激光原理-第三章
- 格式:ppt
- 大小:1.62 MB
- 文档页数:75
激光原理_第三章激光原理第三章主要涉及激光和光学腔的特性以及激光光束的聚焦、散焦以及其应用。
第一节中,我们将讨论激光器和光学腔的特性。
激光器是产生激光的重要设备,它包括三个基本部分:能够将电能转化为光能的活性介质、激活活性介质的能量源以及谐振腔。
激光器的原理是通过在活性介质中加入能量,使活性原子或分子跃迁到激发态,然后通过受激辐射释放光子,并进一步激发周围的活性原子或分子,从而实现光的倍增。
在光学腔方面,我们将讨论两个关键特性:腔长度和腔的几何形状。
腔长度对激光的频率起着决定性的作用,而腔的几何形状则决定了激光的模式。
第二节中,我们将介绍激光光束的聚焦和散焦。
激光光束的聚焦是通过使用透镜或其他透镜系统实现的。
透镜的焦距决定了光束的聚焦程度,而透镜的直径决定了光束的聚焦区域的大小。
同时,我们还将讨论光束的散焦现象,即光束随着传播距离的增加逐渐扩散。
散焦现象的产生是因为光束在传播过程中受到了折射、散射和衍射的影响。
第三节中,我们将探讨激光的应用。
激光在许多领域中都有广泛的应用,包括通信、测量、医学、材料加工等。
在通信领域,激光被用于传输信息,其高密度和高速度的特性使其成为一种理想的通信媒介。
在医学领域,激光被用于进行手术和治疗,例如激光手术可以实现精确的切割和无创伤的治疗。
在材料加工领域,激光能够实现高精度的切割、焊接和打孔,被广泛应用于工业制造。
总的来说,激光原理第三章主要涉及激光器和光学腔的特性,包括激光光束的聚焦和散焦,以及激光的应用。
通过学习这些内容,我们可以更好地理解激光的原理和性能,从而更好地应用于实际生活和工作中。
思考练习题31.腔长为0.5m 的氩离子激光器,发射中心频率0ν=5.85⨯l014Hz ,荧光线宽ν∆=6⨯l08 Hz ,问它可能存在几个纵模?相应的q 值为多少? (设μ=1)答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν, 210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为: 68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=19499992.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。
今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少?答:Hz L cq 88105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则:m c L Lcq 2.0105.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。
3.(1)试求出方形镜对称共焦腔镜面上30TEM 模的节线位置的表达式(腔长L 、光波波长λ、方形镜边长a )(2)这些节线是否等间距?答:(1)πλλπ43,02128)1()(0)(X F 213333323322L x x LxX X X e dX d eX H eX H X XX ±==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-==--)=((2)这些节距是等间距的4.连续工作的CO 2激光器输出功率为50W ,聚焦后的基模有效截面直径2w =50μm ,计算(1)每平方厘米平均功率(50W 为有效截面内的功率) (2)试与氩弧焊设备(104W /cm 2)及氧乙炔焰(103W /cm 2)比较,分别为它们的多少倍? 答:(1)每平方厘米的平均功率为:26242/10546.2)1025(50W50cm W ⨯=⨯=-ππω(2)6.2541010546.246=⨯;是氩弧焊的6.254倍。