪运动员连同滑雪装置总质量m=80 kg,他从静止开始自由匀加速下滑,在时间t=10 s内沿斜面滑道滑下的位移x=200 m,后又进入水平滑道.(设水平滑道足够长,不计空气阻力,取g=10 m/s2)问:(1)运动员在下滑过程中受到的摩擦力Ff为多大?(2)滑雪板与滑道之间的动摩擦因数μ为多少?(3)若水平滑道的动摩擦因数是山坡滑道动摩擦因数的2倍,求运动员在水平滑道上滑行的最大距离.6、一游客在峨眉山滑雪时,由静止开始沿倾角为37°的山坡匀加速滑下。
牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。
其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。
§4.4 牛顿第二定律的应用――― 连接体问题【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+ C.FD.F m21扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。
例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?【针对训练】3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进?(g =10m/s 2)4.如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直 方向θ=30°角,则F 应为多少?(g =10m/s 2)【能力训练】1.如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ2.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。
小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加 速度大小为( )A.gB.g m m M - C.0 D.g mmM + 3.如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力FA.T a 增大B.T b 增大C.T a 变小D.T b 不变4.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( )A.(M+m )gB.(M+m )g -maC.(M+m)g+ma D.(M -m )g 5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计 的薄板,将薄板上放一重物,并用手将重物往下压,然后突 然将手撤去,重物即被弹射出去,则在弹射过程中,(即重 物与弹簧脱离之前),重物的运动情况是() A.一直加速B.先减速,后加速C.先加速、后减速D.匀加速6.如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和A = ,a B=。
人教版物理必修1第四章《牛顿运动定律》
第七节用牛顿运动定律解决问题(二)
精选练习
一、夯实基础
1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是()
A.物体一定保持静止B.物体一定做匀速直线运动
C.物体的加速度为零D.物体一定做匀加速直线运动
【答案】 C
【解析】平衡状态指的是匀速直线运动状态或静止状态,物体在共点力的作用下处于平衡状态时,可能
做匀速直线运动,也可能处于静止状态,A、B、D选项错误;物体处于平衡状态的条件是合力为零,加速
度为零,C选项正确.
2.(多选)下列事例中的物体处于平衡状态的是()
A.“神舟”号飞船匀速落到地面的过程B.汽车在水平路面上启动或刹车的过程
C.汽车停在斜坡上D.竖直上抛的物体在到达最高点的那一瞬间
【答案】:AC
【解析】:物体处于平衡状态,从运动状态来说,即物体保持静止或做匀速直线运动.从受力情况来说,物
体所受合力为零.“神舟”号飞船匀速落到地面的过程中,飞船处于平衡状态,A正确;B项中汽车在水平路面上启动或刹车过程中,汽车的速度在增大或减小,其加速度不为零,其合力不为零,所以汽车不是处于
平衡状态;C项中汽车停在斜坡上,速度和加速度均为零,合力为零,保持静止状态不变,即汽车处于平衡
状态;D项中物体上升到最高点时,只是速度为零,而加速度为g,所以物体不是处于平衡状态.
3.(多选)电梯的顶部拴一弹簧秤,弹簧秤下端挂一重物,电梯静止时,电梯中的人观察到弹簧秤的示数为10 N.某时刻电梯中的人观察到弹簧秤的示数为12 N,取g=10 m/s2,则此时()
A.电梯可能向上加速运动,加速度大小为 2 m/s2
B.电梯可能向上减速运动,加速度大小为 2 m/s2
C.电梯中的人一定处于超重状态
D.电梯中的人一定处于平衡状态
【答案】AC
【解析】弹簧秤的示数增大,根据牛顿第二定律得,F-mg=ma,解得加速度a=2 m/s2,方向向上,电
梯可能做向上的加速运动,或向下的减速运动,A选项正确,B选项错误;电梯中的人加速度向上,处于超重状态,C选项正确,D选项错误.
4.在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作.传感器和计算机
相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是()
A B C D
【答案】:D
【解析】:对人的运动过程分析可知,人在加速下蹲的过程中,有向下的加速度,处于失重状态,此时人对
传感器的压力小于人的重力的大小;在减速下蹲的过程中,加速度方向向上,处于超重状态,此时人对传
感器的压力大于人的重力的大小,D正确.
5.如图所示,用一根长为l的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹30°角且绷紧,小球A处于静止,对小球施加的最小的力是()
A.3mg
B.1
2 mg
C.
3
2
mg D.
1
3
mg
【答案】 B
【解析】以小球为研究对象,分析受力,作出受力图如图,
根据作图法分析得到,当小球施加的力
F 与细绳垂直时,所用的力最小.根据平衡条件,F 的最小值为F min
=Gsin30°=mg ×12=12mg ,故选 B. 6.如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是()
A .在上升和下降过程中
A 对
B 的压力一定为零B .上升过程中
A 对
B 的压力大于A 物体受到的重力
C .下降过程中A 对B 的压力大于A 物体受到的重力
D .在上升和下降过程中
A 对
B 的压力等于A 物体受到的重力【答案】:A
【解析】:上升和下降过程中,两物体均处于完全失重状态,A 对B 的压力为零.
7.(2019·永州三模)科技的发展正在不断地改变着我们的生活,图甲是一款放在水平桌面上的手机支架,其表面采用了纳米微吸材料,用手触碰无粘感,接触到平整光滑的硬性物体时,会牢牢吸附在物体上.图乙是手机静止吸附在该手机支架上的侧视图,若手机的重力为G ,下列说法正确的是()
A .手机受到的支持力大小为Gcos θ
B .手机受到的摩擦力大小大于Gsin θ
C .纳米微吸材料对手机的作用力方向竖直向上
D .纳米微吸材料对手机的作用力大小为
Gsin θ【答案】:C 【解析】:手机受力平衡,根据平衡条件可知,在垂直支架方向上,重力垂直支架的分力与吸附力之和等于手机受到的支持力,F N =Gcos θ+F 吸,A 选项错误;在平行支架方向上,f =Gsin θ,B 选项错误;纳米微吸。